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In the era of advanced networking with 5G integration, the need for efcient and scalable intrusion detection systems has become
critical to securing large-scale digital infrastructures. Traditional intrusion detection approaches either analyze individual packets
yielding high computational costs or rely solely on fow-based data, which can miss important sequence-level information critical
to identifying interservice communications and attack behaviors. To address this, we propose a unifedmachine learning approach
that integrates fow-based and packet-based detection using convolutional neural networks (CNNs) for advanced intrusion
detection. Our method prioritizes fow-based detection for short fows as the frst defense layer and selectively invokes packet-
based detection for longer fows or cases deemed uncertain. Uncertain predictions from the fow-based stage are identifed using
a confdence threshold and re-evaluated by the packet-based system. We validate our method using a systematically generated
dataset from a microservices environment alongside benchmark datasets, including CIC-IDS-2017, CIC-IDS-2018, and CRE-
MEv2.Tis hybrid detection strategy yields strong performance in both accuracy and efciency. Specifcally, our approach reduces
the computational cost by up to 24× (approximately 1.38 orders of magnitude) compared to relying solely on packet-based
analysis. Additionally, the model demonstrates strong generalization with detection rates of 95% and 100% for fow- and packet-
based detection, respectively, even against previously unseen attacks generated through behavioral variations and command-level
perturbations.

Keywords: deep learning; microservices security; ml for intrusion detection; unifed fow and packet

1. Introduction

Te advent of 5G technology has paved the way for the
development of on-demand services that require low latency
to function efectively [1]. As a result, network and system
architectures have evolved to accommodate these re-
quirements by transitioning to distributed environments.
One of the key aspects of this evolution is the adoption of
distributed systems, such as microservices. Microservices

allow for the decomposition of an application into separate
components or “services” that can be managed in-
dependently. Container-based applications have become the
standard for efectively implementing microservices, with
Kubernetes being the most widely used container orches-
tration platform.

System security and intrusion detection have become
increasingly crucial with the rising adoption of 5G and
microservices. Addressing these needs involves securing
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microservice systems and detecting intrusions within them.
Securing microservices is challenging for several reasons [2]:
(1) Tey are distributed across nodes with interservice
communications, and these nonlinear communication
patterns make distinguishing normal from anomalous be-
havior difcult. With potentially hundreds of concurrently
running microservices, such systems are harder to secure
than traditional monolithic ones. (2) Unlike monolithic
systems where components communicate locally, micro-
services communicate over networks, enlarging the attack
surface. Each service can be an entry for attackers, with the
complex communication allowing lateral attacker move-
ment. (3) Microservices communicate using diverse pro-
tocols and event-driven architectures, complicating the
identifcation of malicious activities. (4) Tese intricate
patterns can increase false positives (FPs) and negatives
(FNs) in intrusion detection.

A prevalent strategy is implementing distributed in-
trusion detection on each network node, allowing for real-
time anomaly identifcation by analyzing network trafc
data. Tere are two forms of network data that can be used
for intrusion detection: packet-based and fow-based.

Packet-based detection focuses on the packet, the fun-
damental unit of data transmission in a network. Each
packet carries detailed information about its source, desti-
nation, and content. Tis method can involve analyzing the
payload of packet data [3–5]. However, the prevalence of
encryption in modern protocols poses signifcant challenges
to achieving accurate classifcation [6]. Alternatively, packet-
based detection may employ sampling techniques based on
specifc felds from the 5-tuple source IP, destination IP,
source port, destination port, and protocol type [7, 8]. Tis
approach ofers granular insights into each packet and tends
to improve accuracy. Nevertheless, due to the large volume
of packets in modern networks, this method demands
signifcant computational resources to process and analyze
the data.

On the other hand, fow-based data collate packets into
fows using the same 5-tuple felds, providing a statistical
snapshot of trafc between endpoints. Tis summary might
include metrics such as packet count, byte count, and fow
duration, facilitating a comprehensive network behavior
analysis. While third-party tools can extract features from
these fows and calculate statistics, ofering a less compu-
tationally intensive alternative to packet-by-packet analysis,
this method captures only statistical patterns, omitting the
nuanced sequences and trajectories indicative of network
anomalies. Additionally, the necessity to wait for a fow’s
completion before calculating the correct statistics limits its
applicability to real-time detection. Analyzing incomplete
fows leads to lower detection accuracy and higher FP rates,
diminishing the method’s overall efectiveness [9].

Packet-based and fow-based detection methods each
have their strengths and limitations. While packet-based
detection ensures high accuracy, it demands signifcant
computational resources. Conversely, fow-based detection
is less resource-intensive but experiences reduced accuracy,
requiring the completion of extensive fows before detection

can take place [10]. A unifed approach, merging both
methods, could optimally harness their advantages and
enhance detection efciency.

In the past, network data were typically analyzed using
signature-based detection. However, this approach proved
inefective due to the prevalence of encrypted packets in
modern networks. Furthermore, it was also constrained by
its reliance on predefned attack signatures and exhibited
a high FN rate, leading to missed unknown attack attacks.
Machine learning (ML) has now emerged as a superior
alternative by learning the patterns and behaviors of network
data. ML models can be trained on network data, enabling
them to distinguish between normal and malicious network
activity. Tis approach signifcantly enhances detection
performance while reducing the FN rate [11] and can work
efectively even in the presence of encrypted packets [12–14].

Deep learning (DL) algorithms, a subset of ML, have
demonstrated impressive efectiveness in intrusion de-
tection. Tey excel at profling trafc and identifying
malicious activities [15]. One such algorithm, the con-
volutional neural network (CNN), is frequently deployed
due to its capacity to autonomously extract features from
data, making it ideally suited for trafc profling. With CNN,
trafc features can be directly learned and profled, facili-
tating more accurate intrusion detection even when dealing
with encrypted packets [16–18]. Tis method can be
implemented in a unifed approach for both fow and packet
data, learning patterns and identifying malicious behavior
within the data.

Te motivation for this work arises from the limitations
of existing intrusion detection methods in addressing the
challenges posed by modern network environments. Cur-
rent unifed or hybrid approaches predominantly focus on
either fow-based or packet-based data, with limited ex-
ploration of how these can be combined efectively [19–31].
While [8] introduced a hybrid method that integrates fow
and packet features for joint processing, it incurs signifcant
computational overhead due to the simultaneous processing
of both data types. In contrast, our work seeks to address
these shortcomings by proposing an innovative unifed
approach that leverages the strengths of both fow- and
packet-based detection while minimizing resource demands.
Specifcally, our method uses fow-based detection as the
primary defense for shorter fows, reserving the more
resource-intensive packet-based detection for longer fows
or cases where fow-based confdence scores fall below
a specifed threshold. By forwarding uncertain fow-based
results for packet-level reanalysis, our approach reduces FPs
and FNs, enhances computational efciency, and enables
real-time detection, making it well-suited for securing dy-
namic and distributed systems such as microservices.

Our work’s contributions to the feld are fourfold:

• To the best of our knowledge, this study is the frst to
introduce a novel unifed detection framework that
combines fow- and packet-based methods, leveraging
their respective strengths to improve both accuracy
and efciency.

2 Security and Communication Networks
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• We propose a confdence-driven mechanism that fags
uncertain fow-based detections for further analysis at
the packet level, signifcantly reducing FPs and FNs.

• We design an approach that prioritizes computational
efciency, utilizing fow-based detection for most
trafc and engaging packet-based detection selectively,
thereby optimizing resource usage.

• We validate the proposed framework through exten-
sive experiments across multiple datasets, demon-
strating its superior performance in terms of detection
accuracy, computational efciency, and robustness
against state-of-the-art methods.

Furthermore, in order to enhance our knowledge, we
also investigate: (1) the performance of various detection
methods, including fow- and packet-based approaches; (2)
the infuence of diferent threshold types on grey zone data,
which impacts FP and FN rates; (3) the efectiveness of the
unifed fow-and-packet approach, to evaluate its perfor-
mance in terms of detection accuracy and computational
demand; and (4) unknown attack testing, to assess the efects
of unknown attack on the performance of the unifed fow-
packet approach.

Te remaining sections of this paper are structured as
follows. Section 2 discusses the related works on unifed and
hybrid intrusion detection. In Section 3, the problem for-
mulation is defned. Section 4 discusses the design solution,
and Section 5 explains the system’s implementation. In
Section 6, we present the results and discussions. Finally, in
Section 7, we draw the conclusions based on our fndings.

2. Related Works

We provide a comprehensive overview of previous research
in the feld of unifed or hybrid network anomaly detection
and intrusion detection systems (IDSs), which is summa-
rized in Table 1. Although numerous studies have proposed
methods for anomaly detection or intrusion detection using
ML, our focus is specifcally on works that utilize hybrid
approaches, whether through mixed models or data. Tis
distinct focus allows us to highlight the unique contributions
of hybrid methodologies in enhancing detection capabilities.
Te table provides a comparative analysis of each study,
focusing on several key aspects, such as the employed hybrid
detection method, types of input data used for training and
testing, the specifc ML methods applied, proposed solu-
tions, and the used datasets. Given the multitude of research
studies conducted on hybrid intrusion detection in network
trafc, each study adopts a distinct defnition of hybrid
detection. To enhance clarity, we categorize these defnitions
into three categories.

Te frst category involves model hybrid, which refers to
combining classifcation methods using binary classifcation
in the frst level and multiclass in the second level or
employing a combination of DL models. Te classifer
combination was performed by [19–22] through combining
binary and multiclass classifcation. In their method, binary
detection is employed at the frst level, while multiclass
classifcation is utilized at the second level. For instance, [19]

used a Decision Tree at the frst level and a Random Forest
(RF) at the second level, training and testing their model on
CIC-IDS2017 and UNSW-NB15 datasets, achieving F1
scores of 100% and 97%, respectively. [20] employed
a multimodal deep autoencoder for binary detection and
soft-output classifers for multiclass classifcation, improving
performance by 5% over the baselines. Similarly, [21] used
SparkML at the frst level and a Conv-LSTM model at the
second level, training and testing on the ISCX-IDS 2012
dataset to achieve a 97.29% accuracy. Tis approach aligns
with the work of [22], which initially employed an
autoencoder for anomaly detection at the frst level, and then
utilized a RF trained exclusively on malicious data at the
second level, achieving a balanced accuracy of 96%. It is
worth noting that all mentioned datasets are fow-based and
rely on statistical features.

Furthermore, several studies have combined DL models
to enhance intrusion detection performance. Tese ap-
proaches often involve using DL for feature extraction or
selection, followed by training with ML or DL techniques.
For instance, [31] employed grey wolf optimization (GWO)
for feature selection and trained a CNN model, while [30]
extracted features using a CNN model and trained a long
short-term memory (LSTM) model. Similarly, [23] utilized
a CNN for feature extraction and support vector machine
(SVM) for model training. Other works include [26], which
employed LSTM and Naive Bayes; [27], which integrated
CNN, gated recurrent unit (GRU), and BiLSTM models;
[25], which employed a CNN–LSTM combination; and [28],
which combined graph convolution network (GCN) and
LSTM models. Additionally, [29] applied stacked ensemble
learning using RF, CatBoost, and XGBoost as base learners,
with a multilayer perceptron (MLP) as the meta-learner.
Moreover, some studies adopted ensemble techniques that
combine multiple DL models for fnal decision-making. For
example, [24] utilized a Cu-LSTM–GRU architecture.

Most existing hybrid detection approaches discussed
above focus on model hybrid techniques, where multiple
classifers are combined at diferent stages to improve
classifcation performance. However, these approaches do
not explicitly optimize the integration of fow- and packet-
based detection, instead focusing on refning classifcation
models rather than reducing computational overhead.

Among prior works, MEMBER [8] is the closest com-
petitor to our approach, as it also integrates both fow- and
packet-based data. MEMBER employs a multitask learning
model that fuses statistical fow-based features and raw
packet details into a single CNNmodel, processing both data
types simultaneously. While this approach enhances feature
representation, it introduces signifcant computational
overhead because it processes both fow and packet data at
all times, even for benign trafc. Tis redundant compu-
tation makes MEMBER less efcient for real-time de-
ployment in large-scale networks, as it lacks a mechanism to
selectively process only relevant trafc.

In contrast, our method follows a tiered decision-making
approach, where fow-based detection serves as the frst
defense, and packet-based detection is selectively applied
only for uncertain cases in the “grey zone.” Tis confdence-

Security and Communication Networks 3
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driven mechanism ensures that most network trafc is
processed efciently at the fow level, preventing un-
necessary packet-based analysis for benign trafc. By esca-
lating only ambiguous cases to packet-based detection, our
approach signifcantly reduces computational costs while
maintaining high accuracy.

Furthermore, while MEMBER merges fow and packet
features into a unifedmodel, our approach separates fow and
packet detection into two distinct CNN models, allowing
independent processing at diferent levels. Tis separation
improves adaptability, ensuring that packet-based detection is
only triggered when the fow-based model lacks confdence in
its classifcation. Te resulting efciency gain makes our
method better suited for real-time intrusion detection in
large-scale and resource-constrained environments.

3. Problem Formulation

Tis section explains our problem defnition and the vari-
ables and notations employed, summarized in Table 2. Given
the training dataset, ML algorithm, and testing dataset, we
need to determine the most accurate MLmodel and the ideal
threshold detection parameters for fow-based and packet-
based approaches. Additionally, we must establish the
threshold for the grey zone data to flter out low-confdence
detection results. Our objective is to maximize the F1 score
of the unifed fow-and-packet method. Te problem
statement is then formally defned as follows:

Input: Te training dataset RB, ML algorithm K, and
testing dataset RG.

Output: Most accurate ML models with threshold de-
tection for fow-based LF, τF; packet-based LP, τP; and the
optimal threshold of grey zone data τFNmin, τFNmax, τ

FP
min, τFPmax.

Objective: Maximize F1 score of unifed fow-and-packet
ML model.

4. System Design

We propose a unifed fow-and-packet intrusion detection
approach based on ML with the goal of improving the ef-
fcacy and efciency of network intrusion detection while
minimizing computational overhead. Our method utilizes
fow-based detection as the frst-line defender by aggregating
packets into fows and extracting features by calculating the
statistics of a fow. Tis process demands less computational
resources while providing a confdence score for intrusion
detection. If the confdence score is low, packet-based de-
tection will re-check the trafc. In this section, we discuss the
details of this unifed approach.

4.1. Unifed Flow-and-Packet Intrusion Detection Algorithm.
Te algorithm runs in a live mode that processes the network
trafc. It comprises one top-level stage and four detailed
steps, as illustrated in Figure 1. It begins by initializing the
ML models and various parameters, followed by an ex-
haustive search for the grey zone threshold. Next, it starts
“Packet Handler” step to handle the incoming trafc in the
form of packets. Every incoming packet is then grouped into

fow entries. A fow represents a sequence of data packets
sharing common characteristics, such as source and desti-
nation addresses, ports, and protocol type. Once the packet
has been grouped into their appropriate fow entries, the
subsequent processes occur in parallel. Te frst parallel
process involves continuously receiving new packets, while
the second parallel process gets the total number of fows and
examines those fows in the “Flow Checker” step to de-
termine whether theymeet the criteria to be processed by the
intrusion detectionmodule. If the decision is no, it returns to
receive and group the next incoming packets.

Tere are two criteria for determining when a fow is
analyzed by intrusion detection: when it is fnished or too
long. When the fow is fnished, it will be sent to fow-based
detection. Two criteria are employed to determine when
a fow is considered fnished: (1) utilizing a timeout threshold
and (2) examining the TCP fags. Te frst criterion involves
setting a predetermined period of inactivity (e.g., 30 s), after
which the absence of packets indicates the end of the fow.
Tis criterion is also applied to defne the end of UDP and
ICMP connections. Te second criterion involves examining
the TCP fag. If the fag indicates either FIN (Finish) or RST
(Reset), the fow is then categorized as a fnished fow. On the
other hand, when the fow is too long, it will be sent to packet-
based detection. We employ a fow duration threshold to
ascertain whether a fow has become excessively lengthy.
When the fow’s duration reaches this threshold, we cease the
reception of further incoming packets and proceed directly to
the packet-based detection process.

When the fow-based detection processes the fow, it
outputs the confdence score pF. Te system then checks the
confdence score of the fow-based detection in the “Grey Zone
Checking” step to determine whether the result belongs to the
grey zone data or not. Grey zone data are the condition when
the fow-based detection does not have good confdence to
decide whether the data are benign trafc or anomaly trafc. If
it is grey zone data, then the packet data, which has been
grouped from this fow, are sent to “packet-based detection” for
further checking. Finally, after the data are processed by either
fow-based or packet-based detection, the output of confdence
score pF

i or pP
i is checked with the defned threshold to classify

it as benign or anomaly in “Detection Labeling.”

4.2.GreyZoneTreshold. IDSs have demonstrated success in
detecting network attacks, but they often generate numerous
false alarms, straining network operators and reducing ef-
fectiveness. Even just 1% of FP data might cause hundreds of
false alarms every day, which strains the network operator.
Combining fow-packet detection aims to reduce FPs and
FNs while maintaining low computational overhead. In this
context, the positive class represents malicious fows, while
the negative class represents benign fows. FP occurs when
benign fows are incorrectly fagged as malicious, and FN
stands for undetected malicious fows.

Furthermore, to improve the performance of our in-
trusion detection, we introduce a new term called “grey zone
data” to flter low-confdence detection results by our fow-
based detection as the frst defender. Grey zone data occur
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when fow-based detection cannot confdently classify trafc
as benign or malicious. We evaluate the confdence score of
each fow against a defned threshold and fag any data
falling within the threshold range as the grey zone. All the
grey zone data are then forwarded to packet-based detection
for further analysis.

We used two carefully confgured thresholds for FN and
FP data to determine grey zone data. Tight thresholds
burden resources with excessive correct data checking, while
loose thresholds result in many FP or FN data being lost to
be rechecked by packet-based detection.

Figure 2 provides an illustration of the defned thresh-
olds. When fow-based detection outputs a high confdence
result, the confdence score leans closer to either 0 or 1.
However, if the confdence score is far from 0 or 1, it is
categorized as a “grey zone,” representing a low-confdence
result. To manage the computational load, we set a maxi-
mum tolerance of only 0.5% for correct data. Tis tolerance
limit is set to reduce the number of correct data entries that
the packet-based detection system needs to verify. Based on
these considerations, the values for τFNmin and τ

FP
max can be fne-

tuned to optimize the unifed system.
Figures 3(a) and 3(b) illustrate the algorithm for fnding

the grey zone threshold for FNs and FPs, respectively. After
running fow-based detection on the testing data, we obtain
the detection results in terms of confdence scores. We then
group the results into FN, FP, true negative, and true positive

by comparing the detection results with the ground truth.
Tus, we compute the percentiles of the confdence scores
for each group and store them in a set. Tese percentiles are
used to determine a neither too loose nor too tight threshold.
We calculate the percentile of the confdence score by using
the notation: k = h/100 × (n + 1), where k represents the value of
the confdence score in the dataset that corresponds to the
desired percentile, h is the percentile we want to calculate,
and n is the total number of confdence scores in the dataset.

For example, to calculate the 90th percentile, denoted as
k, from the example set of confdence scores (0.1, 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.45, 0.5), we can use the formula
mentioned earlier: k = 90/100 × (9 + 1). Tis gives k= 9. Tis
yields k= 9, indicating that the 90th percentile corresponds
to the 9th value in the sorted dataset, which in this case is 0.5.

We employ the algorithm in Figure 3(a) to determine the
minimum and maximum thresholds for FN data, using
probability percentiles for FN (pFN

y ) and true-negative (pFP
y )

data as inputs. Initially, we assign the {0th percentile} of FN
pFN
0 as theminimum valuepFN

min and the 100th percentile of FN
pFN

Y as the maximum value pFN
max. We then adjust pFN

min to fnd
an appropriate threshold by checking if it is lower than the
99.5th percentile value of true negative pTN

99.5th . If not, we in-
crement the percentile by 0.1 and update pFN

min. We continue
adjusting until pFN

min is lower than pTN
95th , and accept pFN

min and
pFN
max as the FN data thresholds, τFNmin and τFNmax, respectively.

Table 2: Notations table.

Notation Meaning
RB Training dataset
RG Testing dataset
Sj j-th packet data
Fi i-th fow data
F∗ i-th extracted fow
|F| Te total number of fows F
K ML algorithm
LF Best ML model for fow-based detection
LP Best ML model for packet-based detection
τQ Treshold value for waiting time
τS Treshold value for fow duration
pF

i Confdence score of fow-based detection for each i-th fow data
pP

i Confdence score of packet-based detection for each i-th fow data
τF Treshold value for fow-based detection
τP Treshold value for packet-based detection
y Te percentile number from 0 to 100 y� 0, 1, 2100
pFN

y Set of percentile-based probabilities for false-negative data pFN � {pFN|y ∈ [0, 100]}
pFP

y Set of percentile-based probabilities for false-positive data pFP � {pFP|y ∈ [0, 100]}
pTN

y Set of percentile-based probabilities for true-negative data pTN � {pTN|y ∈ [0, 100]}
pTP

y Set of percentile-based probabilities for true-positive data pTP � {pTP|y ∈ [0, 100]}
pFN
min Te minimum false-negative probability percentile

pFN
max Te maximum false-negative probability percentile

pFP
min Te minimum false-positive probability percentile

pFP
max Te maximum false-positive probability percentile

τFNmin Te minimum threshold value for false-negative data
τFNmax Te maximum threshold value for false-negative data
τFPmin Te minimum threshold value for false-positive data
τFPmax Te maximum threshold value for false-positive data
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Similarly, to fnd the threshold for FP data, we apply the
technique used for FN data, as shown in Figure 3(b). Using
probability percentiles for FP and TP data as inputs, we
assign the 0th percentile of FP (pFP

0th ) as the minimum value
(pFP

min) and the 100th percentile of true positive (pTN
100th ) as the

maximum value (pFP
max).We then adjust pFP

max by checking if it
is greater than the 0.5th percentile value of true positive pTP

5th .
If not, we decrement the percentile by 0.1 and update pFP

max.

We continue adjusting until pFP
max is greater than pTP

0.5th and
accept pFP

min and pFP
max as the FP data thresholds, τFPmin and

τFPmax, respectively.

4.3. PacketHandler. Figure 4 shows the detailed steps on the
packet handler step. We defned packet as Sj and fow as Fi.
When the system receives the new packet Sj, it is checked by
“belong to existing fow?” step to see whether it belongs to an

Probability range of
grey zone

in false-negative data

Probability range of
grey zone

in false-positive data

Probability range of attack dataProbability range of benign data

Threshold for
benign and attack

0 1

piF or piP

τmin
FN τmax

FN τmin
FP τmax

FP

Figure 2: Te illustration of the grey zone threshold.

Back to
packet handler

Flow checker

Send to detector

Detection labeling

i + +

piP

piF

Packet-based
detection

Flow-based
detection

Flow-
based

Packet-
based

False

True Grey zone
checking

The decision to re-check
the data to be send to packet-based

The decision to examine
the completed flow or the long flow Packet handler

Grey zone threshold

Start

LF, LP, τQ, τS, τF, τP

Figure 1: Unifed fow-and-packet intrusion detection algorithm.
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existing fow or not. Furthermore, a fow entry is defned as
bidirectional when its address port pair and reverse address
port pair belong to the same entry. If the incoming packet Sj

has the same pair with the existing fow entry Fi, then it will
be grouped in “group Sj to existing fow Fi” step. Otherwise,
the system creates the new fow entry Fi for this Sj in the next
step and goes back to receive a new packet. After grouping
the packet to an existing fow, the subsequent processes
occur in parallel. Te frst parallel process involves the
continuous reception of new packets, while the second
parallel process gets the total number of fows |F|. Tis total
number is used to check how many fows need to be ex-
amined by the IDS.

4.4. Flow Checker. Figure 5 shows the detailed steps in the
process of deciding whether the data are to be sent to in-
trusion detection for further processing or not. In the packet
handler step, the system has obtained the total number of
fows |F|. Ten, it starts to process the frst fow in check the
waiting time for a new Sj in Fi step.Tewaiting time indicates
the amount of time that the fow has been waiting for a new
packet to arrive since the last packet seen Te next step is to
determine if the waiting time has reached a defned threshold
in waiting time ≥ τQ. If the waiting time has reached the
threshold, or if the TCP fag on the last packet indicates either
FIN or RST, the fow has been completed. Terefore, the fow
features will be extracted in step feature extraction for Fi by

aggregating packet information and calculating some statis-
tical data. Finally, in step send F∗ to fow-based, the extracted
fow data F∗ then is sent to fow-based detection for further
processing. However, if the waiting period has not yet reached
the threshold, it examines the fow duration. If the fow
duration reaches the defned threshold, it indicates that the
fow is too long, and therefore, the system stops waiting for the
next incoming packet for this Fi and directly transfers the data
in Send Fi to packet-based step to be processed by packet-
based detection. Finally, the system returns to the frst looping
step to verify the other fows. After examining all fow data,
the process ends and returns to the Packet Handler to receive
and group the next incoming packet.

4.5. Grey Zone Checking. Figure 6 shows the detailed steps
involved in determining whether a fow is in the grey zone
data and must be rechecked by packet-based detection or
not. After fow-based detection analyzes the fow, it outputs
the confdence score pF

i .Te system then takes this score and
checks the thresholds in the next steps. τFPmin, τ

FP
max, τ

FN
min, and

τFNmax are the thresholds used to determine the grey zone data.
If the score pF

i is below τFPmax or above τFPmin, or if it falls below
τFNmax or above τFNmin, it indicates a low-confdence level in
fow-based detection, requiring further verifcation through
packet-based detection However, if the score of pF

i is not
inside the range of those thresholds, it is sent to detection
labeling step for classifying the data as benign or anomaly.

Start

pmin = p0th
FN FN

pmax = p100th
FN FN

pmin ≤ p99.5th
FN TN

pFN

False

True

FNIncrease pmin
percentile by 0.1

τmin = pmin
FN FN

FN FNτmax = pmax

Stop

Start

pmin = p0th
FP FP

pmax = p100th
FP FP

pmax ≥ p0.5th
FP TP

pFP

FPDecrease pmax
percentile by 0.1

τmin = pmin
FP FP

FP FPτmax = pmax

Stop

True

False

(a) (b)

Figure 3: Exhaustive grey zone threshold searching. (a) Treshold in false-negative data. (b) Treshold in false-positive data.
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fow Fi

STOP Get |F|

Parallel
processes

True

FalseAssign as a new
fow Fi
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Sj

Start

Receive a new
packet

Packet handler

Figure 4: Te detail of the packet handler.

Check waiting time
for a new Sj in Fi
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based
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True
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i 
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Fi ≥ τS
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i + +
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handler
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Figure 5: Te detail of the fow checker.
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4.6. Detection Labeling. Figure 7 shows the detailed steps of
detection labeling for classifying the data as benign or
anomaly based on the confdence score from either fow-
based detection pF

i or packet-based detection pP
i . After

getting the confdence score, the system checks whether it is
pF

i or pP
i . If the input is pF

i , the system checks the score with
the defned threshold τF. Te fow is then classifed as
malicious if the score of pF

i is greater than τF; otherwise, it is
benign. Furthermore, if the input is pP

i , the system checks
the score with the defned threshold τP, and if the score is
greater than τP, then the data are classifed as an anomaly.

5. System Implementation

Tis section provides a detailed explanation of the system
implementation. It includes the testbed setup, the method of
generating the trafc, the preprocessing method, the DL
architecture, and the setup of unknown attacks. All the code
to run the proposed solution can be retrieved from our
GitHub repository1.

5.1. Testbed Setup. Our testbed environment, shown in
Figure 8, used a Kubernetes-based microservices system
with 27 services. Tis setup emulated a microservice system
operation and generated both benign and malicious trafc,
which was used as the dataset to train our ML models. To
generate malicious trafc, we added two pods: an attacker
pod initiating malicious activities and a damn vulnerable
web application (DVWA) pod with open vulnerabilities. As
the existing microservices applications lacked exploitable
vulnerabilities, the DVWA was crucial for generating
malicious trafc. Additionally, we involved an external at-
tacker in diversifying the attack strategies.

5.2. Trafc Generation. High-quality datasets play a crucial
role in developing and evaluating ML models. However,
publicly available datasets specifc to microservices are
limited. To address this gap, we took a systematic approach
to create our own dataset.

Te dataset collection approach for our study difers
signifcantly from traditional monolithic systems. In
monolithic systems, collecting the trafc at the router level
often sufces to understand communication patterns since
all services are tightly integrated within a single application.

Conversely, a microservice architecture introduces
a higher level of complexity. Microservices communicate
over networks using diverse protocols, and each micro-
service operates as a standalone entity with dynamic in-
teractions. To comprehensively understand microservices’
intricate communication patterns, we collected trafc at the
fner granularity of individual microservices.

By collecting the trafc at each individual microservice,
we were allowed to explore the nuances of microservices
architecture, revealing variations in protocols, trafc vol-
umes, and unique patterns specifc to each service. Such
detailed data collection was crucial to construct a dataset that
accurately represents the diverse and decentralized nature of
microservices interactions.

5.2.1. Benign Trafc. Our frst application to simulate benign
trafc was a microservices-based e-commerce application by
Google [32]. Tis web application, comprising 11 micro-
services, lets users explore products, add items to a cart, and
make purchases. It also includes a load generator that
mimics real shopping activities by continuously sending
requests to the front end. Te architecture of the e-
commerce application is shown in Figure 9.

We further diversifed our benign trafc by deploying
a second application: a social network application with
microservices communicating overTrift RPCs [33]. Figure 10
shows the architecture of this social network application.

Start Grey zone
checking

τmin ≤ pi
F ≤ τmax

FN FN

τmin ≤ pi
F ≤ τmax

FP FP Flag Fi
as grey zone data

Send Fi to
detection labeling

pi
F

True

True

False

False

Stop

Figure 6: Te detail of grey zone checking.

Detection labelingStart

p

p is
pi

F or pi
P

pi
P

pi
P ≥ τP

pi
F ≥ τF

pi
F

True

True False False  Fi = Anomaly Fi = Anomaly
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Figure 7: Te detail of detection labeling.
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5.2.2. Malicious Trafc. Tis study encompasses various
attack scenarios aimed at mimicking malicious trafc and
critically assessing microservices security threats. Malicious

trafc is primarily classifed into two categories: service-level
attacks and application-level attacks. Te former involves
“noisy trafc” attacks that aim to overwhelm the network,

Kubernetes with one worker node
Capture tool

Attacker
pods

Social media
frontend

Google
microservice

frontend

DVWA

Attacker PC

Service level
Application level

···

Figure 8: Testbed architecture.

RecommendationAd

Product catalog

Chart

Cache & storage

Shipping Currency

Payment Email

CheckoutFrontend

HTTP
HTTP

User

Load generator

Figure 9: Te architecture of e-commerce apps.
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while the latter comprises “silent trafc” attacks that subtly
blend with normal trafc to exploit application logic.

In simulating service-level malicious trafc, we utilized
two attack strategies: brute force and denial-of-service (DoS)
attacks.Te brute force strategy attempted to overwhelm the
target with numerous phrase combinations, employing the
DIRB tool to locate hidden server fles and directories [34].
In contrast, DoS attacks fooded the target with excessive
requests to exhaust its resources, using the HPing tool [35]
and Slowloris [36]. Te latter exploit concurrent connection
limits, disrupting the service availability efectively.

To simulate “silent attacks,” we implemented three
methods: vulnerability scanning, SQL injection, and cross-site
scripting. For vulnerability scanning, we used the Nikto Tool
to scan the system thoroughly, identifying active services and
possible open ports. We employed SQL injection, a common
database security attack, to extract sensitive information by
manipulating SQL queries. Lastly, cross-site scripting in-
volved injecting harmful scripts into web applications by
sending malicious browser executable codes to the end user.

After completing the trafc generation process, we ob-
tained a total of 126,213 labeled samples, consisting of 73,275
benign and 52,938 malicious instances. Te malicious trafc
includes 20,507 brute force attack samples, 21,401 scanning

attack samples, 5120 SQL injection samples, 5051 XSS
samples, and 2859 DoS samples.

5.3. Benchmark Datasets. To ensure a comprehensive and
fair performance comparison, we utilized not only our own
generated dataset from a microservice environment but also
various public datasets. We selected recent public datasets
that provide raw PCAP fles and detailed documentation of
their data collection methods. Tis documentation includes
insights into the tools and techniques used, the data capture
environment, and timestamps of attack scenarios, which are
essential for our packet-based detection approach that in-
volves raw data processing and re-labeling. Based on these
criteria, we identifed three datasets that met our re-
quirements. Below is a brief overview of the testing datasets
used in this study:

• CIC-IDS-2017: Developed by the Canadian Institute
for Cybersecurity in 2017 [37], this dataset features 7
distinct attack classes and includes a total of 2.8 million
samples. It was generated over fve days using a net-
work of 14 machines and provides raw PCAP fles,
making it widely used in numerous studies for its
comprehensive range of attack scenarios.
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Figure 10: Te architecture of social network apps.
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• CIC-IDS-2018: Building on its predecessor, the CIC-
IDS-2018 dataset was released in 2018 and includes the
same attack classes. It expands the testing environment
to a cloud setting, involving over 500 machines over 10
days, thereby increasing the complexity and scale of
attack simulations. Tis dataset comprises 9.3 million
samples and continues to use the same tools as the
CIC-IDS-2017 dataset.

• CREMEv2: Based on the MITRE ATT&CK frame-
work, the CREMEv2 dataset focuses on specifc threat
models and methodologies. It includes fve attack
variants, such as ransomware, resource hijacking,
mirai, disk wipe, and end point dos. Tese attacks are
developed using 14 tactics across 17 diferent MITRE
techniques, with a total of 2.3 million samples [38].

Tese datasets serve as a robust testing ground to
evaluate the resilience and adaptability of our proposed
solution across diferent environments, ensuring a thorough
assessment of its efectiveness.

5.4. Preprocessing. Te raw benign and attack trafc data
recorded for training must frst be preprocessed, involving
feature extraction and cleaning. Given the distinct structures
of fow-based and packet-based data, we adopted diferent
preprocessing strategies.

5.4.1. Flow-Based Detection. Te preprocessing of fow-
based data involves three steps. First, we used NFStream
[39] to extract 61 features from raw data. After this, we
removed features without variance and those related to
testbed settings to prevent model bias toward specifc pat-
terns. Ten, we cleaned the data by removing the missing
values and processed the data in the appropriate format.
Lastly, we rescaled the data using StandardScaler from
Scikit-Learn.

5.4.2. Packet-Based Detection. Figure 11 illustrates the
packet-based preprocessing steps, following [40]. Te pro-
cess begins with grouping raw network packets by 5-tuple
for fow identifcation. Trace sanitization then removesMAC
and IP addresses of each packet, preventing the model from
learning specifc testbed confgurations. Afterward, fow
cleaning is performed to remove identical or duplicated data,
which could cause bias in DL model training.

Te fnal step in our process is uniform-length trimming.
We extract and trim the frst n-packets from each fow. Tis
not only lessens the trafc load for analysis but also accel-
erates the process for long sessions. As DL models require
consistent data lengths, we set a default packet size. Packets
exceeding this setup are trimmed, while smaller ones are
zero-padded. Previous research suggested that the frst three
packets, each being 60 bytes long, yielded optimal results
[40]. Tese trimmed bytes are considered as one-
dimensional vectors and used as CNN model inputs.

5.5. Key Features Tool. In this work, we delve into an in-
depth investigation of the key features extracted from our
CNNmodel to elucidate the mechanisms by which our CNN
model determines the detection result. Tis is crucial not
only for model validation but also to enhance transparency
and interpretability, which are often obscured in DLmodels.
For this reason, we employed SHapley Additive exPlanations
(SHAP) to extract and elucidate these key features.

SHAP is a game-theoretic approach to explain the output
of anyMLmodel. It determines each feature’s importance by
approximating the contribution of each feature to every
possible prediction. In the context of CNN, SHAP metic-
ulously identifes and ranks key features by assessing the
impact of each convolutional layer and its neurons on the
fnal prediction. Tis methodology is preferred because it
ofers insightful, consistent, and locally accurate attribu-
tions, making it superior in capturing intricate data patterns
and dependencies.

5.6. Unknown Attack. In the context of our study, the term
“unknown attack” refers to attack scenarios that are novel to
our detection system. Tese scenarios simulate real-world
conditions where defense mechanisms encounter unknown
threats.

Furthermore, research has shown that ML-based IDS are
vulnerable to adversarial perturbations. While adversarial
attacks could theoretically reshape packet-level features,
doing so without disrupting the attacks efectiveness is
highly impractical, especially in black-box scenarios where
the attacker lacks access to the IDS feature extraction
process. Most adversarial research assumes attacks occur at
the feature level, requiring privileged access to IDS devices or
network infrastructure, making real-world execution un-
likely unless the attacker controls the IDS itself.

Instead, real-world adversarial tactics are more likely to
involve host-based perturbations, where attackers modify
their behavior at the command level rather than manipu-
lating network features postcapture. Tese behavioral
modifcations can alter network activity in ways that cause
an ML-based IDS to fail in recognizing the attack, as the
observed patterns deviate from the training data.

To account for these adversarial behaviors, our study
evaluates the models robustness by introducing three cat-
egories of unknown attacks: (1) variant attacks, which re-
semble known threats but use diferent execution techniques
to evade detection; (2) anomalies that mimic benign trafc,
designed to blend in and bypass traditional detection
mechanisms; and (3) completely novel attack vectors, rep-
resenting threats the model has never encountered. By
testing across these categories, we ensure that our model can
efectively detect both adversarial and unknown attack be-
haviors, reinforcing its resilience and generalization capa-
bilities in real-world scenarios.

We focused on SQL injections as the frst type of un-
known attack. We trained the CNN model using standard
SQL injections, where malicious SQL statements are directly
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inserted into entry felds, causing the database to execute
them. Tese often trigger error messages that can reveal
insights about the database structure. We then tested with
blind SQL injections. Unlike standard SQL injections, blind
SQL injections do not produce direct database error re-
sponses but rather require interpretation of subtle changes in
application responses. Despite similar objectives to exploit
system vulnerabilities, their difering methodologies make
blind SQL injections a novel unknown attack exploit, pre-
senting a unique challenge to traditional detection methods.

Te second type of unknown attack simulates benign
behavior, initially involving normal login form access. Te
anomaly arises when the attacker launches a brute force
attack on the login form within the social media application.

Te third type of unknown attack targets microservices
applications using several methods. Tese attacks include
Cross-Site Request Forgery (CSRF), File Upload, File In-
clusion, and Command Injection attacks. In CSRF, a mali-
cious actor manipulates a user’s browser to execute
unauthorized actions on a website where the user is au-
thenticated. File Upload attack exploits an application’s
vulnerabilities, enabling the upload and execution of
harmful fles on the target system. File Inclusion attack gains
unauthorized access by exploiting vulnerabilities to execute
server fles. Lastly, a Command Injection attack allows ar-
bitrary command execution and potential unauthorized
system control by inserting malicious commands into
a vulnerable application. All these methods aim to exploit
system vulnerabilities, breach security, and gain control.

6. Results and Analysis

Tis section presents the numerical results obtained from the
tests that were carried out in order to evaluate the perfor-
mance and efectiveness of our DL models.

6.1. Baseline Confgurations DL Architectures. In our re-
search, we employed CNN due to its excellent autoprofling
abilities. CNNs are especially appropriate due to their
profciency in handling large and complex datasets, where
recognizing patterns and anomalies is crucial for efective
intrusion detection. Te architecture of CNNs supports the
efcient processing of both statistical features derived from

fow-based data and the sequential data characteristic of
packet-based detection. Tis dual capability aligns perfectly
with our unifed approach, which seeks to enhance both
accuracy and computational efciency by combining fow-
and packet-based methods.

Furthermore, CNNs have been widely adopted in in-
trusion detection research, as comprehensively surveyed in
[41]. Tese prior studies have consistently shown that CNNs
can efectively detect and classify anomalies and malicious
activities, providing a strong empirical foundation for our
decision to employ this technology.

Table 3 shows the architecture of our CNNmodel, which
consists of three convolution layers for critical feature ex-
traction and learning. Te model also includes a pooling
layer, a dropout layer, and a fattened layer, followed by three
dense layers for classifcation, with a sigmoid function as the
fnal activation step. To optimize the model performance, we
employed Optuna, a Bayesian optimization framework, for
hyperparameter tuning [42]. Te tuning process explored
a search space for key parameters, including the learning
rate, batch size, kernel size, number of convolutional flters,
dropout rate, and weight initialization strategies. Optuna’s
Tree-structured Parzen Estimator (TPE) algorithm was used
to efciently navigate the hyperparameter space, selecting
confgurations that maximized detection accuracy while
minimizing overftting. Tis automated tuning process
ensured that our CNN architecture was optimally confg-
ured for intrusion detection.

6.1.1. Dataset Confguration. As previously mentioned,
dataset creation involves generating two types of trafc:
benign andmalicious.Tis ensures a comprehensive dataset,
covering various scenarios and capturing microservices
application nuances in normal and malicious behaviors.

Te dataset was split into three parts: 70% for the
training set, 15% for the testing set, and 15% for the grey
zone investigation set. Te grey zone investigation set was
used for a more comprehensive exploration of output
probabilities, thereby increasing the diversity and range of
these probabilities. By allocating a dedicated grey zone in-
vestigation set, we could efectively evaluate and fne-tune
the system’s performance within this critical zone, ensuring
robust and accurate results.
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Figure 11: Packet-based preprocessing steps.
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6.1.2. Evaluation Strategy. Te evaluation of the models in
this study focuses on two main aspects: their classifcation
performance and computational complexity. Te latter is
measured using the Linux-based PERF tool, which calculates
the number of instructions required to process a single fow,
while for the former, we used F1 score, precision, recall, and
accuracy.

6.2. Detection Performance Flow-Based Detection. A DL
model necessitates a threshold for data classifcation. To
achieve an optimal balance between precision and recall, and
thus maximize the F1 score, we employed an exhaustive
search strategy. Tis strategy enabled us to identify the most
suitable threshold of detection for our model, which was
found to be 0.513222. Hence, any score below this threshold
is classifed as benign, while scores above this threshold are
marked as malicious.

Figure 12 displays the confusion matrix of our model’s
fow-based performance. Te model achieved a high accu-
racy of 98.2% in correctly identifying benign trafc but
resulted in a 1.8% FN rate, indicating 122 instances of in-
correctly classifed data. For attack trafc, the model’s ac-
curacy was even higher at 99.2%, with a 0.8% FP rate.
Analyzing the FPs revealed that most of themwere caused by
noisy attacks, specifcally DoS attacks.

We conducted two types of DoS attacks: ICMP and
HTTP. Te fow-based detection method struggled to ac-
curately classify HTTP-based attacks due to the similarity in
statistical information between malicious and normal
requests.

6.2.1. Packet-Based Detection. Figure 13 illustrates the
confusion matrix for the packet-based detection method. It
clearly exhibits superior performance compared to the fow-
based method. Te packet-based approach achieves an
impressively low FN rate of 0.1%, and an accuracy rate of
100% in classifying malicious trafc, indicating its high
precision in correctly identifying such trafc. Moreover, this
method proves that examining just three packets within
a fow is sufcient to diferentiate between trafc types. Tis
greatly reduces the amount of data required for processing,
leading to more efcient analysis.

Te packet-basedmethod also outperforms the statistical
features used in the fow-based approach by leveraging
automatic feature learning. By adaptively and automatically
learning spatial hierarchies of features through the con-
volutional layer, this approach can detect a vast array of

Table 3: Deep learning architectures.

Layer Type Filters/neurons/stride Padding
1 1D-ConV+ReLu 32 (kernel size� 3) Same
2 1D-ConV+ReLu 64 (kernel size� 3) Same
3 1D-ConV+ReLu 128 (kernel size� 3) Same
4 MaxPooling + dropout + fatten Kernel size� 3, dropout� 0.5, stride� 2 Same
5 Dense +ReLu 256 —
6 Dense +ReLu 512 —
7 Dense + sigmoid 1 —
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Figure 12: Flow-based performance.
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Figure 13: Packet-based performance.
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features that may occur anywhere in the trafc, further
boosting its efectiveness.

6.3. Key Features of the CNN Model. In a CNN model, key
features refer to the specifc patterns or characteristics in the
input data that the model deems most important for making
predictions. A CNNmodel is designed to automatically learn
the key features from the input data during the training
process. Trough a series of convolutional and pooling
layers, the model learns to extract and recognize hierarchical
features at diferent levels of abstraction. We then extracted
the key features by utilizing SHAP.

In this subsection, we explain the key features used by the
CNN model in fow-based and packet-based detection.

6.3.1. Key Features in Flow-Based Detection. Te key fea-
tures extracted by the CNN model using NFStream repre-
sent the most relevant statistical characteristics of the fow-
based data that are crucial for distinguishing between benign
and malicious trafc. Tese features are essentially the
unique patterns and properties that the model has learned to
associate with each class, allowing it to accurately classify
new trafc samples into the appropriate category.
Figures 14(a) and b show the key features of fow-based for
benign and malicious trafc. Tis visualization ofers in-
sights into how specifc features infuence the model’s
predictions and contribute to its accuracy.

Te y-axis of the fgure displays a list of features, with
more important features situated at the top and less im-
portant ones toward the bottom. Te x-axis represents the
impact of the features on the model’s predictions. Features
on the right side contribute positively to increasing pre-
dictions, while those on the left contribute negatively.

Te color coding within the bars adds an extra layer of
information. Darker shades of blue correspond to lower
feature values, while darker shades of red indicate higher
feature values. Tis color scheme helps visualize the re-
lationship between feature values and their impact on
predictions.

In our analysis of these key features, we observed that
those key features are primarily associated with maximum
packet size within a fow, standard deviation of packet size
within a fow, minimum packet size within a fow, and the
mean size of a fow. Te following ofers an in-depth ex-
amination of these essential characteristics.

• Maximum packet size within a fow: Tis feature is
indicative of the largest singular data payload ex-
changed during a communication session. Malicious
activities, especially those trying to exploit vulnera-
bilities, exfltrate data, or upload malicious payloads,
can often lead to packets that have atypical sizes
compared to regular trafc. Benign trafc in our
microservices environment, in general, tends to have
maximum packet sizes that conform to
expected norms.

• Standard deviation of packet size within a fow:
Variability in the sizes of packets within a fow can be

a sign of irregular or anomalous behavior. For in-
stance, a DDoS attack using varying packet sizes or
malware trying to hide its activities among regular
trafc could lead to a higher standard deviation.
Conversely, benign trafc, especially that of well-
defned microservices, might exhibit a more consis-
tent and predictable pattern, resulting in a lower
standard deviation.

• Minimum packet size within a fow: Some malicious
activities involve sending a furry of smaller, often
identical, packets to overwhelm a system (e.g., a type of
DoS attack). Tis can result in a lowered minimum
packet size for the fow. On the other hand, benign
fows may occasionally have smaller control or ac-
knowledgment packets, but malicious activities might
be more pronounced in this aspect.

• Mean size of a fow: Te average size of packets within
a fow can provide insights into the overall nature of
the communication. A fow with unusually large mean
packet sizes might indicate data exfltration or bulk
transfer of malicious payloads, while a very low mean
might suggest fooding attacks. Benign communica-
tions, depending on the application, tend to have mean
packet sizes that are refective of regular data ex-
changes, neither too small nor excessively large.

In conclusion, these fow-based features capture crucial
aspects of the data communication patterns within a net-
work. Te subtle nuances and variations in these features
between benign and malicious fows provide valuable in-
sights, enabling a model to efectively discern between
regular and potentially malicious trafc.

Furthermore, we carried out an exploration of the data
distribution of these four key features, as shown in Figure 15.
It is evident from the results that the distribution of data
difers signifcantly between benign and malicious data. Tis
observation supports our earlier explanations, emphasizing
that benign trafc in a microservice environment demon-
strates a more consistent and predictable pattern, while
malicious trafc has a more diverse pattern. Te clear
separation observed in the data distribution is attributed to
the model’s ability to efectively diferentiate between the
distinct data patterns associated with benign and malicious
activities.

6.3.2. Key Features in Packet-Based Detection. In this sec-
tion, we explore the key features in packet-based detection,
which involves a dataset of 180 features extracted from 3
packets with 60 bytes each in every fow. Our analysis focuses
on identifying the key features that the CNN model utilizes
to determine the classifcation outcome. Figure 16 illustrates
the signifcant features used by the CNN in distinguishing
between benign and malicious data within packet-based
detection.

Upon analyzing the results, it becomes evident that
several features signifcantly impact the CNN’s classifcation
ability for benign and malicious trafc. In our deep analysis
of these key features, we found that those key features are
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predominantly linked to the destination port within a fow,
TCP window size value, and TCP sequence numbers.

Destination port within a fow plays a pivotal role in
distinguishing between benign and malicious trafc. Spe-
cifcally, the CNN model has learned that certain combi-
nations destination ports are indicative of benign or
malicious activities, leading to higher predictions when such
patterns are detected.

Furthermore, the TCP window size value represents the
amount of data (in bytes) that the receiver is willing to accept
and bufer at any given time. Tis feature afects the fow of
data between devices. Te model identifes specifc window
size values that correlate with malicious behavior, con-
tributing signifcantly to the model’s predictive accuracy.

TCP sequence numbers also contribute notably to the
model’s predictions. Te sequence numbers of TCP packets
hold valuable information about the order and reliability of
data transmission. While TCP’s initial sequence number
(ISN) is randomly generated for security reasons, sub-
sequent sequence numbers during a TCP connection in-
crement predictably for each transmitted packet. Tis
progression can be valuable information for a CNN, which
might detect patterns in these sequence numbers that difer
between benign and malicious trafc. Furthermore, DL
models, especially CNNs, excel at identifying complex in-
teractions between features.Te sequence number might not
be important on its own but in combination with other
packet attributes. For example, analyzing the relative

diferences between sequence numbers in a data stream,
combined with other features, may provide valuable
insights.

Te interpretability provided by the SHAP summary plot
enhances our understanding of the CNN’s inner workings. It
sheds light on the specifc features that contribute to its high
classifcation accuracy in identifying malicious network activity.

Moreover, we also conducted an investigation into the
distribution of key data features and specifcally focused on
some key features, such as features 94, 96, 109, 157, 169, and
179. Figure 17 presents the data distribution between those
features. From the fgure, it can be seen that those features
exhibit more varied distributions. Features with varied
distributions can give the model more information to dis-
tinguish between diferent classes. Te variation allows the
model to capture unique patterns associated with each class,
leading to improve the accuracy of the model.

6.4. Unifed ML Approach: Flow and Packet. We have or-
ganized the explanations in this section into two subsections.
Te frst subsection presents an analysis of the results ob-
tained from fnding the grey zone threshold. Tis threshold
is used to flter misclassifed data from the fow-based de-
tection and then re-evaluate it in the packet-based detection.
In the second subsection, we provide a detailed explanation
of the results achieved when employing the unifed fow-
and-packet technique.
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Figure 14: Key features in fow-based detection. (a) Benign trafc. (b) Malicious trafc.
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6.4.1. Grey Zone Treshold. To address the potential risk of
overftting while tuning the grey zone thresholds, we
adopted a methodical approach leveraging separate datasets.
Initially, we trained our model using a designated training
dataset, ensuring that the model learned the underlying
patterns without any infuence from the subsequent datasets.

Following the training phase, instead of directly employing
the trained model on our testing data, we introduced an
intermediary step. We used a distinct grey zone dataset to
determine the optimal thresholds for classifying uncertain
data points. Tis approach ensures that our thresholds are
not biased by the characteristics of the training data.
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Figure 15: Distribution of features in fow-based data.
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Furthermore, using a separate dataset for threshold de-
termination acts as an additional validation layer, allowing
us to gauge the threshold’s efectiveness on unseen data
before actual performance testing. Finally, with our model
trained and thresholds determined, we evaluated the entire
system’s performance using a separate testing dataset. Tis
segregation ensures that at each step training, threshold
tuning, and testing the data involved is independent,
minimizing the risk of overftting and providing a more
holistic and unbiased view of the system’s performance.

Te grey zone dataset consists of 74,532 benign fows and
64,588 malicious fows, which were analyzed using the fow-
based method. Te fow-based method provided detection
probabilities for each fow, and upon evaluation, we iden-
tifed 501 instances of FNs and 1398 instances of FPs in the
dataset.

To fnd the optimal grey zone threshold, we conducted
an exhaustive search algorithm as shown in Figure 3. Te
results showed that the default threshold at the 0th percentile
successfully captured all FN data, as shown in Table 4.
Although 112 true-negative data points were also fagged for
re-checking, this trade-of was deemed acceptable as they
constituted only 0.5% of total true-negative data.

For the threshold values of τFP, the default threshold at
the 99.99th percentile efectively captured almost all in-
stances of FP data, as shown in Table 5. However, this
resulted in 375 true-positive data points being fagged for re-
checking, which remained below the 0.5% threshold of the

total true-positive data. During the testing phase of our
unifed fow-and-packetMLmodel, we then used the defned
thresholds.

6.4.2. Flow vs. Packet vs. Unifed. Our unifed approach
employs a two-step approach for detection. Initially, fow-
based analysis is conducted, resulting in 122 FNs and 132
FPs, as depicted on the left side of Figure 18. To enhance the
accuracy, we use the grey zone threshold to flter and for-
ward 452 data points to the subsequent packet-based
analysis for re-evaluation. Te right side of Figure 18
shows the updated confusion matrix after re-correction
by the packet-based method, revealing signifcant im-
provement with no FPs and only one FN remaining. Tis
unifed approach efectively enhances the overall perfor-
mance of our detection model.

Table 6 presents the detection performance of our
models: fow, packet, and unifed. Te unifed approach
stands out with the best performance, achieving an F1 score
and recall of 100%. It successfully rectifes incorrect clas-
sifcations from the initial stage, leveraging the strengths of
both fow and packet–based detection. Te unifed
approach’s exceptional performance highlights the advan-
tages of this integrated approach.

Notably, the unifed approach outperforms the other
two, achieving a perfect score of 100% in both F1 score and
recall. Tis showcases its ability to correct misclassifcations
from the initial detection stage, validating its efectiveness.
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Figure 16: Key features in packet-based. (a) Benign trafc. (b) Malicious trafc.
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Te unifed approach efectively combines the strengths of
fow and packet–based approaches, resulting in superior
performance.

Table 7 presents a comparative analysis of our method,
MEMBER [8], and CNN–LSTM [25], which are among the
most closely related works to ours. Te results clearly

demonstrate that our approach consistently outperforms
both MEMBER and CNN–LSTM across multiple datasets.
For example, in our self-generated dataset from a micro-
service environment, our method achieves an F1 score,
precision, and recall of 100%, signifcantly exceeding
MEMBER’s scores of 99.00%, 98.5%, and 99.5%, and
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Figure 17: Distribution of features in packet-based data.
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CNN–LSTM’s scores of 98.8%, 99.87%, and 97.75%, re-
spectively. Similarly, this superior performance is also evi-
dent in the CIC-IDS-2017, CIC-IDS-2018, and CREMEv2
datasets.

Our unifed model is geared toward adaptability and
scalability, which are critical for the dynamic environments
in which IDSs are deployed. In such environments, the
ability to scale with lower resource consumption is often

more valuable than small increments in accuracy. Our
unifed approach proves to be more efcient, achieving
comparable performance while requiring fewer computa-
tional resources, as shown in Figure 19. Our system ef-
ciently utilizes the fow-based model as the primary defense
most of the time, which demands fewer computational
resources, and employs the packet-based model, which re-
quires more computational resources, as a secondary defense

Table 4: τFNmin threshold values.

Percentile τFNmin value True-negative data False-negative data

0 1.97E− 05 112 501
0.1st 0.00541815 8 500
0.5th 0.0108242 8 498
1st 0.0166902 6 496
2nd 0.0167551 6 492
3rd 0.157455 0 486

Table 5: τFPmax threshold values.

Percentile τFPmax value True-positive data False-positive data

99.99th 0.999982 375 1397
80th 0.999982 375 1397
17th 0.999919 274 244
15th 0.619065 74 210
13th 0.578193 44 193
12th 0.578167 0 189
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Figure 18: Unifed approach detection results.

Table 6: Flow vs. packet vs. unifed.

Data source F1 score (%) Precision (%) Recall (%) Number of instructions/fow
Flow 99.22 99.19 99.25 15,635,967
Packet 99.98 99.99 99.96 672,117,601
Unifed 100 99.99 100 27,801,023
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only when necessary. Tis approach strikes a better balance
between performance and computational efciency.

Moreover, Table 8 provides an overview of the time
requirements for preprocessing and ML detection in both
the fow-based and packet-based models, revealing that
preprocessing is the main bottleneck. Specifcally, pre-
processing consumes 85% and 99% of the total time in the
fow-based and packet-based models, respectively. In the
fow-based method, most of the time is spent on feature
extraction and statistical calculations, while the packet-based
method dedicates the majority of its time to identifying fows
and trimming them to a uniform length. Surprisingly, both
the fow-based and packet-based methods spend a com-
paratively small amount of time for ML detection, with the
fow-based detection being 20% faster than packet-based
detection due to its lower data complexity.Te results clearly

demonstrate the superiority of the unifed approach in
detection and its signifcant improvement in computational
resource utilization.

6.5. Unknown Attack Testing. Figure 20 illustrates unknown
attack testing accuracy for fow-based and packet-based
approaches, covering six types of unknown attack attacks.
Remarkably, our model achieved exceptional results, with
accuracy above 95% for fow-based and 100% for packet-
based detection, showcasing its robustness and strength.
Tese outstanding results can be attributed to the superior
generalization capabilities of the CNN model. Te CNN’s
ability to autonomously learn, construct, and interpret trafc
patterns within complex networks allows it to detect pre-
viously unseen unknown attacks never encountered during

Table 7: Overall performance comparison (in percentages) between our work and the closest-related work across several datasets.

Dataset Method F1 score (%) Precision (%) Recall (%)

Microservices (self-generated)
MEMBER [8] 99 98.5 99.5

CNN–LSTM [25] 98.8 99.87 97.75
Ours 100 99.99 100

CIC-IDS-2017
MEMBER [8] 99.06 98.42 99. 

CNN–LSTM [25] 99.25 97.00 98.1
Ours 99.68 99.83 99.54

CIC-IDS-2018
MEMBER [8] 98.78 98.22 99.34

CNN–LSTM [25] 99.32 98.52 98.92
Ours 100 100 100

CREMEv2
MEMBER [8] 97.67 96.71 98.65

CNN–LSTM [25] 98.55 97.02 97.78
Ours 99.61 9 .69 99.83

Note: Bold values indicate the best result.
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Figure 19: Overall computational performance comparison based on the number of instructions required per fow.

Table 8: Processing time (milliseconds/fow).

Preprocessing ML detection Total
Flow-based 0.73 0.107 0.837
Packet-based 53.36 0.129 53.489
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training efectively. Furthermore, the ability of the CNN
model to recognize unknown attack data refects its fexi-
bility and adaptability in recognizing and learning from
various patterns in network trafc.

7. Conclusions and Future Works

Tis study presents a unifed fow-and-packet ML approach
designed for intrusion detection in microservice systems.
Combining both fow-based and packet-based techniques,
this unifed model utilizes fow-based detection as the frst
defensive layer for shorter fows. Conversely, it uses packet-
based detection for longer fows that require more sub-
stantial computation. When fow-based detection results in
uncertain outcomes below a defned threshold, the data are
fagged as potentially falsely detected and redirected to the
packet-based detection system for further verifcation.

Tis new approach’s strength lies in its ability to correct
misclassifed data using the predetermined threshold.
Moreover, it enhances the efectiveness and efciency in
identifying malicious trafc in a microservice system, ex-
pedites real-time detection, and holds the capability to detect
unknown attacks. For generating datasets, this study adopts
a systematic approach to automate the generation of both
benign and attack trafc. It involves recording the generated
trafc, processing it, and feeding it into our CNNmodels for
both fow- and packet-based detection.

Te experimental results demonstrate that this unifed
approach can achieve a 100% F1 score and recall, which is
superior to using only fow or packet-based detection. Fur-
thermore, it ofers a 24× reduction (approximately 1.38 orders
of magnitude) in computational resource usage compared to
using only the packet-based approach. Tis unifed approach
also proves to be robust against unknown attacks, boasting
a 100% accuracy rate in detecting such attacks.

Future work could include evaluating the proposed
unifed method on real-world microservice systems to
validate its efectiveness and scalability in live intrusion
detection. Tis could extend to investigating the impact of
diferent network types and microservice architectures on
performance, as well as exploring its adaptability for
detecting anomalies in more complex or heterogeneous
environments.

Another area for future exploration is optimizing the
grey zone threshold tuning process. While our current
approach uses exhaustive search, we recognize that alter-
native optimization techniques, such as genetic algorithms
or reinforcement learning, could provide a more adaptive
and computationally efcient solution. Tese methods have
the potential to dynamically adjust thresholds based on real-
time feedback, improving both detection accuracy and re-
source efciency. Integrating such optimization strategies
could further enhance the scalability and automation of our
framework.

Additionally, future research could focus on real-world
deployment and evaluation of the proposed system to fur-
ther validate its practicality and robustness in operational
environments. Tis includes assessing performance under
live trafc conditions, scalability across diferent in-
frastructures, and integration with existing security tools.
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