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Reproducing ATT&CK Techniques and Lifecycles
to Train Machine Learning Classifier

Fietyata Yudha, Ying-Dar Lin, Yuan-Cheng Lai, Didik Sudyana, Ren-Hung Hwang

Abstract—The MITRE ATT&CK framework categorizes
threat actor behaviors into a sequence of techniques called the
attack lifecycle. Based on this, Our work introduces a dual-
labeled dataset that is accurately labeled with distinct techniques
and lifecycles defined by ATT&CK. The dataset offered a more
thorough perspective than previous datasets that employed binary
or attack classification. It encompassed 17 distinct techniques
throughout five lifecycles and was generated through an auto-
mated method that guarantees reproducibility and learnability.
Reproducibility guarantees the dataset’s consistency, whereas
learnability signifies its use in training machine learning models.
Our analysis produced a positive result. The dataset achieved a
Pearson correlation coefficient of 0.7 for reproducibility. Regard-
ing distinguishing classes, it exhibits an average AUC-ROC score
of 0.92 for techniques and 0.82 for lifecycles. The model training
yielded an average F1 score of 0.95 for technique classification
and 0.9 for lifecycle classification, but only for the traffic dataset.

Index Terms—ATT&CK, technique, lifecycle, Intrusion Detec-
tion System.

I. INTRODUCTION

ITRE ATT&CK, or ATT&CK, is a fundamental frame-

work in cybersecurity that aids in developing threat
models. This framework encompasses an extensive knowledge
base derived from real-world observations of adversary tactics
and techniques. It includes various cyberattack methodolo-
gies, tools, perpetrators, and mitigation strategies [1]. The
framework is structured as a matrix, outlining several tactics,
techniques, and sub-techniques.

The MITRE ATT&CK v16 framework defines 14 tac-
tics within the enterprise matrix, closely corresponding to
traditional hacking stages such as reconnaissance, gaining
access, maintaining access, and clearing track. These tactics
are sequentially numbered from one to fourteen, reflecting the
conventional hacking steps. Tactics serve to categorize various
techniques within the ATT&CK framework. The sequences of
techniques form an attack’s lifecycle [2], effectively illustrating
a threat actor’s behavior and methodology during the attack.

Employing the ATT&CK framework for intrusion detection
provides a significant chance to gather detailed information
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regarding attacks, encompassing tactics, techniques, and se-
quences. It offers enhanced insights into the attack’s behavior.
These insights are crucial for recognizing potential attack
variants of existing attacks and for formulating entirely new
attacks through the analysis of certain lifecycle segments.

Machine learning has proven effective in detecting privacy
risks and identifying security threats, showcasing its poten-
tial for application in ATT&CK-based detection. Numerous
studies have investigated the ATT&CK framework, mostly
concentrating on the transformation of text-based materials
into ATT&CK tactics or techniques through Natural Language
Processing (NLP), including reports and online resources [3]-
[5]. Several studies have concentrated on the technical aspects
of attacks while ignoring the entities defined in the ATT&CK
framework. For instance, [6] included constructed anomalies
into captured packets, while [7]-[10] executed attacks through
attack replay. Automated attack generation methods have been
employed to emulate attack behaviors and develop datasets,
as demonstrated by [11], [12], to enhance manual attack gen-
eration. Our prior work introduced CREMEv1, a framework
designed for replicating datasets [13] but without taking into
account the ATT&CK techniques and lifecycles. Recently,
the University of West Florida (UWF) [14], [15] aimed to
construct datasets that incorporate ATT&CK entities, concen-
trating exclusively on tactics without addressing techniques or
lifecycles.

Utilizing the ATT&CK framework for dataset labeling of-
fers a systematic and uniform method for classifying attack
behaviors, thereby improving both the accuracy of labeling
and the clarity of interpretation. The framework’s compre-
hensive technique mappings facilitate the capture of detailed
attacker behaviors at each stage, thereby enabling the model to
learn patterns specific to the lifecycle. This enhanced training
process not only improved detection accuracy for established
techniques but also increased the model’s adaptability to new
or variant attacks by highlighting behavior-based patterns.

Utilizing the ATT&CK framework, we develop a dual-
labeled dataset that classifies attacks according to their tech-
niques and lifecycles. This dataset has two columns of multi-
class labels: one related to techniques outlined in the ATT&CK
framework and the other related to attack lifecycles. Our dual-
label system significantly enhances the investigation of the
relationship between attack techniques and their lifecycles.
This innovation addresses a substantial problem in existing
public datasets, which generally employ single-label classi-
fications. By modifying CREMEv1, we aim to ensure the
reproducibility. In our context, "reproducibility” indicates the
ability of others to replicate the dataset utilizing our approach.
On the other hand, the machine learning model’s ability to
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TABLE I
SUMMARY OF WORK IN ATTACK REPRODUCTION, DATASET GENERATION, AND ATT&CK IMPLEMENTATION
ATT&CK
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Author Attack Behavior? Label
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¢ Different types of behaviors that were executed during the attack reproduction process; Pr: Probing, Re: Resource exhaustion, Eg: Exploitation general,

Em: Exploitation metasploit, Bn: Botnet

understand the dataset must be evaluated to ensure the datasets
are suitable for learning. Additionally, we implement specific
methods to evaluate reproducibility and the ability of models
to identify techniques and lifecycles.

This work includes three key significant contributions. First,
we align the ATT&CK framework to replicate attacks and
generate datasets. These datasets are precisely labeled with two
types of multi-class labels: the specific techniques employed in
the attacks and the attack lifecycle. Furthermore, we deliver a
novel approach for assessing reproducibility that differs from
the conventional metric, which concentrates on the quantity
of data for every task. We employ Principal Component
Analysis (PCA) and the Pearson Correlation Coefficient (PCC)
to analyze similarities among datasets from various replays.
This technique offers a more comprehensive and accurate
assessment of reproducibility. Last, we assess the dataset’s
learnability by evaluating the classification performance of
several machine-learning models. These models are tasked
with classifying techniques and lifecycles. This evaluation
employs fundamental metrics such as an Area Under the
Curve-Receiver Operating Characteristic (AUC-ROC) and F1-
score.

II. RELATED WORKS

Table I compares studies on attack reproduction, dataset
creation, and the application of the ATT&CK framework in
IDS datasets. These works are classified by several criteria, in-
cluding method of reproduction, the tools developed, types of
attack behavior, data sources, and ATT&CK labels (techniques
and lifecycle stages).

Regarding reproduction method, most studies use man-
ual method to generate datasets, such as work by [6]-[10],

[14], [15]. In contrast, a limited subset of studies [11]-
[13] developed specialized tools for automation. In terms of
datasets, attack behaviors are divided into five categories:
probing, resource exhaustion, generic exploitation, Metasploit
exploitation, and botnets. Notably, resource exhaustion was the
most commonly observed behavior across multiple works. The
majority of data sources are traffic data, with the exception of
[14], which used a Zeek connection log to generate a traffic
log file. The use of ATT&CK labels is a key breakthrough
that sets our work apart from earlier works. The application of
ATT&CK labels represents a significant advancement that dis-
tinguishes our work from prior studies. The notable exceptions
are the works of [14] and [15], which included terminology
for techniques such as discovery and reconnaissance.

ITI. DESIGN ISSUES
A. Attack reproduction

Publicly accessible attack datasets replicate attack data with-
out considering ATT&CK techniques and their lifecycles. This
is due to the reason that these datasets typically demonstrate a
single phase of the attack, do not consider the attack sequence,
and do not employ specific techniques or lifecycles from the
ATT&CK framework. For example, the CSE-CIC-IDS2018
dataset ! runs the attack individually without considering the
attack sequence.

To acquire the raw data containing the comprehensive infor-
mation from ATT&CK, the dataset must be replicated via the
ATT&CK technique and lifecycle. Additionally, the common
data that is recorded by the public dataset is traffic, which only

Thttps://www.unb.ca/cic/datasets/ids-2018.html
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Fig. 1. Selected Attack Lifecycle

shows a single point of view. The needs of multiple points of
view are also important in terms of dataset generation.

B. Data labeling

Numerous publicly accessible datasets currently employ
the single or multi-class label. However, replication of these
datasets does not account for labeling utilizing ATT&CK
techniques and lifecycles. To annotate a dataset with relevant
ATT&CK information, it is essential to accurately recreate
the attacks, align the appropriate techniques and lifecycles,
examine the raw data, and label it appropriately.

C. Dateset evaluation

Reproducing the dataset with the ATT&CK label fulfills two
objectives: enhancing the dataset’s quality and strengthening
the machine learning ability to learn and identify ATT&CK-
Related information, including techniques and lifecycles. A
reproducibility metric must be established to guarantee that
the generated dataset maintains consistent data over multiple
attempts. Additionally, a method of evaluation is necessary to
assess the learnability of a dataset utilizing machine learning
techniques.

IV. SOLUTION IDEA
A. ATT&CK-based attack reproduction

In order to replicate the attacks, we employ a variety of
attack variants, including botnets, disk wipes, ransomware,
resource hijacking, and endpoint denial of service. Each attack
variant is linked with techniques utilizing ATT&CK Navi-
gator’ and through a manual comparison of the ATT&CK
technique descriptions or contexts with the attack behavior
or functionality of the attack tool. Figure 1 illustrates the
lifecycle for each attack variant and is derived from the
ATT&CK enterprise matrix. Our analysis identified 17 unique
techniques, comprising 6 common techniques utilized over

Zhttps://mitre-attack.github.io/attack-navigator/

many lifecycles. The common techniques have been identified
as T1595.001, T1190, T1203, T1554, T1068, and T1105.

Figure 2a depicts the process for replicating an attack vari-
ant. Each stage of the attack lifecycle is replicated using preset
settings, as shown in Figure 1. In the context of replaying
attack, we define several notations:

L: the set of lifecycles /;, which denotes the i-th lifecycle.
T;: the set of techniques ¢;;, which denotes the j-th
technique in the i-th lifecycle.

| X|: the number of elements in set X.

TS the set of a list of timestamps that is represented as
[ts; ;0 15; 1], where ts; ; o and ts; ; | denote the start and
end timestamps of the j-th technique in the i-th lifecycle,
respectively.

To start the reproduction process, the number of lifecycles
|L| is counted, and a loop is established. The number of
techniques |7;]| is calculated for each lifecycle /;. Subsequently,
every technique 7;; is executed, yielding a collection of
timestamps 7S accompanied by lists of timestamps. During
the replay, each technique produced a pair of timestamps (7s; ; o
and ts; ; ;) indicating the start and end times of a particu-
lar technique, respectively. The timestamp for a lifecycle is
aggregated into a set, T.S, which constitutes a collection of
timestamp lists.

This process produces the raw information from 3 data
sources, namely accounting, syslog, and traffic. The raw
information from the reproduction process is preprocessed
to extract the features before performing the labeling. For
accounting data, the raw information is transformed into
a dataset using a straightforward approach that retains the
original features from the raw data. Syslog data is processed
through the event template via the Drain algorithm, which
is a log parsing method that efficiently groups raw log data
into structured templates to create a dataset. These approaches
differ significantly from the traffic dataset, where a dedicated
feature extraction framework is employed.
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Fig. 2. Attack Reproduction

B. Dual-labeled dataset labeling

The application of dual-labeling, involving both MITRE
ATT&CK techniques and lifecycle within the dataset, in-
troduces notable challenges related to complexity and label
overlap. Complexity arises when a single attack step, which is
a phase involving specific actions by the attacker in an attack
lifecycle, corresponds to multiple techniques in the same or
even different tactics. To address this, we integrate the attack
step’s position within the attack lifecycle and its alignment
with ATT&CK tactics. For instance, if a step corresponds
to the techniques "Active Scanning" and "Network Service

Discovery" but occurs in the front part of the attack sequence,
we prioritize the technique associated with the earlier tac-
tic—specifically the "Active Scanning" technique.

Furthermore, label overlap between lifecycles emerges when
identical or similar techniques are applicable across multi-
ple lifecycles. To mitigate these overlaps, we implement a
structured labeling methodology. For technique labeling, two
primary constraints are employed: host-specific data (such
as IP addresses or hostnames), which refer to the identified
information that distinguishes specific devices within the net-
work, and breakpoint data generated during attack replays.
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Specifically, we use timestamps 7s; ;  and ts; ; ;, as illustrated
in Figure 2a within the replay technique section. For lifecycle
labeling, we rely exclusively on breakpoint data, specifically
the initial breakpoint of the first technique and the final
breakpoint of the last technique within a particular lifecycle
(e.g., 15190 and tsy , 1, where n denotes the final technique in
the sequence).

C. Data evaluation on reproducibility and learnability

We utilize PCA and PCC to evaluate the reproducibility
of replay attempts by examining structural patterns and linear
correlations within the data. PCA reduces the dimensionality
of the dataset, enabling focus on the primary sources of vari-
ance that capture the fundamental characteristics of the attacks.
This is essential for recognizing fundamental similarities in the
replayed data, regardless of noise or irrelevant features. PCC
quantifies the linear correlation between the reduced datasets,
offering a clear metric of similarity based on the alignment
of the attack replays. This combination provides an effective
approach for comparing replay attempts, prioritizing overall
data structure and volume rather than calculation of individual
actions.

Alternative dimensionality reduction techniques, such as
t-SNE(t-distributed Stochastic Neighbor Embedding) and
UMAP(Uniform Manifold Approximation and Projection) can
be employed to effectively visualize high-dimensional data
and capture non-linear relationships. However, both methods
primarily focus on uncovering patterns and grouping similar
data points rather than evaluating precise quantitative similar-
ities. This is because they do not inherently preserve distances
between data points in the same way that PCA does.

We employ a diverse set of machine learning classifiers to
evaluate learnability, emphasizing the importance of leverag-
ing varied models to enhance performance. The evaluation
utilized AUC-ROC and F1-score metrics, which provide com-
prehensive insights into classifier performance. In particular,
the AUC-ROC metric is valuable for analyzing true and false
positive rates across different thresholds, making it especially
effective for handling datasets with class imbalances.

V. IMPLEMENTATION

A. ATT&CK-based technique and lifecycle attack reproduc-
tion

1) CREME modification: In our previous work [13], we
developed a toolchain that enabled the replication of attacks,
the generation of datasets from various sources, the assessment
of dataset quality, and the classification of data utilizing a
binary classification.

This work introduced major modifications to the original
tool and testbed architecture, leading to the creation of CRE-
MEvV23. Key enhancements include adding a dedicated router
and a host-only network to isolate the virtual environment from
the main operating system. At the technical level, the attack
code was deconstructed into functions, each representing a
technique within the attack lifecycle. Start and end breakpoints

3https://github.com/HighSpeedNetworkLabN' YCU/CREMEv2

were developed for each function to enable precise dataset
labeling with appropriate techniques.

2) Selected Attack Lifecycle: This work reproduced five
attack lifecycles, as outlined in Figure 1, with particular
processes depicted in Figure 2b. Each lifecycle was precisely
chosen to represent a wide range of cyber threats, includ-
ing botnets, ransomware, resource hijacking, and Denial-of-
Service (DoS) attacks. These specific attacks were selected for
their distinctive characteristics and varying impacts, demon-
strating the wide range of attack methods observed in actual
cybersecurity incidents. The selection process was based on
the ubiquity and relevance of these threats across several
industries, making them highly illustrative of larger attack sce-
narios. Botnets and Denial of Service attacks were commonly
employed for extensive disruptions, while ransomware and
resource hijacking have evolved into more sophisticated and
destructive threats aimed at both individuals and companies.
By covering these variations, we ensured that the work covered
the current trend of the cyberattack and covered almost all of
the attack lifecycle from initial compromise to exploitation and
impact.

In addition to replicating attack scenarios, we incorporated
a range of benign behaviors during the dataset generation
process. We configured HTTP, FTP, and SMTP services to
emulate benign activity that runs on a benign machine. This
arrangement was essential for guaranteeing that our dataset
accurately represented realistic real-world scenarios.

B. ATT&CK-based dual-labeled data labeling

Our dataset integrated data from three distinct sources:
accounting, Syslog, and traffic. Accounting data, collected
using the Atop tool from five hosts (one benign server,
one target, and three clients), was processed into a dataset
containing detailed system-level information. This information
includes process-specific features such as process ID (PID) and
command (CMD), total memory (MEM) and virtual memory
size (VSIZE), and page faults (MINFLT, MAJFLT). CPU
utilization is represented by features CPU percent (CPU) and
CPU core (CPUNR). Disk activity includes read/write bytes
(RDDSK, WRDSK) and request size (RSIZE). The dataset
also captures scheduling and priority features (PRI, POLI),
process states (S), and resource growth (RGROW).

Syslog data, aggregated from the same machines using
Rsyslog, was processed with the Drain technique to create a
structured dataset. However, due to the textual nature of syslog
data, it only consists of two features: content and component.

Traffic data was captured with TCPdump from six machines,
including the five hosts plus one additional malicious client.
The captured data was transformed into a traffic dataset using
Argus. This dataset includes features such as source and
destination port numbers (Sport, Dport), statistical properties
(Mean, StdDev, Sum), and protocol flags (Flgs_). Other fea-
tures include the total number of packets and bytes (TotP-
kts, TotBytes), flow directionality (SrcPkts, DstPkts), protocol
states (State_), and protocol types (Proto_*).

In all datasets, common features such as host-specific iden-
tity(hostname or IP address) and timestamps were consistently
available across data sources.
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TABLE 1II
COMPARISON WITH OTHER DATASETS
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2 Different types of data sources; Tr: Network Traffic, Log: log or similar data sources (e.g., Windows event), Acc: accounting or host statistics related data
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Survivability Conference and Exposition, 2000.
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Network and Computer Applications, 2021.

During the labeling phase, data was annotated with host-
specific identity addresses and associated breakpoints. For
the Mirai lifecycle, labels included details regarding the at-
tacker, target, and both vulnerable and non-vulnerable client
machines. For other lifecycles, labeling focused on the attacker
and target systems only.

C. Dataset evaluation on reproducibility and learnability

Our dataset analysis centered on two primary concerns:
reproducibility and learnability. To determine reproducibility,
we established a ground truth dataset that can be accessed
at Kaggle* and formulated four different scenarios. The first
scenario replicated the attack precisely as it occurred on
the ground truth, with additional scenarios extending the
attack duration to generate larger datasets. We employed PCA
and then PCC to evaluate linear correlations after matching
features across different datasets.

We proposed a methodology to evaluate dataset learnability
using a diverse set of machine learning classifiers with an
80:20 ratio for training and testing. All models were im-
plemented using their default configurations from the scikit-
learn and XGBoost libraries, focusing on AUC-ROC and F1-
score metrics to ensure a comprehensive evaluation. XGBoost
was selected for AUC-ROC analysis due to its ability to
handle complex data and mitigate overfitting effectively. It was

“https://www.kaggle.com/datasets/masjohncook/cremev2-datasets

applied to all three datasets and evaluated in a One-vs.-All
setting to measure classification accuracy and the classifier’s
capacity to differentiate across classes.

Additionally, standard hyperparameters were used for all
models to streamline the evaluation process and focus on the
datasets’ inherent learnability. This approach ensured a con-
sistent baseline for performance comparison across different
models and datasets.

VI. RESULT, DISCUSSION, AND LIMITATION

The comparison of the proposed dataset with other publicly
available datasets is presented in Table II. Our proposed
dataset demonstrates superior performance compared to oth-
ers. The contributions of three data sources substantiate the
findings, highlighting the integration of botnet and Metasploit
frameworks to improve attack diversity, the application of the
kill chain in attack replay, the incorporation of dual-labeling
with technique and lifecycle, and the proposal of a tool for
dataset reproduction.

On the other hand, to guarantee that a dataset is both
reproducible and suitable for learning in machine learning
applications, we evaluated reproducibility by conducting sta-
tistical tests to compare the dataset’s consistency across var-
ious situations. Classification performance was evaluated by
measuring it using AUC-ROC and F1-score.
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Fig. 3. Reproducibility Evaluation Result.

A. Dataset reproducibility

The resulting dataset comprises 4,583,180 samples (46
features) for accounting, 235,962 (61 features) for syslog,
and 2,355,448 (59 features) for traffic, reflecting diverse data
volumes across the sources. Figure 3a further illustrates the
statistical distribution of attacks, showing the data volume
for each technique across the three sources. Syslog contained
the highest number of replicated techniques (15), followed
by accounting (14) and traffic (11). While most ATT&CK
techniques were replicated with substantial data volumes, a
few had fewer than 100 instances.

Figure 3b shows the PCC graph comparing test data to
ground truth. Lines represented scenarios: GT (ground truth),
NR (normal replay), and AD (extended attack durations). The
traffic dataset shows strong reproducibility, with data points
closely aligned to the polynomial line and Pearson correlation
coefficients exceeding 70%.

The decreased PCC score for each replayed scenario is
attributable to the extended attack duration, which led to
a rise in the quantity of data points. The inclusion of the
attack duration led to a 30% amplification in data volume.
Nonetheless, the dense data distribution and elevated PCC
scores indicated that our system effectively produced data
that was close to the original and maintained a degree of
reproducibility.

B. Dataset learnability

Figure 4a displays the mean AUC-ROC scores for these
labels, assessed through both micro and macro averages. The
micro average combines all classes’ results before calculating
the metric, providing an aggregate view and emphasizing

Test Data
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+ GT CREMEV2 vs. 1 time AD
+  GT CREMEV2 vs. 2 times AD
«  GT CREMEV2 vs. 3 times AD
—— Polynomial line of GT CREMEv2 vs. NR CREMEv2
Polynomial line of GT CREMEV2 vs. 1 time AD
. ——- Polynomial line of GT CREMEV2 vs. 2 times AD
° - Polynomial line of GT CREMEV2 vs. 3 times AD

-2.0 -15 -10 -05 1.0 15 2.0

00 05
Ground Truth Data

(b) Pearson Correlation Coefficient of All Scenarios

larger classes. In contrast, the macro average calculates the
metric for each class individually, offering a balanced as-
sessment regardless of class size or distribution. This dual
approach yields insights into both overall and individual class
performance.

For the traffic and accounting datasets, classifications of
technique labels achieved perfect scores on both micro and
macro averages, with consistent performance across all classes.
The Syslog dataset, however, demonstrated a notable differ-
ence: its micro score surpassed the macro score by 0.1 in
the AUC-ROC metric. This discrepancy suggested a possible
bias toward predominant classes, with limited generalization
across diverse or underrepresented classes. In lifecycle label
classification, the traffic dataset consistently delivered high
AUC-ROC scores. For accounting and Syslog datasets, AUC-
ROC scores for lifecycle labels were lower than those for
technique labels, but the difference between micro and macro
scores remained below 0.05, indicating a more consistent class
performance with minimal bias. While AUC-ROC evaluations
for technique labels were robust across datasets, lifecycle label
classification showed a performance decline. The accounting
dataset recorded a 0.14 reduction in micro scores and a 0.17
reduction in macro scores. For the Syslog dataset, micro
and macro scores dropped to 0.63 and 0.61, respectively.
On average, the models achieved a micro score of 0.92
for technique classification and a macro score of 0.82 for
lifecycle classification across datasets. These results suggest
that our machine-learning models show significant potential
for technique classification within the traffic dataset

The Fl-score results indicated significant differences in
model performance across datasets and labeling schemes as
depicted in figure 4b, highlighting the impact of dataset
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Fig. 4. Evaluation Result

structure on classification results. The classification techniques
tested for the Traffic and Accounting datasets achieved high
Fl-scores, reaching maximum values of 99% and 98%, re-
spectively. The strong performance of technique classification
is mainly due to clearly defined patterns throughout these
datasets. The Traffic dataset had robust performance in life-

cycle classification, achieving a maximum F1-score of 0.96.
This result indicates that the dataset’s configuration or feature
extraction may enhance the effective capture of the lifecycles.
In contrast, the performance of the Accounting dataset in life-
cycle classification was under 50%, probably due to the fewer
unique lifecycles presented in the data, which may restrict the
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model’s capacity to accurately distinguish across lifecycles.
The Syslog dataset performs poorly in both technique and
lifecycle classifications, with maximum F1-scores of merely
0.14 and 0.22, respectively. This underperformance may be
attributed to the inadequate representation of the data. The
situation is compounded by the lack of a specific preprocessing
framework similar to that utilized for the Traffic data.

Training time for the machine learning models was also
measured for both technique and lifecycle labels. The ac-
counting dataset required average training times of 1670.5
seconds for technique labels and 89.5 seconds for lifecycle
labels. The Syslog dataset required 737.5 seconds for technique
labels and 57.9 seconds for lifecycle labels. The traffic dataset
required 736.7 seconds for technique labels and 656.9 seconds
for lifecycle labels. These results highlight the computational
demands of different labeling approaches and the varying
complexities of datasets during model training.

We report Fl-scores as the primary metric due to their
ability to balance precision and recall, which are critical for un-
derstanding model performance in classification tasks. In this
work, the accuracy, precision, and recall metrics closely align
with the reported Fl-scores. Thus, the Fl-score effectively
represents overall classification performance and provides a
comprehensive evaluation of related metrics.

The performance differences among datasets highlight the
critical role of a strong, customized feature extraction tech-
nique. The Traffic data is improved with a structured frame-
work that improves classification accuracy, whereas the ac-
counting and Syslog datasets are constrained by insufficient
data representation. This underscores the importance of spe-
cialized feature extraction methods for improving performance
in a variety of data sources.

This work represents the first attempt to create a dataset
with dual labeling for both MITRE ATT&CK techniques and
attack lifecycles. Due to the novelty of this approach, the scope
of attack scenarios replayed is limited to a predefined set of
lifecycles and techniques.

VII. CONCLUSION AND FUTURE WORK

This work introduced a novel approach for generating high-
quality, dual-labeled datasets for machine learning, utilizing
the ATT&CK. Our primary objective was to address and
resolve the reproducibility challenges associated with existing
dataset production methods. Our work yielded some significant
conclusions:

1) Automation: The automated reproduction of attack sce-
narios indicates a substantial enhancement in efficiency,
preserving considerable time and resources relative to
manual dataset generation.

2) Reproducibility: Our innovative tool that automated the
generation of the IDS datasets ensures reproducibility.
Additionally, a novel evaluation method employing PCA
and PCC was used to measure the reproducibility. This
approach allows for consistent dataset production across
various replay scenarios.

3) Learnability: The effectiveness of our dataset in iden-
tifying attack techniques and lifecycles was confirmed

through the evaluation of the ML model through AUC-
ROC and F1-score.

In future work, we aim to expand our solution by incorpo-
rating additional attack techniques and lifecycles. Furthermore,
we will examine alternative preprocessing approaches to boost
model performance, particularly in the context of accounting
and syslog datasets.
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