
Queue-Length-based Offloading for Delay Sensitive
Applications in Federated Cloud-Edge-Fog Systems

Ren-Hung Hwang1, Yuan-Cheng Lai2, and Ying-Dar Lin3
1College of Artificial Intelligence, National Yang Ming Chiao Tung University, Taiwan

2Department of Information Management, National Taiwan University of Science and Technology, Taiwan
3Department of Computer Science, National Yang Ming Chiao Tung University, Taiwan

rhhwang@nycu.edu.tw, laiyc@cs.ntust.edu.tw, ydlin@cs.nctu.edu.tw

Abstract—Delay-sensitive applications demand ultra-low
latency, which can be achieved by leveraging edge and fog
computing to provide computation services closer to users.
However, the server capacity limitation of edge and fog computing
necessitates offloading to balance the computation load across
cloud, edge, and fog servers. While previous works typically focus
on the average delay of users' requests and employ probabilistic
offloading schemes based on certain probabilities, our study
introduces a novel approach that considers the QoS violating
probability and offloads users' requests based on the queue length
of computing servers. We propose an approximate model with
closed-form solutions to determine the near-optimal offloading
thresholds of the queue lengths at fog and edge servers. Although
the performance results of the approximate queueing model do not
precisely match the simulation results, our numerical findings
demonstrate that they share the same trend, and the approximate
queueing model can provide the optimal queue length threshold in
most cases. Moreover, our numerical results reveal that the QoS
violating probability of the queue-length-based offloading is
significantly lower than that of the probabilistic offloading scheme,
with potential reductions of up to 60% in QoS violations in large-
scale network scenarios.

Index Terms—cloud-edge-fog, federation, offloading, queueing
analysis

I. INTRODUCTION
Numerous innovative applications have emerged, leveraging

the new technologies and services offered by 5G networks.
Many of these cutting-edge applications heavily rely on high
bandwidth and low latency. Notably, certain applications are
extremely sensitive to delays and demand the Ultra-Reliable and
Low Latency Communications (URLLC) capabilities of 5G,
such as autonomous driving and telemedicine. For delay-
sensitive applications, it is not only imperative to maintain low
latency but also to ensure that the latency does not exceed a
specific hard deadline, for example, 20 ms for cooperative
driving, particularly in vehicle platooning scenarios with a high
degree of automation [1].

To achieve low latency, Mobile Edge Computing (MEC)
was introduced by the European Telecommunications Standards
Institute (ETSI) [2] and later adopted by the 3rd Generation
Partnership Project (3GPP). MEC utilizes edge servers
physically close to users to provide low latency services. In
contrast to traditional two-tier mobile cloud computing, which
consists of a cloud server and User Equipment (UEs), MEC

employs a three-tier architecture comprising federated cloud
servers, edge servers, and UEs. This design reduces both
computation and communication loads on the core network and
cloud servers.

In a multi-tier architecture, offloading to where, i.e., cloud
server, edge server, or UE itself, to execute a request is an
important issue. There were many previous studies focusing on
the offloading decision problem in a two-tier architecture [3-7]
or in a three-tier architecture [8-13]. Most of these studies
investigated how to minimize cost with latency constraint [3][6],
latency [7][9][10], energy consumption[3][6][8], computation
overhead by offloading[4][5], or resource allocation[9][12][13].

Previous papers focusing on latency reduction only
considered the average latency. However, what matters most for
each request is whether its Quality of Service (QoS) requirement
can be met—specifically, if its latency can be kept below a given
threshold necessary for the service [1]. Consequently, while
certain offloading algorithms or mechanisms in these studies
may reduce mean latency, they might not guarantee QoS
satisfaction. In this work, our emphasis is on the QoS violating
probability, defined as the probability that the latency of a
request exceeds a given threshold. This latency includes both
communication and computation delays.

In our previous work [14], we considered a probabilistic
offloading (PLO) strategy, which offloads a request to a higher-
tier server based on an optimal probability to minimize the QoS
violating probability. In this study, we propose a novel
offloading mechanism called queue-length-based offloading
(QLO). With QLO, we set a threshold for the queue length on
both the fog and edge servers. When a computation task request
arrives at the fog server, it offloads the task to the edge server if
the current queue length meets or exceeds the threshold.
Similarly, the edge server offloads an incoming task to the cloud
server if its queue length also meets or exceeds its threshold.The
advantage of QLO over PLO is that it performs offloading based
on the current server status, enabling real-time, on-demand
offloading decisions. To estimate the optimal thresholds for the
fog and edge servers, we develop an approximate analytical
model. Through simulations on both small-scale and large-scale
networks, our results demonstrate that QLO significantly
reduces the QoS violation probability compared to PLO.

The main contributions of this study are:

2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)

979-8-3503-0457-2/24/$31.00 ©2024 IEEE 406

20
24

 IE
EE

 2
1s

t C
on

su
m

er
 C

om
m

un
ic

at
io

ns
 &

 N
et

w
or

ki
ng

 C
on

fe
re

nc
e

(C
CN

C)
 |

 9
79

-8
-3

50
3-

04
57

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CC

N
C5

16
64

.2
02

4.
10

45
46

97

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on October 04,2024 at 01:19:29 UTC from IEEE Xplore. Restrictions apply.

(1) The QLO offloading scheme is proposed which
outperforms the traditional PLO.

(2) We present a tractable analytical model for computing
the distribution of the end-to-end delay of a computation
task and the associated QoS violating probability. While
the model assumes independent queues and Poisson
arrival, making it less accurate, it remains valuable for
estimating optimal thresholds for queue lengths of fog
and edge servers.

The remainder of this paper is organized as follows: Section
II describes the system architecture and system model. Closed-
form solutions for calculating the QoS violating probability and
optimal thresholds are derived based on queueing models.
Section III presents a simple iterative search algorithm (ISA) for
finding the optimal thresholds. Numerical results are then
presented in Section IV. Finally, the conclusions and future
works are summarized in Section V.

II. PROBLEM FORMULATION
A. System Architecture

The system architecture of the three-tier federated cloud,
edge, and fog computation system is shown in Fig. 1 [14]. UEs
are considered as fog servers, enabling a computation task
generated at a UE to be served either by the UE itself or
offloaded to a nearby edge server or the cloud server. In this
work, we focus on a homogeneous federated system with one
cloud server pool. The cloud server is associated with N edge
servers, and each edge server is associated with M UEs.
Although our model is initially designed for homogeneous
systems, it can be easily extended to handle heterogeneous
setups. We assume computation tasks arrive at a UE according
to a Poisson process. When a task arrives at a UE, it is offloaded
to the edge server if the queue length of the UE meets or exceeds
a threshold denoted by 𝑇𝐻!. Similarly, hen a task arrives at an
edge server, it is offloaded to the cloud server if the edge server's
queue length meets or exceeds a threshold denoted by 𝑇𝐻" .
Additionally, we assume the cloud server has abundant service
capacity, ensuring that a computation task arriving at the cloud
server will always be served. We refer to this offloading strategy
as queue-length-based offloading (QLO). The objective of
optimal QLO is to determine the optimal threshold values, 𝑇𝐻!
and 𝑇𝐻", to minimize the overall QoS violating probability.

Fig. 1. Architecture of the three-tier federated Cloud, Edge, and Fog

computation offloading system [14]

In line with our previous work [14], we also consider the
communication overhead when offloading a task to higher-tier

servers. We assume that when a task is offloaded to a higher-tier
computing server, it is sent through a communication link
(uplink), which introduces some communication delay.
Similarly, after the computing server completes the computation,
the task's result is sent back through a downlink, incurring
another communication delay. Specifically, if the task is
computed at the edge server, it experiences an uplink
communication delay from the UE to the edge server and a
downlink communication delay in the opposite direction. On the
other hand, if the task is processed at the cloud server, it
encounters two uplink communication delays and two downlink
communication delays: one between the UE and the edge server
and the other between the edge server and the cloud server,
respectively.

B. Queueing Model
In this section, our goal is to select a tractable queueing

model to determine the optimal threshold values 𝑇𝐻! and 𝑇𝐻".
A straightforward approach is to model the whole system as a
multi-dimensional continuous-time Markov Chain. However,
given the system's complexity with N*M UEs, N edge servers,
N UE-to-edge uplink and downlink communication servers, 1
cloud server, 1 edge-to-cloud uplink and downlink
communication server, and the bound of each queue to be T, the
number of states will be 𝑇#$%&#%& which grows exponentially
in terms of N and M. Even for a small system with 𝑇 = 𝑁 =
𝑀 = 10 , the number of states will be 10'&& , making this
approach computationally infeasible. The second approach
treats each server or communication link as an independent
queue. In this work, we choose to model UEs and edge servers
as M/M/1/K queues, and the cloud server and communication
links as M/M/1 queues. This choice is made to maintain the
tractability of computing the end-to-end delay distribution.

Although the output process of the M/M/1/K queue is not a
Poisson process, and the analytical results may not be entirely
accurate, our numerical results show that the proposed analytical
model's outcomes are consistent with simulation results. The
model may underestimate the QoS violating probability due to
the output process being burstier than a Poisson process.
Nevertheless, the analytical model remains applicable in
determining the optimal threshold values for QLO.

In the following, we will derive the end-to-end delay
distribution for a computation task depends on which tier of
server it is served. Based on the delay distribution, we can derive
the QoS violating probability for a given delay constraint. Table
I shows the notations used in our analysis. Fig. 2 shows the
queueing network of the three-tier federated Cloud, Edge, and
Fog computation system.
Case 1: the task is served by UE

By assuming the arrival of computation tasks to a UE follows
a Poisson process with rate 𝜆! = 𝜆, the service time follows an
exponential distribution with rate 𝜇! , and the queue length
bound 𝐾 = 𝑇𝐻!, it forms an M/M/1/K queue. The steady-state
probability for queue length equals i is given by

𝑃!(𝑖) =
(!
" 	('+(!)

'+(!
#$!%&, (1)

where 𝜌! = 𝜆! 𝜇!⁄ and the queue length includes the task in
service if i>0.

2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)

407
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on October 04,2024 at 01:19:29 UTC from IEEE Xplore. Restrictions apply.

The probability of offloading the task from UE to the edge
server is given by

𝑝!" = 𝜌𝑈
𝑇𝐻𝑈 	(1−𝜌𝑈)

1−𝜌𝑈
𝑇𝐻𝑈+1

. (2)

TABLE I

Table of Notations
Notation Meaning
𝜇#

(𝜇$, 𝜇",	𝜇!,
𝜇!" , 𝜇"$,
𝜇$" , 𝜇"!)

Service capacity of the server or communication
link X where X is either C (cloud), E (edge), U
(UE), UE (uplink from UE to E), EC (uplink from
edge to cloud), CE (downlink from cloud to edge),
EU (downlink from edge to UE).

𝜆#
(𝜆$, 𝜆",	𝜆!,
𝜆!" , 𝜆"$,
𝜆$" , 𝜆"!)

The arrival rate of the server or communication
link X where X is either C (cloud), E (edge), U
(UE), UE (uplink from UE to E), EC (uplink from
edge to cloud), CE (downlink from cloud to edge),
EU (downlink from edge to UE).

𝜆 External task arrival rate to each UE.
𝑇𝐻! A computation task will be offloaded from UE to

the edge server when its queue length is greater
than or equal to this threshold. (In reality, the
queue length will not be greater than this threshold
as a result of admission control.)

𝑇𝐻" A computation task will be offloaded from the edge
server to the cloud server when its queue length is
greater than or equal to this threshold.

𝑇𝐻####! Upper bound of the queue length of UE.
𝑇𝐻####" Upper bound of the queue length of the edge server.
𝜐# The difference between service rate and arrival

rate of X, i.e., 𝜐# = 𝜇# − 𝜆#, where X is either C,
UE, EC, CE, or EU. The queuing delay of an
M/M/1 server X is exponentially distributed with
parameter 𝜐#.

𝑝#
(𝑝!" , 𝑝"$)

The offloading probability from UE to the edge
server (x=UE) or from the edge server to the cloud
server (x=EC).

θ Delay constraint of a computation task
𝑃#!(𝜃)
𝑃#"(𝜃)
𝑃#$(𝜃)

The probability of the delay of a task served by
UE, edge server, or cloud server exceeds the delay
constraint θ respectively.

𝑃#(𝜃) The overall probability of the delay of a task
exceeds the delay constraint θ.

Fig. 2. Queueing network of the federated three-tier computation system.

The delay distribution of this M/M/1/K queue at the UE can
be calculated based on the Poisson Arrivals See Time Averages
(PASTA) theorem [15]. That is, upon an arrival sees i tasks in

the queue, the delay distribution experienced by this arrival
follows the Erlang(i+1, 𝜇!) distribution. Thus, the probability of
the delay of a task exceeds the delay constraint θ is given by

𝑃#!(𝜃) = ∑ 𝜌𝑈
𝑖 	(1−𝜌𝑈)

1−𝜌𝑈
𝑇𝐻𝑈+1

× (∑ (𝜇𝑈𝜃)
𝑗

𝑗! 𝑒−𝜇𝑈𝜃𝑖
𝑗=0)𝑇𝐻𝑈−1

𝑖=0 . (3)

In (3), the first term is the probability that an arrival sees i
tasks in the queue, and the second term follows the Erlang(i+1,
𝜇!) distribution. Note that when i=0, Erlang(1, 𝜇!) becomes an
exponential distribution, and when 𝑖 = 𝑇𝐻! , the task is
offloaded to the edge server, thus the summation is from i=0 to
𝑇𝐻! − 1.

For ease of explanation, in this paper, we consider a
homogeneous scenario where all UEs have the same arrival and
service rate, and similar assumptions apply to edge servers and
each type of communication link. However, it is important to
note that our results can be extended to a heterogeneous case.

Case 2: the task is served by the edge server
The delay consists of three parts: the delay of the uplink

communication from UE to the edge server, the delay at the edge
server, and the delay of the downlink communication from the
edge server to the UE. Since an edge server is associated with M
UEs, the arrival rate of these three queues is the same, given by

𝜆!" = 𝜆" = 𝜆"! = 𝑀 × 𝑝𝑈𝐸 × 𝜆. (4)
As aforementioned, although the output process of an

M/M/1/K queue is not a Poisson process, to make the analysis
tractable, we assume the arrival process to the queues at the edge
server and two communication links between UE and the edge
server are Poisson processes. The edge server is modeled as an
M/M/1/K queue where 𝐾 = 𝑇𝐻". The two communication links
are modeled as M/M/1 queues.

The model of the edge server is similar to that of UE. The
steady-state probability for queue length equals i is given by

𝑃"(𝑖) =
(.
" 	('+(.)

'+(.
#$.%&, (5)

where 𝜌" = 𝜆" 𝜇"⁄ . The probability of offloading the task from
the edge server to the cloud server is given by

𝑝"9 = (.
#$. 	('+(.)

'+(.
#$.%& . (6)

The delay distribution of the edge server seen by an arrival
can also be derived by the PASTA theorem. That is, if an arrival
sees i tasks in the queue, the delay follows the Erlang(i+1, 𝜇")
distribution. On the other hand, the delay distribution of an
M/M/1 queue with arrival rate 𝜆 and service rate 𝜇 is an
exponential distribution with parameter (𝜇 − 𝜆).

The end-to-end delay of a task served by an edge server is
derived using the Laplace transform. Let XE be the random
variable of the delay. For ease of explanation, let the delay
distribution of the edge server be Erlang(𝑟, 𝜇'), where 𝜇' = 𝜇".
Let the delay of the communication link from UE to edge be
exponentially distributed with parameter 𝜇: = 𝜇!" − 𝜆!" and
that of the link from edge to UE be exponentially distributed
with parameter 𝜇& = 𝜇"! − 𝜆"!.
Case 2-1: 𝜇' ≠ 𝜇: ≠ 𝜇&

The end-to-end delay is a summation of an Erlang
distribution and two exponential distributions with different
parameters. The Laplace transform of XE is given by

!!

!"

!#

!!"

!"#

!"!
queue length≥ !"!

queue length≥ !""
"

!#"

!"!!""

2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)

408
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on October 04,2024 at 01:19:29 UTC from IEEE Xplore. Restrictions apply.

𝑆∗(𝑠) =
𝜇'< × 𝜇: × 𝜇&

(𝑠 + 𝜇')< × (𝑠 + 𝜇:) × (𝑠 + 𝜇&)

= 𝜇'< × 𝜇: × 𝜇& ×

⎝

⎜⎜
⎛ ∑ (+')/0"%&

(=1+=&)/0"
×?

∑ (+')"02

(=3+=&)"02%&
× '

(>%=&)2%&
?
@AB

+ (+')"%&

(=3+=&)"%&
× '

>%=3

@<+'
?AB

+ (+')/

(=1+=&)/×(=3+=1)
× '

>%=1
+ (+')/%&

(=1+=&)/×(=3+=1)
× '

>%=3⎠

⎟⎟
⎞
. (7)

The delay distribution is obtained by finding the inverse
Laplace transform, which is given by

𝑓D.(𝑥) = 𝜇'< × 𝜇: × 𝜇& ×

G∑ (+')/0"%&

(=1+=&)/0"
∑ (+')"02

(=3+=&)"02%&
× GE

"

?!
× 𝑒+=&EH +?

@AB
<+'
?AB

∑ (+')/0"%&

(=1+=&)/0"
×<+'

?AB
(+')"%&

(=3+=&)"%&
× 𝑒+=3E + (+')/

(=1+=&)/×(=3+=1)
×

𝑒+=1E + (+')/%&

(=1+=&)/×(=3+=1)
× 𝑒+=3EH. (8)

Finally, the probability of the delay of a task exceeds the
delay constraint θ is given by

𝑃𝑋𝐸(𝑟, 𝜃) = 𝜇1𝑟 × 𝜇2 × 𝜇3 ×

⎝

⎜
⎜
⎜
⎛
∑ (−1)𝑟−𝑖+1

)𝜇2−𝜇1*
𝑟−𝑖 ×∑

(−1)𝑖−𝑗

)𝜇3−𝜇1*
𝑖−𝑗+1

𝑖
𝑗=0 × 𝑒−𝜇1𝑥

𝜇1𝑖+1
× ∑)𝜇1𝜃*

𝑗

𝑗!
𝑖
𝑗=0

𝑟−1
𝑖=0

+∑ (−1)𝑟−𝑖+1

)𝜇2−𝜇1*
𝑟−𝑖 ×𝑟−1

𝑖=0
(−1)𝑖+1

(𝜇3−𝜇1)
𝑖+1 ×

1
𝜇3
× 𝑒−𝜇3𝜃

(−1)𝑟

(𝜇2−𝜇1)
𝑟×(𝜇3−𝜇2)

× 𝑒−𝜇2𝜃

𝜇2
+ (−1)𝑟+1

(𝜇2−𝜇1)
𝑟×(𝜇3−𝜇2)

× 𝑒−𝜇3𝜃

𝜇3 ⎠

⎟
⎟
⎟
⎞
. (9)

Case 2-2: 𝜇' ≠ 𝜇:, 𝜇: = 𝜇&	
The delay distribution becomes the summation of two

Erlang distributions, i.e., Erlang(𝑟, 𝜇')+Erlang(2, 𝜇:). Due to the
space limitation of the paper, we only present the probability of
the delay of a task exceeds the delay constraint θ as follows

𝑃𝑋𝐸(𝑟, 𝜃) = 𝜇1𝑟 × 𝜇22 ×

⎝

⎜⎜
⎜
⎛
∑ (−1)𝑟+1−𝑖 × 𝑟−𝑖

(𝜇2−𝜇1)
𝑟+1−𝑖 ×

𝑒−𝜇1𝜃

𝜇1𝑖+1
× ∑)𝜇1𝜃*

𝑗

𝑗!
𝑖
𝑗=0

𝑟−1
𝑖=0

+(−1)𝑟 × 𝑟
(𝜇2−𝜇1)

𝑟+1 ×
𝑒−𝜇2𝜃

𝜇2

+(−1)𝑟 × 1
(𝜇2−𝜇1)

𝑟 × 1
𝜇2
2 × 9𝑒−𝜇2𝜃 +𝜇2𝜃𝑒−𝜇2𝜃: ⎠

⎟⎟
⎟
⎞

. (10)

Case 2-3: 𝜇' = 𝜇:, 𝜇: ≠ 𝜇&; 	or		𝜇' = 𝜇&, 𝜇: ≠ 𝜇&
The delay distribution is the summation of Erlang(𝑟 + 1, 𝜇')

and exponential(𝜇&) (or exponential(𝜇:) in the latter case). The
probability of the delay of a task exceeds the delay constraint θ
is given by

𝑃𝑋𝐸(𝑟, 𝜃) = 𝜇1𝑟+1 × 𝜇2 ×

;∑ (−1)𝑟−𝑖+2

)𝜇2−𝜇1*
𝑟−𝑖+1 ×

𝑒−𝜇1𝜃

𝜇1𝑖+1
× ;∑)𝜇1𝜃*

𝑗

𝑗!
𝑖
𝑗=0 <𝑟

𝑖=0 + (−1)𝑟+1

(𝜇2−𝜇1)
𝑟+1 ×

𝑒−𝜇2𝜃

𝜇2
<.

(11)

Case 2-4: 𝜇' = 𝜇: = 𝜇&
The delay distribution is Erlang(𝑟 + 2, 𝜇') and the

probability of the delay of a task exceeds the delay constraint θ
is given by

𝑃D.(𝑟, 𝜃) = ∑ (=&L)"

?!
× 𝑒+=&L<%'

?AB (12)

Case 2 summary:
With probability 𝑃"(𝑖), an arrival sees i tasks in the edge

server’s queue, the delay distribution is Erlang(𝑖 + 1, 𝜇'). Thus

the overall probability of the delay of a task exceeds the delay
constraint θ is given by

𝑃#"(𝜃) = ∑ 𝑃𝐸(𝑖) ×+,!-.
/01 𝑃𝑋𝐸(𝑖 + 1, 𝜃), (13)

where 𝑃"(𝑖) is defined by (5) and 𝑃D.(𝑖 + 1, 𝜃) is defined by
either (9), (10), (11), or (12).

Case 3: the task is served by the cloud server
The analytical model for delay distribution is the same as we

presented in our previous work[14]. The readers are referred to
our previous work for details. In the following, we summarize
the results from [14].

The delay of a task served by the cloud server consists of five
parts: the delay of the uplink communication from UE to the
edge server, the delay of the uplink communication from the
edge server to the cloud server, the delay at the cloud server, the
delay of the downlink communication from the cloud server to
the edge server, and the delay of the downlink communication
from the edge server to the UE. Since the cloud server is
associated with N edge servers, the arrival rates to the cloud
server, the uplink from the edge server to the cloud server, and
the downlink from the cloud server to the edge server are the
same and given by

𝜆"9 = 𝜆9 = 𝜆9" = 𝑁 ×𝑀 × 𝑝"9 × 𝑝!" × 𝜆, (13)
while recall that 𝜆!" , 𝜆"! are given in equation (4).

We have a tandem of five M/M/1 queues and the delay of
each queue is exponentially distributed. Let us denote the
parameter of the delay distribution by 𝜐? , 𝑖 = 1,… ,5. For
example, 𝜐' = 𝜇!" − 𝜆!" and 𝜐: = 𝜇"9 − 𝜆"9 . Depending on
whether there are some 𝜐?′𝑠 have the value, we have 7 sub-cases,
denoted by (1,1,1,1,1), (5), (4,1), (3,1,1), (3,2), (2,1,1,1), (2,2,1),
where each number denotes how many 𝜐?′𝑠 are the same. For
example, (3,2) denotes the case where 3 𝜐?′𝑠 have the same
value while the other 2 𝜐?′𝑠 have the same value. In the
following, we only show the result for the first case. For the rest
6 cases, the readers are referred to [14].
Case 3-1: 𝜐? ≠ 𝜐@ 	𝑖𝑓	𝑖 ≠ 𝑗, denoted by (1,1,1,1,1)

The probability of the delay of a task exceeds the delay
constraint θ is given by

𝑃#$(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

															

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝜐5−𝜐1

× 1
𝜐4−𝜐1

× 1
𝜐3−𝜐1

× 1
𝜐2−𝜐1

× 1
𝜐1
× 𝑒−𝜐1𝜃

− 1
𝜐5−𝜐2

× 1
𝜐4−𝜐2

× 1
𝜐3−𝜐2

× 1
𝜐2−𝜐1

× 1
𝜐2
× 𝑒−𝜐2𝜃

+ 1
𝜐5−𝜐3

× 1
𝜐4−𝜐3

× 1
𝜐3−𝜐2

× 1
𝜐3−𝜐1

× 1
𝜐3
× 𝑒−𝜐3𝜃

− 1
𝜐5−𝜐4

× 1
𝜐4−𝜐3

× 1
𝜐4−𝜐2

× 1
𝜐4−𝜐1

× 1
𝜐4
× 𝑒−𝜐4𝜃

+ 1
𝜐5−𝜐4

× 1
𝜐5−𝜐3

× 1
𝜐5−𝜐2

× 1
𝜐5−𝜐1

× 1
𝜐5
× 𝑒−𝜐5𝜃⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (15)

Summary:
Given the probability of the delay of a task exceeds the delay

constraint θ in three cases, the overall probability of violating the
delay constraint is given by
𝑃D(𝜃) = 𝑃(𝑋 ≥ 𝜃) = (1 − 𝑝!") × 𝑃𝑋𝑈(𝜃)

+(1 − 𝑝"9) × 𝑝!" × 𝑃D"(𝜃) + 𝑝!" × 𝑝"9 × 𝑃D9(𝜃) (16)

C. Problem Statement
Given following system parameters, how to configure 𝑇𝐻!

and 𝑇𝐻" such that 𝑃D(𝜃) could be minimized? The system
parameters include number of UEs per edge server (M), number
of edge servers per cloud server (N), external task arrival rate (𝜆),

2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)

409
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on October 04,2024 at 01:19:29 UTC from IEEE Xplore. Restrictions apply.

the service rate of each server and communication link
(𝜇9 , 𝜇" , 𝜇! , 𝜇!" , 𝜇"9 , 𝜇9" , 𝜇"!), and the delay constraint θ.

III. ITERATIVE SEARCH ALGORITHM (ISA)
In this section, we proposed a search algorithm for finding

the optimal 𝑇𝐻! and 𝑇𝐻" which minimizes 𝑃D(𝜃) based on an
iterative algorithm. In section II, we have showed how to
compute 𝑃D(𝜃) when 𝑇𝐻! and 𝑇𝐻" are given. Since 𝑇𝐻! and
𝑇𝐻" are integer values with an upper bound, a straightforward
search algorithm is the exhaustive search that explores all
possible pairs of 𝑇𝐻! and 𝑇𝐻" . The complexity of the
exhaustive search algorithm is O(𝑇𝐻XXXX! × 𝑇𝐻XXXX") where 𝑇𝐻XXXX! and
𝑇𝐻XXXX" are the upper bounds of the queue length of the UE and the
edge server. To avoid exhaustive search, we propose an iterative
search algorithm, as shown in Fig. 3, which first searches for the
optimal 𝑇𝐻! when 𝑇𝐻" is fixed, and then fixed 𝑇𝐻! to current
optimal value and search for the optimal 𝑇𝐻" . It then repeats
these two steps until 𝑇𝐻! and 𝑇𝐻" converges to fixed points. In
our experiments, ISA converges within 2 iterations in most cases.

Iterative Search Algorithm

Input: M, N, 𝜆, 𝜇# , 𝜇" , 𝜇!, 𝜇!" , 𝜇"# , 𝜇#" , 𝜇"!, θ, 𝑇𝐻####!, 𝑇𝐻####"
Output: optimal 𝑇𝐻!, 𝑇𝐻"
Begin
 𝑇𝐻! = 𝑇𝐻####!/2;	𝑇𝐻" = 	𝑇𝐻####"/2; //initialize 𝑇𝐻!, 𝑇𝐻"
 Repeat {
 𝑜𝑙𝑑_𝑇𝐻! = 𝑇𝐻!; 𝑜𝑙𝑑_𝑇𝐻" = 𝑇𝐻"; 𝑚𝑖𝑛𝑝 = 1.0;

For (𝑇𝐻! = 0, 1, …,	 𝑇𝐻####!){ //search for optimal 𝑇𝐻!
 calculate 𝑃$(𝜃) using equations (3)-(16)
 If (𝑃$(𝜃)<𝑚𝑖𝑛𝑝) {

 𝑚𝑖𝑛𝑝=𝑃$(𝜃); 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑇𝐻!=𝑇𝐻!; }
 }

𝑇𝐻! = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑇𝐻!; 𝑚𝑖𝑛𝑝 =1.0;
For (𝑇𝐻" = 0, 1, …,	 𝑇𝐻####"){ //search for optimal 𝑇𝐻"

 calculate 𝑃$(𝜃) using equations (3)-(16)
 If (𝑃$(𝜃)<	𝑚𝑖𝑛𝑝) {

 𝑚𝑖𝑛𝑝=𝑃$(𝜃); 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑇𝐻"=𝑇𝐻"; }
 }

𝑇𝐻" = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑇𝐻"
 } until (old_𝑇𝐻! == 𝑇𝐻! AND old_𝑇𝐻"== 𝑇𝐻");

Output 𝑇𝐻!, 𝑇𝐻"
End

Fig. 3. Pseudocode for the ISA algorithm.

IV. NUMERICAL RESULTS
A. Parameter Setting

We evaluate the system performance using two scenarios: a
small-scale network and a large-scale network. The setting of
system parameters for the small-scale network is shown in Table
II, which is mainly used to compare the performance of the
proposed QLO with that of PLO, as proposed in [14].
B. Analysis vs. Simulation

We first validate our analytical results by comparing with the
simulation results, as shown in Fig. 4. In Fig. 4(a), 𝑇𝐻" is set to
2 and 𝑇𝐻! varies from 0 to 4, while in (b), 𝑇𝐻! is set to 1, and
𝑇𝐻" varies from 0 to 5. As expected, the analytical results do
not match the simulation results very well. However, the trend
of both simulation and analysis results is similar. The analytical
model still provides a good mechanism to estimate the optimal
queue length thresholds, namely 𝑇𝐻! and 𝑇𝐻" . Therefore, in
the following experiments, when comparing the performance of
QLO with that of PLO, we first use the analytical model to

determine the approximate optimal 𝑇𝐻! and 𝑇𝐻" values.
Subsequently, we run simulations to evaluate the actual
performance of QLO using these approximate optimal values
and then compare its performance with PLO. Each simulation is
run 30 times with a simulation time of 10,000 time units, and the
95% confidence interval is less than 1% of the mean value.

TABLE II
Small network’s system parameters (rates are per time unit) (M=N=5, θ = 1.2)

λ=2 𝜇$=25 𝜇"=8 𝜇!=1.5 𝑇𝐻####! = 4
𝜇!"=12 𝜇"$=22 𝜇$" =21 𝜇"!=11 𝑇𝐻####" = 5

Fig. 4. Comparison of simulation and analytical results (small network).

For the small network case, the analytical model estimates
the optimal thresholds are 𝑇𝐻! = 1, 𝑇𝐻" = 2. Table III shows
the QoS violating probability for all possible combinations of
𝑇𝐻! and 𝑇𝐻". As we can see that both analytical and simulation
results indicate that 𝑇𝐻! = 1 and 𝑇𝐻" = 2 are indeed the
optimal thresholds, although the values of analytical and
simulation do not match well.

TABLE III
Simulation and analytical results for all combination of 𝑇𝐻! and 𝑇𝐻" 	(small

network)
		𝑇𝐻!
𝑇𝐻"

0 1 2 3 4
S A S A S A S A S A

0 1.0 1.0 0.58 0.60 0.62 0.54 0.50 0.32 0.51 0.33
1 0.65 0.67 0.11 0.05 0.20 0.11 0.33 0.20 0.44 0.29
2 0.76 0.61 0.10 0.04 0.20 0.11 0.33 0.21 0.44 0.29
3 0.70 0.54 0.11 0.05 0.21 0.11 0.33 0.21 0.44 0.30
4 0.71 0.54 0.12 0.06 0.21 0.12 0.33 0.21 0.44 0.30
5 0.73 0.56 0.13 0.07 0.21 0.12 0.34 0.21 0.45 0.30

S: Simulation results; A: Analytical results
The system parameters of the large network are shown in

Table IV. This setting emulates a real-world system with 1600
UEs, where each edge server is associated with 40 UEs, and the
cloud server is associated with 40 edge servers. Fig. 5 illustrates
the comparison of analytical results with simulation results for
the large network scenario. Similar to Fig. 4, they do not match
well, but they show the same trend. In summary, the analytical
model underestimates the QoS violating probability due to the
invalid Poisson arrival assumption; however, it is still useful to
estimate the optimal 𝑇𝐻! and 𝑇𝐻".
C. POL vs. QOL

Fig. 6 compares the QoS violating probability of POL and
QOL. As we can observe, QOL significantly outperforms POL.
The rationale is that QOL leverages the advantage of offloading
a task to the upper-tier server by checking the current queue
length status. This real-time on-demand approach allows tasks
to be offloaded to the upper tier only when necessary. On the
other hand, POL blindly offloads tasks to upper-tier servers

2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)

410
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on October 04,2024 at 01:19:29 UTC from IEEE Xplore. Restrictions apply.

randomly with a pre-defined probability. However, we also
notice that the curve of the QoS violating probability is not
smooth in Fig. 6(b). This is due to the fact that the value of the
threshold can only be a discrete (integer) value. One possible
solution to this problem is to combine queue length-based
offloading with probabilistic offloading. That is, when the queue
length is greater than or equal to the threshold, the task is
offloaded to the upper tier with some probability less than 1.

TABLE IV

Large network’s system parameters (M=N=40,	θ = 2)
λ=1 𝜇$=200 𝜇"=20 𝜇!=1 𝑇𝐻####! = 5

𝜇!"=40 𝜇"$=800 𝜇$" =800 𝜇"!=40 𝑇𝐻####" = 10

Fig. 5. Comparison of simulation and analytical results (large network).

Fig. 6. Comparison of QoS violating probability of PLO and QLO

V. CONCLUSIONS
This paper investigates queue-length-based offloading under

a delay constraint in a three-tier computation system comprising
a cloud server, edge servers, and fog servers (mobile devices).
We propose an approximate analytical model by assuming the
independence of all queues in the system. While the analytical
model's results do not precisely match those of simulations due
to an invalid assumption of the input process as a Poisson
process, both sets of results share the same trend. Thus, the
analytical model still provides a good estimation of the optimal
thresholds for the queue lengths of the edge server and mobile
devices (UE). By setting the thresholds based on the analytical
model, our simulation results demonstrate that the queue-length-
based offloading scheme can achieve a better QoS violating
probability compared to the probabilistic offloading scheme.

There are several areas that require further investigation.
First, we can consider modeling the output process of the
M/M/1/K queue as an MMPP process and deriving the delay
distribution of a tandem of MMPP/M/1 queues. Secondly, as
evident from Fig. 6, the performance of QLO is limited due to
the integer value constraint of the queue length threshold. To

address this, we are exploring an approach that combines QLO
and PLO. Specifically, when a task arrives, if the queue length
equals the threshold minus one (e.g., 𝑇𝐻! − 1), the task will be
offloaded to the upper-tier server with a certain probability. As
a result, we have four parameters in the 3-tier system: thresholds
for UE and edge server queue lengths, and the probability of
offloading when the queue length equals the threshold minus
one. We can derive analytical models and design a search
algorithm to find the optimal thresholds and offloading
probabilities.

REFERENCE
[1] 3GPP TS 22.186, v16.2.0, Enhancement of 3GPP support for V2X

scenarios, Stage 1 (Release 16), Jun. 2019.
[2] Y. H. Milan Patel, Patrice Hédé (September 2014). Mobile-Edge

Computing – Introductory Technical White Paper. Available:
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-
edge_computing_-_introductory_technical_white_paper_v1%2018-09-
14.pdf

[3] Y.-D. Lin, J.-C. Hu, B. Kar, L.-H. Yen, ”Cost Minimization with
Offloading to Vehicles in two-Tier Federated Edge and Vehicular-Fog
Systems,” IEEE VTC2019-Fall, Honolulu, HI, USA, Sep. 22-25, 2019.

[4] I. Kovacevic, et al., “Cloud and Edge Computation Offloading for
Latency Limited Services,” IEEE Access, vol. 9, pp. 55764 - 55776, Apr.
2022.

[5] Y. Xiao, L. Wei, J. Feng, W. En, “Two-tier end-edge collaborative
computation offloading for edge computing,” Journal of Computational
Methods in Sciences and Engineering, vol. 22, no. 2, pp. 677–688, Jan.
2022.

[6] B. Kar, Y.-D. Lin, and Y. C. Lai, “Cost optimization of omnidirectional
offloading in two-tier cloud–edge federated systems,” Journal of Network
and Computer Applications, vol. 215, Jun. 2023.

[7] W. B. Qaim, et al., “Understanding the Performance of Task Offloading
for Wearables in a Two-Tier Edge Architecture,” IEEE 13th International
Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT), Brno, Czech, 25-27 Oct. 2021.

[8] L. Li, and H. Zhang, “Delay Optimization Strategy for Service Cache and
Task Offloading in Three-Tier Architecture Mobile Edge Computing
System,” IEEE Access, vol. 8, Sep. 2020.

[9] H. Dinh, et al., “Deep Reinforcement Learning-based Offloading for
Latency Minimization in 3-tier V2X Networks,” IEEE Wireless
Communications and Networking Conference (WCNC), Austin, TX, USA,
Apr. 2022.

[10] M. Bolourian and H. Shah-Mansouri, “Energy-Efficient Task Offloading
for Three-Tier Wireless-Powered Mobile-Edge Computing,” IEEE
Internet of Things Journal, vol. 10(12), pp. 10400-10412, Jun. 2023.

[11] Z. Gao, W. Hao, and S. Yang, “Joint Offloading and Resource Allocation
for Multi-User Multi-Edge Collaborative Computing System,” IEEE
Transactions on Vehicular Technology, vol. 71(3), pp. 3383-3388, Mar.
2022.

[12] F. You, W. Ni, J. Li, and A. Jamalipour, “New Three-Tier Game-
Theoretic Approach for Computation Offloading in Multi-Access Edge
Computing,” IEEE Transactions on Vehicular Technology, vol. 71(9), pp.
9817-9829, Sep. 2022.

[13] C.-C. Wang, Y.-D. Lin, J.-J. Wu, P.-C. Lin, R.-H. Hwang, “Towards
Optimal Resource Allocation of Virtualized Network Functions for
Hierarchical Datacenters,” IEEE Transactions on Network and Service
Management, Vol. 15(4), Dec. 2018, pp. 1532-1544.

[14] R.-H. Hwang, Y.-C. Lai and Y.-D. Lin, “Offloading Optimization with
Delay Constraint in the 3-tier Federated Cloud, Edge, and Fog Systems,”
2021 IEEE Globecom, Madrid, Spain, Dec. 7-11, 2021.

[15] R. W. Wolff, “Poisson Arrivals See Time Averages,” Operations
Research, vol. 30(2), pp. 223-414, Mar.-Apr. 1982.

2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)

411
Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on October 04,2024 at 01:19:29 UTC from IEEE Xplore. Restrictions apply.

