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Abstract—The rapid advancement of wireless networks to-
wards Artificial Intelligence (AI)-driven solutions attracts many
vendors to build resilient and intelligent capabilities for Open
Radio Access Networks (O-RAN). However, besides the benefits
of achieving flexibility and intelligence, openness in native AI-
driven O-RAN functions is also the target of severe AI-related
security threats, e.g., adversarial attacks. This work addresses the
security matter for the AI-powered solutions in the physical layer
of O-RAN, specifically within the context of deep reinforcement
learning (DRL)-based resource allocation. We introduce a new
adversarial attack variant that manipulates the environment
parameters and misleads the agent’s observation during the in-
ference phase. The attack can cause incorrect allocation decisions
and significant degradation in the transmission data rate. Our
evaluation results show that the attack degrades user data and
packet delivery rates by up to 40% and 77.74%, respectively,
particularly in ultra-low-latency services. We also found that the
major weakness of DRL-driven radio resource allocation is the
environment observation stage, where a group of compromised
users or jammers can spoof noises and signal power to mislead
environment interaction. In our context, the proposed policy
infiltration attack is the most efficient approach to cause sustained
network inefficiencies or reduced throughput for benign users.

Index Terms—O-RAN, Adversarial Attacks, Resource Alloca-
tion, Policy Infiltration Attacks, Deep Reinforcement Learning

I. INTRODUCTION

Open-RAN (O-RAN) has become one of the most popular

platforms in radio access networks (RAN). The O-RAN Al-

liance includes major global operators and suppliers, such as

AT&T and NTT DoCoMo. In addition, O-RAN has attracted

the attention of industry and research teams due to its potential

to improve flexibility and interoperability in next-generation

networks [1], [2]. O-RAN can reduce the cost of network

deployment and operation by leveraging commodity off-the-

shelf hardware, virtualization, and multi-vendor environments.

This new architecture will open opportunities for smaller

suppliers and new startups to enter the market and provide

diverse solutions. Recently, numerous teams have started in-

corporating artificial intelligence capabilities into critical O-

RAN functions, aiming to actualize the vision of networks

that are autonomous and self-optimizing [3], [4]. According

to [5], AI will first be implemented in near-real-time radio

intelligence controllers (xApps) and RAN service management

(rApps).
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Fig. 1. O-RAN Architecture & DRL Resource Allocation with Adversarial
Attacks where an attacker broadcasts false signal requests and noises to poison
DRL’s state space and affect the subsequent actions.

However, adversarial attacks against AI models and related

security risks are of the utmost concern for the reliability of

AI systems [3]. The O-RAN specification also describes this

new threat [6], namely attacks against AI/ML models used

for inference and control in xApps and rApps. In these attack

types, the adversary can gain unrestricted control of one or

more O-RAN nodes by manipulating the uplink(UL) signals

and best-state observations stored in the SMO/non-RT RIC

to generate real-time feeds synthetic data. These attacks may

cause AI/ML solutions to output incorrect predictions or make

wrong control decisions, resulting in performance degradation

and, even worse, network connection interruptions [3].

This study addresses new adversarial attacks on AI-based

radio resource allocation in O-RAN. There are several reasons

for our choice to address this critical matter. First, the UL

signal patterns from user equipment, which are the source of

radio resource allocation training, can be easily manipulated

by fake user equipment or jamming signals. It should be noted

that counterfeit user equipment can easily be implemented

using software-defined radio devices. Secondly, resource al-

location is critical in ensuring network performance and op-

timal resource utilization in O-RAN. Adversarial attacks can

manipulate allocation decisions, leading to resource allocation

errors, as illustrated in Fig. 1. This may interfere with network
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stability, reduce overall system performance, and potentially

lead to congestion, resource waste, and even network outages.

Finally, incorrect resource allocation caused by adversarial

attacks may cause cascading effects at different levels of the O-

RAN architecture. For example, resource allocation errors in a

certain part of the network may affect the end-user experience,

leading to dissatisfaction with network quality or the knock-

on effect of causing the entire area to be unable to connect

correctly. To the best of our knowledge, this is the first attempt

to conduct adversarial attacks against DRL-based resource

allocation at the physical layer of the O-RAN platform.

A. State-of-the-Art Studies

Numerous studies stress the need to investigate diverse

adversarial attack strategies on AI-driven solutions in wireless

networks, including stealthy attacks, evasion, poisoning, sig-

nal modulation deception, and jamming attacks [7]. Table I

summarizes related studies compared to our work. There

are two primary attack approaches: white-box attacks and

black-box attacks. In the first attack, the attacker has full

knowledge (the architecture, parameters, and training data)

and access to the target model. For example, the authors

in [8] present a first attempt to craft white-box adversarial

attacks against CNN-based radio signal classification tasks.

In the second attack type, the attacker has limited or no

access to the target model’s architecture, parameters, or in-

ternal workings. For example, the authors in [9] proposed a

black-box adversarial attack on DNN-based communications

that involved leveraging Universal Adversarial Perturbations

(UAPs) and the Perturbation Generation Model (PGM). The

crafted attacks were subtle yet potent, designed to query the

signal decoding and use the successful decoding responses to

generate adversarial examples. However, achieving the delicate

balance between attack potency and stealth required careful

constraint adjustment.

TABLE I
COMPARISON OF THE STATE-OF-THE-ART STUDIES

Paper CSI Input Attack Method Attack Target Disrupt Network

[9] ✓ PGM via UAP Signal decoding ×
[8] ✓ UAP Signal classification ×

[10] ✓ MI-FGSM/PGDM Power allocation ✓

[11] × PYH-Jamming Channel access & power regulation ×
[12] × FGSM/PGD Interference classification ×

Ours ✓ FGSM/PIA Radio resource allocation ✓

As summarized in Table I, close to our work, the authors

in [11] proposed a black-box approach to exploit signal

interference and misleading reinforcement learning agents

in dynamic channel access and power regulation. However,

they assume that the attacker must have high capability in

exploration and imbalanced training, hindering sustained at-

tacks. In another work, the researchers in [10] orchestrated an

adversarial evasion attack on DNN-powered power allocation

within the realm of massive Multiple-Input Multiple-Output

(maMIMO) to coerce the system into generating infeasible

power allocation solutions. A major disadvantage is the in-

feasibility of capturing the true dynamism of the real-world

state space, which is in a perpetual state of flux. In a recent

study [12], adversarial poison attacks revealed vulnerabilities

in data-driven xApps for interference classification. These

attacks manipulated data in a shared RIC, leading to potential

performance degradation.

B. Contributions

Unlike prior work, our study focuses on penetrating the

policy decision of the deep reinforcement learning algorithm

and adjusting user equipment UL signal broadcasting. The goal

is to create wrong environment observation that contributes

to the agent’s chaotic allocation decision at the base station.

This research marks our initial endeavor to address adver-

sarial attacks on the physical layer of the enterprise O-RAN

platforms. We implement an adversarial attack to evaluate the

AI-powered control functions’ reliability and demonstrate the

model’s capacity to withstand subtle policy infiltration attacks.

Our key contributions are summarized as follows.

• We present a novel adversarial attack termed Policy Infil-

tration Attack (PIA) targeting specific decision policy in

Proximal Policy Optimization-based resource allocation

approaches within O-RAN frameworks.

• We design and implement a policy infiltrator that can craft

subtle yet effective perturbations to the state space of the

DRL agent, causing it to generate sub-optimal actions.

• Uncovering vulnerabilities in state-of-the-art Proximal

Policy Optimization-based resource allocation, we con-

ducted thorough experiments on PIA’s performance and

robustness across diverse UE traffic demands. Our eval-

uation included comparing the model’s behavior under

different scenarios. Also, this exploration of vulnerabili-

ties opens a new research frontier for robust and resilient

deployment of AI models in O-RAN at the physical layer.

The remainder of this paper is organized as follows. Sec-

tion II presents the system model and problem formulation.

Section III details our proposed models. The evaluation results

of the system are shown in Section IV. Finally, the conclusion

is summarized in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This work considers a wireless communication environ-

ment with M MIMO-based Base Stations (BS) serving N

mobile single-antenna Users Equipment (UE) with time-

varying path loss and channel conditions. The sets of BSs

and UEs are denoted as M = {1, 2, . . . ,m, . . . ,M}, N =
{1, 2, . . . , n, . . . , N}. The base stations interface via E2

through the O-RAN interface manager, as illustrated in Fig. 1.

The base stations transmit a bundle of Resource Block

Groups (RBG), the smallest resource unit allocated to a user,

consisting of 12 consecutive subcarriers. Each BS has a set

of G RBGs, denoted as G, G = {1, 2, . . . , g, . . . , G}. The

available bandwidth is divided into ζ orthogonal slices to

avoid interference and implement fair and efficient scheduling

policies. We define hm,g,n to denote a binary notion of whether

BS m has allocated resource block g to user n. Moreover, let

ξn represent the channel coefficient for user n on slice ζ, and
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the transmission power assigned to the g-th RBG of BS m at

time t is denoted as Pm,g .

The Signal-to-Interference-plus-Noise Ratio (SINR) be-

tween BS m and user n on RBG g at time t, defined as Ψm,g,n,

is formulated by Ψm,g,n =

hm,g,n · ξm,n · Pm,g

∑

m′∈M,m′ ̸=m

∑

n′∈N ,n′ ̸=n h
m′,g,n′ · ξm′,n′ · Pm′,g + σ2

,

(1)

where
∑

m′∈M,m′ ̸=m

∑

n′∈N ,n′ ̸=n h
m′,g,n′

· ξm
′,n′

· Pm′,g

denotes signal interference from other BSs/UEs (except BS

m, UE n), σ2 represents the noise variance.

The transmission capacity of BS m on the resource block

g is given by

Cm,g = βg · log2(1 +
∑

n∈N

Ψm,g,n), (2)

Here, βg represents the assigned bandwidth for resource block

g. We presume that user traffic adheres to Poisson arrivals with

a designated mean arrival rate. Accumulated traffic is stored

in a transmission buffer of limited capacity. If the queued data

length exceeds the buffer’s capacity, any surplus data will be

discarded. The transmission rate of BS m on resource block

g is articulated by

Rm,g =

{

Cm,g, if Cm,gT <
∑

n∈N hm,g,nLn

Ln

T
, if Cm,gT ≥

∑

n∈N hm,g,nLn
(3)

where, Ln denotes the remaining transmission block size, T is

the time duration slot, and ξn signifies the importance factor

for user n on g. We also assume optimized power allocated

P g,n with the consideration of the necessary constraints for

each user n in slice ζ as described in [10]. Ultimately, the

goal of the system is to optimize the overall transmission rate

across all M BSs, articulated as:

max
P g,n,hm,g,n

∑

m∈M

∑

g∈G

Rm,g,

s.t. (1) - (3),

Pmin ≤ Pm,g ≤ Pmax, ∀m, g,

hm,g,n ∈ {0, 1}, ∀m, g, n,
∑

n∈N

hm,g,n = 1, ∀m, g.

(4)

A. Resource Allocation Model

The resource allocation problem is to find an optimal policy

for each agent that maximizes its expected cumulative reward

over time while satisfying the QoS constraints and ensuring

coordination among agents. It corresponds to selecting a

signal correlation matrix for each user and transmits strategy

{S1, . . . , Snr} in compliance with the power constraints. The

loss function is designed to facilitate the generation of adver-

sarial examples, empowering the adversary to choose a potent

attack mechanism for effectively deceiving the model with

high probability and subtlety. The loss function of a learning

model with is given by

Ladv(θ, ϕ, x, δ) = Lorigin(θ, ϕ, x)−Lorigin(θ, ϕ, x+ δ) (5)

Here, θ denotes a policy network, and ϕ means a value

network. The objective is to find a perturbation δ to add to the

input observations x and maximize the loss Ladv(θ, ϕ, x, δ) to

encourage perturbations that lead to an increase in the original

loss.

B. Problem Formulation

We formulate an adversarial resource allocation problem

within a PPO agent architecture, where an agent interacts with

an environment defined by wireless channel conditions, user

demands, Key Performance Indicator(KPI) requirements, and

available resources. The objective function of the agent is the

traffic-based allocation of radio resources to users. The agent

determines values hm,g,n and βg , key parameters influencing

both UL and DL transmissions. hm,g,n controls UL resource

allocation, impacting the distribution of resources from UE

to the BS m. Adjustments to hm,g,n can impact resource

quantity, transmission power, and other UL-related factors,

consequently affecting the user’s UL communication capacity

[13]. Conversely, βg governs DL resource allocation, focusing

on the distribution of resources from the BS m to the UEs.

State Space (S): The state space encompasses several key

elements to observe over time t, including the transmission

rate R
m,g
t , transmission power P

m,g
t , relevant Channel Quality

Information (CQI) amplitude CSI data as Hm,g
t , the length of

queuing data in the buffer denoted by L
m,g
t , and an indicator

hm,g,n embedded within the state. We formally define the state

of the resource allocation problem by

Sm
t = {hm,g,n,Hm,g

t , R
m,g
t , P

m,g
t , L

m,g
t | g ∈ G, n ∈ N}

(6)

where n is the number of users and m is the BS serving at the

moment. The attacker’s state space alterations introduce inac-

curacies, significantly impacting the DRL agent’s perception.

Action space (A): The action space, denoted as Am
t ,

comprises the set of possible actions that the agent can take

at time t for BS m. Each action a
m,g
t is a vector representing

adjustments to resource allocation parameters in S for user n

that is expressed by

a
m,g
t = {k0, . . . , kN−1 | kn ∈ h

m,g,n
t } , Am

t = {am,g
t | g ∈ G}

(7)

Reward (ℜ): The reward is a composite measure of the

overall throughput allocated to each User Equipment’s (UE)

slice by BS m. The reward at time step t, denoted as ℜt, is

calculated by

ℜt =
∑

n∈N

ωn ·Rm,g
t , (8)

where ωn represents the weight assigned to each user

n, considering factors such as current downlink buffer size,

transmission rate, and the ratio of granted to requested Physical

Resource Blocks (PRBs). In the adversarial attack, the reward

is computed from the perturbed state space, resulting in an

altered course of action due to the induced perturbation.
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III. PROPOSED POLICY INFILTRATION ADVERSARIAL

ATTACK AGAINST RESOURCE ALLOCATION MODEL

This section details the adversarial attacks considered to

attack the baseline model and the policy infiltrator algorithm

designed to mislead the reward policy of the learning agent.

A. Attack model

In O-RAN [3], the 7.2x interface isn’t encrypted on the

control plane due to timing complexities. This opens up for

impersonation attacks and potential data compromise. Addi-

tionally, the S-Plane is susceptible to performance degradation

through malicious interference with synchronization infras-

tructure. In this work, an inference-based adversarial attack

agent is designed against the pre-trained PPO-based resource

allocation model, which employs an actor-critique network in a

continuous action space of the wireless network environment.
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Fig. 2. An adversarial attack on the DRL-based resource allocation model
in O-RAN: xApp uses DRL to allocate radio resources to users based on the
environment, which includes the wireless channels, handover demands, the
QoS requirements, and resource availability. An adversary attacks to perturb
the channel state estimation and disrupt the resource allocation decisions.

Perturbations are constrained as ∥η∥∞ ≤ ϵ, where η is

a given parameter. This constraint ensures that adversarial

perturbations remain within a minimal error range, evading

detection by the base station (BS) and staying within the

standard tolerance range. In Figure 2, we visualize adversarial

attacks on the DRL-based resource allocation model within the

O-RAN framework. An xApp employs DRL to allocate radio

resources to users based on environmental factors. However,

adversaries aim to perturb the channel state estimation by

introducing fake UEs to broadcast adversarial signals, delib-

erately leading the agent to wrong/messy allocation decisions.

B. Adversarial Attack Algorithms

The adversarial attack aims to impair system performance

by distorting resource allocation choices through state space

manipulation. The agent uses slice inputs as observations,

modifies the policy settings, and tricks the agent with wrong

signal information into making subtle incorrect decisions. Be-

low, we outline the two algorithms employed for this purpose.

1) Fast Gradient Sign Method (FGSM): FGSM is a

one-step adversarial attack technique that maximizes the loss

function L [12] in a more efficient way. In resource allocation,

FGSM is crafted to perturb RGB extracted from CSI Hx for

UE n to generate an adversarial channel matrix resulting in

higher loss L that misleads the model to provoke incorrect

decisions. This adversarial channel matrix Hadv
x is represented

by δ:

δ = ϵ · sign(∇xL(θ, x, y)), (9)

where ∇xL(θ, x, y) is the gradient of the loss function

L(θ, x, y) with respect to the input data x and ground truth

label y .

2) Policy Infiltration Attack(PIA): leverages a proficient

adversarial attack agent crafted to infiltrate the policy dictating

UE’s throughput requirements and available resource blocks

(RBs). Our strategy employs imperceptible random noise ϵ to

perturb the state space, effectively exploiting vulnerabilities

in the model and impeding its capability to achieve the

intended objectives. Unlike the widely-used FGSM, PIA aims

to penetrate the behavior of a pre-trained model. Secondly,

the PIA dynamically adjusts input iteratively for episode

iterations, incorporating gradient information in each step, and

breaks the loop only if the perturbation exceeds a predefined

threshold. Third, this method is appropriate when a more

complex and persistent attack is required, with the ability to

overcome defenses against single-step attacks.

Algorithm 1: Policy Infiltrator Attack(PIA)

Data: Hx → f, [Hx is the CSI input data fed to the model f ]
Initialization: Set δx = X, ϵ (random δx, threshold),
Max Iter episode = 1000, ϵ = 0.01, threshold=1.1
Result: Adversarial Input δ

1 Calculate Baseline f Prediction:
2 Baseline prediction = y
3 Iterative Perturbation Generation:
4 for i = 1 to episode do
5 ∇xJ(δx, baseline prediction) =

∇x (baseline prediction · L(θ, ·))→ Calc-Gradient
6 δx ← δx + ϵ · sign(∇xJ(δx, baseline prediction))→

Update Adversarial Input
7 δx ← clip(δx, (X− ϵ,X+ ϵ))→ Clip Perturbation
8 infiltrated prediction =f(δx)
9 Check Stopping Criteria:

10 if infiltrated prediction ̸= baseline prediction or
∥δx −X∥∞ > ϵ then

11 Break out of the loop
12 end
13 end
14 Perturbed ℜ ← A|S

Algorithm 1 shows that the pseudo-code for the PIA algo-

rithm targets to penetrate the behavior of a pre-trained model,

denoted as f . We establish the baseline model (Lines 1-3) and

leverage it to train the adversarial attack model. This adver-

sarial training continues through episode iterations (Lines 4-

10), intending to mislead the baseline model consistently. The

perturbed data is used to gauge the agent’s decision subtly.

The training process persists until the adversarial model can

effectively induce the baseline model to produce abnormal

decisions, as shown in (Lines 10-12). This method strategically

disrupts the model’s behavior while staying hidden in the
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shadow, ensuring the baseline model continues to operate with

the induced perturbation.

Deceptive Encouragement of Exploration

In our study, adversarial attacks are framed as a deceptive

optimization problem, i.e., misleading the target of transmis-

sion rate in Equation 4, where the attacker strategically adjusts

the power transmission, UE location, and resource allocation

selection assigned to a compromised UE and influence ωn in

Equation (8). Let Q(ω) represent the performance metric to be

optimized. The attacker collaborates with Users’ Equipment

(UEs) to provide fabricated feedback, modifying the true

performance metric to a deceptive one, Qdeceptive(ω). The

DRL agent, aiming to maximize its reward, follows policies

that maximize Qdeceptive(ω), leading to suboptimal resource

allocation strategies (π∗). This deviation from the network’s

true optimization objective causes biased resource allocation

decisions, impacting users’ QoS, which can be defined by

π∗ = argmax
π

Qdeceptive(ω) (10)

IV. PERFORMANCE ANALYSIS

We use a pre-trained model for attack testing, which is eval-

uated on a complex network simulation scenario in a crowded

urban region employing cutting-edge technology (5G) and

real-world (OpenCelliD) Colosseum O-RAN Dataset. The

model is trained on 7 GB of training data comprising various

performance metrics (throughput, bit error rate), system state

information (transmission queue size, SINR, and QoS), and

resource allocation strategies (slicing and scheduling policies).

This training data is collected through a total of 89 hours of

experiments conducted on the world’s largest wireless network

emulator, Colosseum [2].

TABLE II
EXPERIMENT SETUP

Parameter Value

Network Type 5G
Number of BSs 4
Number of UEs 40
UL Frequency 1.02 GHz
DL Frequency 0.98 GHz
Channel Bandwidth 3 MHz
BS Locations 0.11 km
Slicing Multi-slice(eMBB, URLLC,mMTC)
Scheduling Policies (PF), (WF), (RR)
UE Allocation Static allocation to slices
Mobility Time-varying UEs
Time Granularity 500 ms

For optimization, in this work, scheduling paradigms use

Proportionally Fair (PF), Waterfalling (WF), and Round-Robin

(RR) based on UE QoS requirements. These paradigms sim-

ulate versatile scheduling and adaptive resource allocation in

target network slices. This approach also ensures a nuanced

and flexible optimization aligned with the unique characteris-

tics of individual network slices in practice. And DRL Agent

implementation integrated as xApp running in near real-time

RIC as shown in Table II.

A. Evaluation Results

In this study, we conducted a performance analysis on

the pre-trained resource allocation model while considering

the presence of adversarial agents. We meticulously extracted

numerical features from the reward log to facilitate a thorough

comparison of essential evaluation metrics. The impact of

these attacks can be observed from Table III, the data rate

measure under no attack and after the attack. The table

illustrates data rates in Megabits per second (Mbps) within

a multi-slice scenario, where the User Equipment (UEs) are

statically assigned to specific network slices based on QoS:

(i) Enhanced Mobile Broadband (eMBB), representing users

requesting video traffic; (ii) Machine-Type Communications

(MTC) for sensing applications, and (iii) Ultra-Reliable Low

Latency Communications (URLLC) for latency-constrained

applications such as V2X. Consequently, the agents are re-

warded based on specific KPI requirements. Initially, the

eMBB and MTC agents are trained to maximize UE through-

put, while URLLC agents focus on minimizing latency by

allocating resources as quickly as possible.

TABLE III
DATA RATE MEASURE UNDER NO ATTACK AND AFTER ATTACK

Slice No attack UPA/FGSMA PIA Degradation (%)

Mbps Mbps Mbps UPA PIA

eMBB 3.39 3.01 2.36 12 29
mMTC 0.14 0.12 0.12 26 22
uRLLC 0.05 0.04 0.03 20 40

We found that the severity of the adverse effects on UE

caused by the count of unsuccessful attempts to deliver

Resource Blocks (RBs) to the UEs is proportional to the

allocation’s failure to meet the latency requirements specified

by the UEs. This relationship arises due to the extended delays

induced by adversarial attacks in fulfilling resource allocation

requests. Consequently, packets are compelled to be dropped

due to timeouts. This effect is particularly critical in low-

latency services, such as uRLLC, where extended communi-

cation delays may potentially lead to serious consequences,

such as accidents involving high-speed vehicles on highways.

Furthermore, it is noteworthy that the PIA attack exhibits a

higher efficiency in diminishing UE data rates compared to the

FGSM attack, as seen in Table III. This efficiency disparity can

be attributed to PIA’s direct influence on the DRL policy (well-

targeted attack), while FGSM necessitates time to influence the

process through DRL observations (brute-force attack).

TABLE IV
MODEL PERFORMANCE METRICS UNDER DIFFERENT SCENARIOS

Scenario Packet-DR% Successful RBA Average-CR

No Attack 82.58 52511 55.22
FGSM 82.01 40834 42.57
PIA 22.26 9473 9.96

In our performance assessment across various model sce-

narios, we analyzed critical metrics such as Packet Delivery

Rate (PDR), which represents the ratio of successful Resource
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Block (RB) allocations to the total RB allocation attempts by

the agents. Average Cumulative Reward(Avg-CR) represents

UE data rate satisfaction over time, emphasizing compliance

with preset minimum bit-rate requirements among all model-

generated rewards. We also examined Successful RB Alloca-

tions for each slice, a measure of the agent’s request reply

relay, calculated as the count of successful RB allocations per

slice. Moreover, we gauged the overall performance impact on

the resource allocation model through user data rate. Evalu-

ation results in Table IV hint that the ’No Attack’ scenario

demonstrates the DRL-driven resource allocation model’s

commendable performance, featuring a high packet delivery

rate, and successful RBG allocation. However, in the ’After

Attack’ scenario, the PIA attack contributes to a 77.74% (i.e., =

100-22.26) packet delivery rate decline, indicating significant

quality of service degradation. Successful PRB allocations

also declined, leading to a 40% drop in the data transmission

rate. Notably, the PIA attack proves more efficient than the

FGSM attack, evidenced by a greater drop in the reward, as

shown in Figures 3, 4, 5 (indicate the outcomes under three

traffic slices). In an extensive evaluation, we compared our
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Fig. 3. Reward accumulation before and after the attack on eMBB slice
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Fig. 4. Reward accumulation before and after the attack on mMTC slice
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Fig. 5. Reward accumulation before and after the attack on uRLLC slice

system performance with that of [12], which closely aligns

with our work. While the attack performance on the user

data rate of the two methods is competitive, as shown in

Table V, our attack targets the interaction phase of the DRL,

instead of CNN-based signal classification. Further, the prior

work employed a larger perturbation magnitude ϵ (0.04/0.05 vs

0.01), underscoring the high cost of performing perturbation

than ours. Two attacks reaffirm the importance of efficient

defense tactics for potentially harmful adversarial attacks at

the physical layer.

TABLE V
UE DATA RATE COMPARISON BEFORE AND AFTER THE ATTACK

Scenario [Ours] ϵ=0.01 Study [12] ϵ=0.04, ϵ=0.05

No Attack FGSM PIA No Attack FGSM PGD

10 UEs 0.8 0.7 0.6 1.6 0.7 0.8
20 UEs 1.7 1.6 1.2 1.7 0.7 0.9
30 UEs 2.5 2.2 1.8 2.0 0.8 1.0
40 UEs 3.4 3.0 2.4 2.4 1.0 1.2

Data rate in this evaluation is measured by Mbps.

V. CONCLUSION

In this paper, we’ve conducted adversarial attacks on AI-

driven resource allocation, a recognized threat in AI-native

O-RAN systems. Our study represents a white-box method to

perform adversarial attacks on Deep Reinforcement Learning

(DRL)-based resource allocation at the physical layer of

the O-RAN platform. Through these attacks, we’ve revealed

vulnerabilities in the DRL-based resource allocation model,

demonstrating its susceptibility to perturbations in the state

space by compromised user equipment (UE). These insights

underscore the need to address these issues before deploying

AI-aided functions. A promising direction for further research

is combining conventional attacks (e.g., DoS signaling) to

disrupt the AI-driven radio resource allocation functions. Also,

effective countermeasures against these adversarial threats can

be exciting research topics for future work.
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