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Abstract—Delay-sensitive applications demand ultra-low 
latency, which can be achieved by leveraging edge and fog 
computing to provide computation services closer to users. 
However, the server capacity limitation of edge and fog computing 
necessitates offloading to balance the computation load across 
cloud, edge, and fog servers. While previous works typically focus 
on the average delay of users' requests and employ probabilistic 
offloading schemes based on certain probabilities, our study 
introduces a novel approach that considers the QoS violating 
probability and offloads users' requests based on the queue length 
of computing servers. We propose an approximate model with 
closed-form solutions to determine the near-optimal offloading 
thresholds of the queue lengths at fog and edge servers. Although 
the performance results of the approximate queueing model do not 
precisely match the simulation results, our numerical findings 
demonstrate that they share the same trend, and the approximate 
queueing model can provide the optimal queue length threshold in 
most cases. Moreover, our numerical results reveal that the QoS 
violating probability of the queue-length-based offloading is 
significantly lower than that of the probabilistic offloading scheme, 
with potential reductions of up to 60% in QoS violations in large-
scale network scenarios. 

Index Terms—cloud-edge-fog, federation, offloading, queueing 
analysis 

I. INTRODUCTION 
Numerous innovative applications have emerged, leveraging 

the new technologies and services offered by 5G networks. 
Many of these cutting-edge applications heavily rely on high 
bandwidth and low latency. Notably, certain applications are 
extremely sensitive to delays and demand the Ultra-Reliable and 
Low Latency Communications (URLLC) capabilities of 5G, 
such as autonomous driving and telemedicine. For delay-
sensitive applications, it is not only imperative to maintain low 
latency but also to ensure that the latency does not exceed a 
specific hard deadline, for example, 20 ms for cooperative 
driving, particularly in vehicle platooning scenarios with a high 
degree of automation [1]. 

To achieve low latency, Mobile Edge Computing (MEC) 
was introduced by the European Telecommunications Standards 
Institute (ETSI) [2] and later adopted by the 3rd Generation 
Partnership Project (3GPP). MEC utilizes edge servers 
physically close to users to provide low latency services. In 
contrast to traditional two-tier mobile cloud computing, which 
consists of a cloud server and User Equipment (UEs), MEC 

employs a three-tier architecture comprising federated cloud 
servers, edge servers, and UEs. This design reduces both 
computation and communication loads on the core network and 
cloud servers.  

In a multi-tier architecture, offloading to where, i.e., cloud 
server, edge server, or UE itself, to execute a request is an 
important issue. There were many previous studies focusing on 
the offloading decision problem in a two-tier architecture [3-7] 
or in a three-tier architecture [8-13]. Most of these studies 
investigated how to minimize cost with latency constraint [3][6], 
latency [7][9][10], energy consumption[3][6][8], computation 
overhead by offloading[4][5], or resource allocation[9][12][13]. 

Previous papers focusing on latency reduction only 
considered the average latency. However, what matters most for 
each request is whether its Quality of Service (QoS) requirement 
can be met—specifically, if its latency can be kept below a given 
threshold necessary for the service [1]. Consequently, while 
certain offloading algorithms or mechanisms in these studies 
may reduce mean latency, they might not guarantee QoS 
satisfaction. In this work, our emphasis is on the QoS violating 
probability, defined as the probability that the latency of a 
request exceeds a given threshold. This latency includes both 
communication and computation delays. 

In our previous work [14], we considered a probabilistic 
offloading (PLO) strategy, which offloads a request to a higher-
tier server based on an optimal probability to minimize the QoS 
violating probability. In this study, we propose a novel 
offloading mechanism called queue-length-based offloading 
(QLO). With QLO, we set a threshold for the queue length on 
both the fog and edge servers. When a computation task request 
arrives at the fog server, it offloads the task to the edge server if 
the current queue length meets or exceeds the threshold. 
Similarly, the edge server offloads an incoming task to the cloud 
server if its queue length also meets or exceeds its threshold.The 
advantage of QLO over PLO is that it performs offloading based 
on the current server status, enabling real-time, on-demand 
offloading decisions. To estimate the optimal thresholds for the 
fog and edge servers, we develop an approximate analytical 
model. Through simulations on both small-scale and large-scale 
networks, our results demonstrate that QLO significantly 
reduces the QoS violation probability compared to PLO.  

The main contributions of this study are:  
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(1) The QLO offloading scheme is proposed which 
outperforms the traditional PLO.  

(2) We present a tractable analytical model for computing 
the distribution of the end-to-end delay of a computation 
task and the associated QoS violating probability. While 
the model assumes independent queues and Poisson 
arrival, making it less accurate, it remains valuable for 
estimating optimal thresholds for queue lengths of fog 
and edge servers. 

The remainder of this paper is organized as follows: Section 
II describes the system architecture and system model. Closed-
form solutions for calculating the QoS violating probability and 
optimal thresholds are derived based on queueing models. 
Section III presents a simple iterative search algorithm (ISA) for 
finding the optimal thresholds. Numerical results are then 
presented in Section IV. Finally, the conclusions and future 
works are summarized in Section V. 

II. PROBLEM FORMULATION 
A. System Architecture 

The system architecture of the three-tier federated cloud, 
edge, and fog computation system is shown in Fig. 1 [14]. UEs 
are considered as fog servers, enabling a computation task 
generated at a UE to be served either by the UE itself or 
offloaded to a nearby edge server or the cloud server.  In this 
work, we focus on a homogeneous federated system with one 
cloud server pool. The cloud server is associated with N edge 
servers, and each edge server is associated with M UEs. 
Although our model is initially designed for homogeneous 
systems, it can be easily extended to handle heterogeneous 
setups. We assume computation tasks arrive at a UE according 
to a Poisson process. When a task arrives at a UE, it is offloaded 
to the edge server if the queue length of the UE meets or exceeds 
a threshold denoted by 𝑇𝐻!. Similarly, hen a task arrives at an 
edge server, it is offloaded to the cloud server if the edge server's 
queue length meets or exceeds a threshold denoted by 𝑇𝐻" . 
Additionally, we assume the cloud server has abundant service 
capacity, ensuring that a computation task arriving at the cloud 
server will always be served. We refer to this offloading strategy 
as queue-length-based offloading (QLO). The objective of 
optimal QLO is to determine the optimal threshold values, 𝑇𝐻! 
and 𝑇𝐻", to minimize the overall QoS violating probability. 

 

 
Fig. 1. Architecture of the three-tier federated Cloud, Edge, and Fog 

computation offloading system [14] 

In line with our previous work [14], we also consider the 
communication overhead when offloading a task to higher-tier 

servers. We assume that when a task is offloaded to a higher-tier 
computing server, it is sent through a communication link 
(uplink), which introduces some communication delay. 
Similarly, after the computing server completes the computation, 
the task's result is sent back through a downlink, incurring 
another communication delay. Specifically, if the task is 
computed at the edge server, it experiences an uplink 
communication delay from the UE to the edge server and a 
downlink communication delay in the opposite direction. On the 
other hand, if the task is processed at the cloud server, it 
encounters two uplink communication delays and two downlink 
communication delays: one between the UE and the edge server 
and the other between the edge server and the cloud server, 
respectively. 

B. Queueing Model 
In this section, our goal is to select a tractable queueing 

model to determine the optimal threshold values 𝑇𝐻! and 𝑇𝐻".  
A straightforward approach is to model the whole system as a 
multi-dimensional continuous-time Markov Chain. However, 
given the system's complexity with N*M UEs, N edge servers, 
N UE-to-edge uplink and downlink communication servers, 1 
cloud server, 1 edge-to-cloud uplink and downlink 
communication server, and the bound of each queue to be T, the 
number of states will be 𝑇#$%&#%& which grows exponentially 
in terms of N and M. Even for a small system with 𝑇 = 𝑁 =
𝑀 = 10 , the number of states will be 10'&& , making this 
approach computationally infeasible. The second approach 
treats each server or communication link as an independent 
queue. In this work, we choose to model UEs and edge servers 
as M/M/1/K queues, and the cloud server and communication 
links as M/M/1 queues. This choice is made to maintain the 
tractability of computing the end-to-end delay distribution. 

Although the output process of the M/M/1/K queue is not a 
Poisson process, and the analytical results may not be entirely 
accurate, our numerical results show that the proposed analytical 
model's outcomes are consistent with simulation results. The 
model may underestimate the QoS violating probability due to 
the output process being burstier than a Poisson process. 
Nevertheless, the analytical model remains applicable in 
determining the optimal threshold values for QLO. 

In the following, we will derive the end-to-end delay 
distribution for a computation task depends on which tier of 
server it is served. Based on the delay distribution, we can derive 
the QoS violating probability for a given delay constraint. Table 
I shows the notations used in our analysis. Fig. 2 shows the 
queueing network of the three-tier federated Cloud, Edge, and 
Fog computation system. 
Case 1: the task is served by UE 

By assuming the arrival of computation tasks to a UE follows 
a Poisson process with rate 𝜆! = 𝜆, the service time follows an 
exponential distribution with rate 𝜇! , and the queue length 
bound 𝐾 = 𝑇𝐻!, it forms an M/M/1/K queue. The steady-state 
probability for queue length equals i is given by 

𝑃!(𝑖) =
(!
" 	('+(!)

'+(!
#$!%&,                                         (1) 

where 𝜌! = 𝜆! 𝜇!⁄  and the queue length includes the task in 
service if i>0. 
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The probability of offloading the task from UE to the edge 
server is given by 

𝑝!" = 𝜌𝑈
𝑇𝐻𝑈 	(1−𝜌𝑈)

1−𝜌𝑈
𝑇𝐻𝑈+1

.                                        (2) 

 
TABLE I  

Table of Notations 
Notation Meaning 
𝜇# 

(𝜇$ , 𝜇",	𝜇!, 
𝜇!" , 𝜇"$ , 
𝜇$" , 𝜇"!) 

Service capacity of the server or communication 
link X where X is either C (cloud), E (edge), U 
(UE), UE (uplink from UE to E), EC (uplink from 
edge to cloud), CE (downlink from cloud to edge), 
EU (downlink from edge to UE). 

𝜆# 
(𝜆$ , 𝜆",	𝜆!, 
𝜆!" , 𝜆"$ , 
𝜆$" , 𝜆"!) 

The arrival rate of the server or communication 
link X where X is either C (cloud), E (edge), U 
(UE), UE (uplink from UE to E), EC (uplink from 
edge to cloud), CE (downlink from cloud to edge), 
EU (downlink from edge to UE). 

𝜆 External task arrival rate to each UE. 
𝑇𝐻! A computation task will be offloaded from UE to 

the edge server when its queue length is greater 
than or equal to this threshold. (In reality, the 
queue length will not be greater than this threshold 
as a result of admission control.) 

𝑇𝐻" A computation task will be offloaded from the edge 
server to the cloud server when its queue length is 
greater than or equal to this threshold. 

𝑇𝐻####! Upper bound of the queue length of UE. 
𝑇𝐻####" Upper bound of the queue length of the edge server. 
𝜐# The difference between service rate and arrival 

rate of X, i.e., 𝜐# = 𝜇# − 𝜆#, where X is either C, 
UE, EC, CE, or EU. The queuing delay of an 
M/M/1 server X is exponentially distributed with 
parameter 𝜐#. 

𝑝# 
(𝑝!" , 𝑝"$) 

The offloading probability from UE to the edge 
server (x=UE) or from the edge server to the cloud 
server (x=EC). 

θ Delay constraint of a computation task 
𝑃#!(𝜃) 
𝑃#"(𝜃) 
𝑃#$(𝜃) 

The probability of the delay of a task served by 
UE, edge server, or cloud server exceeds the delay 
constraint θ respectively. 

𝑃#(𝜃) The overall probability of the delay of a task 
exceeds the delay constraint θ. 

 
Fig. 2. Queueing network of the federated three-tier computation system. 

The delay distribution of this M/M/1/K queue at the UE can 
be calculated based on the Poisson Arrivals See Time Averages 
(PASTA) theorem [15]. That is, upon an arrival sees i tasks in 

the queue, the delay distribution experienced by this arrival 
follows the Erlang(i+1, 𝜇!) distribution. Thus, the probability of 
the delay of a task exceeds the delay constraint θ is given by 

𝑃#!(𝜃) = ∑ 𝜌𝑈
𝑖 	(1−𝜌𝑈)

1−𝜌𝑈
𝑇𝐻𝑈+1

× (∑ (𝜇𝑈𝜃)
𝑗

𝑗! 𝑒−𝜇𝑈𝜃𝑖
𝑗=0 )𝑇𝐻𝑈−1

𝑖=0 .          (3) 

In (3), the first term is the probability that an arrival sees i 
tasks in the queue, and the second term follows the Erlang(i+1, 
𝜇!) distribution. Note that when i=0, Erlang(1, 𝜇!) becomes an 
exponential distribution, and when 𝑖 = 𝑇𝐻! , the task is 
offloaded to the edge server, thus the summation is from i=0 to 
𝑇𝐻! − 1. 

For ease of explanation, in this paper, we consider a 
homogeneous scenario where all UEs have the same arrival and 
service rate, and similar assumptions apply to edge servers and 
each type of communication link. However, it is important to 
note that our results can be extended to a heterogeneous case. 

Case 2: the task is served by the edge server 
The delay consists of three parts: the delay of the uplink 

communication from UE to the edge server, the delay at the edge 
server, and the delay of the downlink communication from the 
edge server to the UE. Since an edge server is associated with M 
UEs, the arrival rate of these three queues is the same, given by 

𝜆!" = 𝜆" = 𝜆"! = 𝑀 × 𝑝𝑈𝐸 × 𝜆.                     (4) 
As aforementioned, although the output process of an 

M/M/1/K queue is not a Poisson process, to make the analysis 
tractable, we assume the arrival process to the queues at the edge 
server and two communication links between UE and the edge 
server are Poisson processes. The edge server is modeled as an 
M/M/1/K queue where 𝐾 = 𝑇𝐻". The two communication links 
are modeled as M/M/1 queues.  

The model of the edge server is similar to that of UE. The 
steady-state probability for queue length equals i is given by 

𝑃"(𝑖) =
(.
" 	('+(.)

'+(.
#$.%&,                                     (5) 

where 𝜌" = 𝜆" 𝜇"⁄ . The probability of offloading the task from 
the edge server to the cloud server is given by 

𝑝"9 = (.
#$. 	('+(.)

'+(.
#$.%& .                                   (6) 

The delay distribution of the edge server seen by an arrival 
can also be derived by the PASTA theorem. That is, if an arrival 
sees i tasks in the queue, the delay follows the Erlang(i+1, 𝜇") 
distribution. On the other hand, the delay distribution of an 
M/M/1 queue with arrival rate 𝜆  and service rate 𝜇  is an 
exponential distribution with parameter (𝜇 − 𝜆). 

The end-to-end delay of a task served by an edge server is 
derived using the Laplace transform. Let XE be the random 
variable of the delay. For ease of explanation, let the delay 
distribution of the edge server be Erlang(𝑟, 𝜇'), where 𝜇' = 𝜇". 
Let the delay of the communication link from UE to edge be 
exponentially distributed with parameter 𝜇: = 𝜇!" − 𝜆!"  and 
that of the link from edge to UE be exponentially distributed 
with parameter  𝜇& = 𝜇"! − 𝜆"!. 
Case 2-1: 𝜇' ≠ 𝜇: ≠ 𝜇& 

The end-to-end delay is a summation of an Erlang 
distribution and two exponential distributions with different 
parameters. The Laplace transform of XE is given by 

!!

!"

!#

!!"

!"#

!"!
queue length≥ !"!

queue length≥ !""
"

!#"

!"!!""
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𝑆∗(𝑠) =
𝜇'< × 𝜇: × 𝜇&

(𝑠 + 𝜇')< × (𝑠 + 𝜇:) × (𝑠 + 𝜇&)
 

= 𝜇'< × 𝜇: × 𝜇& ×

⎝

⎜⎜
⎛ ∑ (+')/0"%&

(=1+=&)/0"
×?

∑ (+')"02

(=3+=&)"02%&
× '

(>%=&)2%&
?
@AB

+ (+')"%&

(=3+=&)"%&
× '

>%=3

@<+'
?AB

+ (+')/

(=1+=&)/×(=3+=1)
× '

>%=1
+ (+')/%&

(=1+=&)/×(=3+=1)
× '

>%=3⎠

⎟⎟
⎞
.  (7) 

The delay distribution is obtained by finding the inverse 
Laplace transform, which is given by 

𝑓D.(𝑥) = 𝜇'< × 𝜇: × 𝜇& ×

G∑ (+')/0"%&

(=1+=&)/0"
∑ (+')"02

(=3+=&)"02%&
× GE

"

?!
× 𝑒+=&EH +?

@AB
<+'
?AB

∑ (+')/0"%&

(=1+=&)/0"
×<+'

?AB
(+')"%&

(=3+=&)"%&
× 𝑒+=3E + (+')/

(=1+=&)/×(=3+=1)
×

𝑒+=1E + (+')/%&

(=1+=&)/×(=3+=1)
× 𝑒+=3EH.                                      (8) 

Finally, the probability of the delay of a task exceeds the 
delay constraint θ is given by 

𝑃𝑋𝐸(𝑟, 𝜃) = 𝜇1𝑟 × 𝜇2 × 𝜇3 ×

⎝

⎜
⎜
⎜
⎛
∑ (−1)𝑟−𝑖+1

)𝜇2−𝜇1*
𝑟−𝑖 ×∑

(−1)𝑖−𝑗

)𝜇3−𝜇1*
𝑖−𝑗+1

𝑖
𝑗=0 × 𝑒−𝜇1𝑥

𝜇1𝑖+1
× ∑ )𝜇1𝜃*

𝑗

𝑗!
𝑖
𝑗=0

𝑟−1
𝑖=0

+∑ (−1)𝑟−𝑖+1

)𝜇2−𝜇1*
𝑟−𝑖 ×𝑟−1

𝑖=0
(−1)𝑖+1

(𝜇3−𝜇1)
𝑖+1 ×

1
𝜇3
× 𝑒−𝜇3𝜃

(−1)𝑟

(𝜇2−𝜇1)
𝑟×(𝜇3−𝜇2)

× 𝑒−𝜇2𝜃

𝜇2
+ (−1)𝑟+1

(𝜇2−𝜇1)
𝑟×(𝜇3−𝜇2)

× 𝑒−𝜇3𝜃

𝜇3 ⎠

⎟
⎟
⎟
⎞
.      (9) 

Case 2-2: 𝜇' ≠ 𝜇:, 𝜇: = 𝜇&	  
The delay distribution becomes the summation of two  

Erlang distributions, i.e., Erlang(𝑟, 𝜇')+Erlang(2, 𝜇:). Due to the 
space limitation of the paper, we only present the probability of 
the delay of a task exceeds the delay constraint θ as follows 

𝑃𝑋𝐸(𝑟, 𝜃) = 𝜇1𝑟 × 𝜇22 ×

⎝

⎜⎜
⎜
⎛
∑ (−1)𝑟+1−𝑖 × 𝑟−𝑖

(𝜇2−𝜇1)
𝑟+1−𝑖 ×

𝑒−𝜇1𝜃

𝜇1𝑖+1
× ∑ )𝜇1𝜃*

𝑗

𝑗!
𝑖
𝑗=0

𝑟−1
𝑖=0

+(−1)𝑟 × 𝑟
(𝜇2−𝜇1)

𝑟+1 ×
𝑒−𝜇2𝜃

𝜇2

+(−1)𝑟 × 1
(𝜇2−𝜇1)

𝑟 × 1
𝜇2
2 × 9𝑒−𝜇2𝜃 +𝜇2𝜃𝑒−𝜇2𝜃: ⎠

⎟⎟
⎟
⎞

.         (10) 

Case 2-3: 𝜇' = 𝜇:, 𝜇: ≠ 𝜇&; 	or		𝜇' = 𝜇&, 𝜇: ≠ 𝜇&  
The delay distribution is the summation of Erlang(𝑟 + 1, 𝜇') 

and exponential(𝜇&) (or exponential(𝜇:) in the latter case). The 
probability of the delay of a task exceeds the delay constraint θ 
is given by 

𝑃𝑋𝐸(𝑟, 𝜃) = 𝜇1𝑟+1 × 𝜇2 ×

;∑ (−1)𝑟−𝑖+2

)𝜇2−𝜇1*
𝑟−𝑖+1 ×

𝑒−𝜇1𝜃

𝜇1𝑖+1
× ;∑ )𝜇1𝜃*

𝑗

𝑗!
𝑖
𝑗=0 <𝑟

𝑖=0 + (−1)𝑟+1

(𝜇2−𝜇1)
𝑟+1 ×

𝑒−𝜇2𝜃

𝜇2
<. 

(11) 

Case 2-4: 𝜇' = 𝜇: = 𝜇& 
The delay distribution is Erlang( 𝑟 + 2, 𝜇' ) and the 

probability of the delay of a task exceeds the delay constraint θ 
is given by 

𝑃D.(𝑟, 𝜃) = ∑ (=&L)"

?!
× 𝑒+=&L<%'

?AB                   (12) 

Case 2 summary: 
With probability 𝑃"(𝑖), an arrival sees i tasks in the edge 

server’s queue, the delay distribution is Erlang(𝑖 + 1, 𝜇'). Thus 

the overall probability of the delay of a task exceeds the delay 
constraint θ is given by 

𝑃#"(𝜃) = ∑ 𝑃𝐸(𝑖) ×+,!-.
/01 𝑃𝑋𝐸(𝑖 + 1, 𝜃),               (13) 

where 𝑃"(𝑖) is defined by (5) and 𝑃D.(𝑖 + 1, 𝜃) is defined by 
either (9), (10), (11), or (12). 

Case 3: the task is served by the cloud server 
The analytical model for delay distribution is the same as we 

presented in our previous work[14]. The readers are referred to 
our previous work for details. In the following, we summarize 
the results from [14]. 

The delay of a task served by the cloud server consists of five 
parts: the delay of the uplink communication from UE to the 
edge server, the delay of the uplink communication from the 
edge server to the cloud server, the delay at the cloud server, the 
delay of the downlink communication from the cloud server to 
the edge server, and the delay of the downlink communication 
from the edge server to the UE. Since the cloud server is 
associated with N edge servers, the arrival rates to the cloud 
server, the uplink from the edge server to the cloud server, and 
the downlink from the cloud server to the edge server are the 
same and given by 

𝜆"9 = 𝜆9 = 𝜆9" = 𝑁 ×𝑀 × 𝑝"9 × 𝑝!" × 𝜆,      (13) 
while recall that 𝜆!" , 𝜆"! are given in equation (4). 

We have a tandem of five M/M/1 queues and the delay of 
each queue is exponentially distributed. Let us denote the 
parameter of the delay distribution by 𝜐? , 𝑖 = 1,… ,5.  For 
example, 𝜐' = 𝜇!" − 𝜆!"  and 𝜐: = 𝜇"9 − 𝜆"9 . Depending on 
whether there are some 𝜐?′𝑠 have the value, we have 7 sub-cases, 
denoted by  (1,1,1,1,1), (5), (4,1), (3,1,1), (3,2), (2,1,1,1), (2,2,1), 
where each number denotes how many  𝜐?′𝑠 are the same. For 
example, (3,2) denotes the case where 3 𝜐?′𝑠  have the same 
value while the other 2 𝜐?′𝑠  have the same value. In the 
following, we only show the result for the first case. For the rest 
6 cases, the readers are referred to [14]. 
Case 3-1: 𝜐? ≠ 𝜐@ 	𝑖𝑓	𝑖 ≠ 𝑗, denoted by (1,1,1,1,1)  

The probability of the delay of a task exceeds the delay 
constraint θ is given by 

𝑃#$(𝜃) = 𝑃(𝑋𝐶 ≥ 𝜃) = ∏ 𝜐𝑖5
𝑖=1 ×

															

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝜐5−𝜐1

× 1
𝜐4−𝜐1

× 1
𝜐3−𝜐1

× 1
𝜐2−𝜐1

× 1
𝜐1
× 𝑒−𝜐1𝜃

− 1
𝜐5−𝜐2

× 1
𝜐4−𝜐2

× 1
𝜐3−𝜐2

× 1
𝜐2−𝜐1

× 1
𝜐2
× 𝑒−𝜐2𝜃

+ 1
𝜐5−𝜐3

× 1
𝜐4−𝜐3

× 1
𝜐3−𝜐2

× 1
𝜐3−𝜐1

× 1
𝜐3
× 𝑒−𝜐3𝜃

− 1
𝜐5−𝜐4

× 1
𝜐4−𝜐3

× 1
𝜐4−𝜐2

× 1
𝜐4−𝜐1

× 1
𝜐4
× 𝑒−𝜐4𝜃

+ 1
𝜐5−𝜐4

× 1
𝜐5−𝜐3

× 1
𝜐5−𝜐2

× 1
𝜐5−𝜐1

× 1
𝜐5
× 𝑒−𝜐5𝜃⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.    (15) 

Summary: 
Given the probability of the delay of a task exceeds the delay 

constraint θ in three cases, the overall probability of violating the 
delay constraint is given by 
𝑃D(𝜃) = 𝑃(𝑋 ≥ 𝜃) = (1 − 𝑝!") × 𝑃𝑋𝑈(𝜃) 

+(1 − 𝑝"9) × 𝑝!" × 𝑃D"(𝜃) + 𝑝!" × 𝑝"9 × 𝑃D9(𝜃)   (16) 

C. Problem Statement 
Given following system parameters, how to configure 𝑇𝐻! 

and 𝑇𝐻" such that 𝑃D(𝜃)  could be minimized? The system 
parameters include number of UEs per edge server (M), number 
of edge servers per cloud server (N), external task arrival rate (𝜆), 
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the service rate of each server and communication link 
(𝜇9 , 𝜇" , 𝜇! , 𝜇!" , 𝜇"9 , 𝜇9" , 𝜇"!), and the delay constraint θ. 

III. ITERATIVE SEARCH ALGORITHM (ISA) 
In this section, we proposed a search algorithm for finding 

the optimal  𝑇𝐻! and 𝑇𝐻" which minimizes 𝑃D(𝜃) based on an 
iterative algorithm. In section II, we have showed how to 
compute 𝑃D(𝜃) when  𝑇𝐻! and 𝑇𝐻" are given. Since  𝑇𝐻! and 
𝑇𝐻" are integer values with an upper bound, a straightforward 
search algorithm is the exhaustive search that explores all 
possible pairs of  𝑇𝐻!  and 𝑇𝐻" . The complexity of the 
exhaustive search algorithm is O(𝑇𝐻XXXX! × 𝑇𝐻XXXX") where 𝑇𝐻XXXX! and 
𝑇𝐻XXXX" are the upper bounds of the queue length of the UE and the 
edge server. To avoid exhaustive search, we propose an iterative 
search algorithm, as shown in Fig. 3, which first searches for the 
optimal 𝑇𝐻! when 𝑇𝐻" is fixed, and then fixed 𝑇𝐻! to current 
optimal value and search for the optimal 𝑇𝐻" . It then repeats 
these two steps until 𝑇𝐻! and 𝑇𝐻" converges to fixed points. In 
our experiments, ISA converges within 2 iterations in most cases. 

 
Iterative Search Algorithm 

Input: M, N, 𝜆, 𝜇# , 𝜇" , 𝜇!, 𝜇!" , 𝜇"# , 𝜇#" , 𝜇"!, θ, 𝑇𝐻####!, 𝑇𝐻####"  
Output: optimal 𝑇𝐻!, 𝑇𝐻" 
Begin 
 𝑇𝐻! = 𝑇𝐻####!/2;	𝑇𝐻" = 	𝑇𝐻####"/2; //initialize 𝑇𝐻!, 𝑇𝐻" 
 Repeat { 
  𝑜𝑙𝑑_𝑇𝐻! = 𝑇𝐻!; 𝑜𝑙𝑑_𝑇𝐻" = 𝑇𝐻"; 𝑚𝑖𝑛𝑝 = 1.0;  

For (𝑇𝐻! = 0, 1, …,	 𝑇𝐻####!){ //search for optimal 𝑇𝐻! 
   calculate 𝑃$(𝜃) using equations (3)-(16) 
   If (𝑃$(𝜃)<𝑚𝑖𝑛𝑝) { 

     𝑚𝑖𝑛𝑝=𝑃$(𝜃);  𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑇𝐻!=𝑇𝐻!; } 
  }   

𝑇𝐻! = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑇𝐻!; 𝑚𝑖𝑛𝑝 =1.0; 
For (𝑇𝐻" = 0, 1, …,	 𝑇𝐻####"){ //search for optimal 𝑇𝐻" 

   calculate 𝑃$(𝜃) using equations (3)-(16) 
   If (𝑃$(𝜃)<	𝑚𝑖𝑛𝑝) { 

     𝑚𝑖𝑛𝑝=𝑃$(𝜃); 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑇𝐻"=𝑇𝐻"; } 
  }  

𝑇𝐻" = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑇𝐻"  
 } until (old_𝑇𝐻! == 𝑇𝐻! AND old_𝑇𝐻"== 𝑇𝐻"); 

Output 𝑇𝐻!, 𝑇𝐻" 
End 

Fig. 3. Pseudocode for the ISA algorithm. 

IV. NUMERICAL RESULTS 
A. Parameter Setting 

We evaluate the system performance using two scenarios: a 
small-scale network and a large-scale network. The setting of 
system parameters for the small-scale network is shown in Table 
II, which is mainly used to compare the performance of the 
proposed QLO with that of PLO, as proposed in [14].  
B. Analysis vs. Simulation 

We first validate our analytical results by comparing with the 
simulation results, as shown in Fig. 4. In Fig. 4(a),  𝑇𝐻" is set to 
2 and 𝑇𝐻! varies from 0 to 4, while in (b), 𝑇𝐻! is set to 1, and 
𝑇𝐻" varies from 0 to 5. As expected, the analytical results do 
not match the simulation results very well. However, the trend 
of both simulation and analysis results is similar. The analytical 
model still provides a good mechanism to estimate the optimal 
queue length thresholds, namely 𝑇𝐻!  and 𝑇𝐻" . Therefore, in 
the following experiments, when comparing the performance of 
QLO with that of PLO, we first use the analytical model to 

determine the approximate optimal  𝑇𝐻!  and 𝑇𝐻"  values. 
Subsequently, we run simulations to evaluate the actual 
performance of QLO using these approximate optimal values 
and then compare its performance with PLO. Each simulation is 
run 30 times with a simulation time of 10,000 time units, and the 
95% confidence interval is less than 1% of the mean value. 

TABLE II  
Small network’s system parameters (rates are per time unit) (M=N=5, θ = 1.2) 

λ=2 𝜇$=25 𝜇"=8 𝜇!=1.5 𝑇𝐻####! = 4 
𝜇!"=12 𝜇"$=22 𝜇$" =21 𝜇"!=11 𝑇𝐻####" = 5 

 

 
Fig. 4. Comparison of simulation and analytical results (small network). 

For the small network case, the analytical model estimates 
the optimal thresholds are 𝑇𝐻! = 1, 𝑇𝐻" = 2. Table III shows 
the QoS violating probability for all possible combinations of 
𝑇𝐻! and 𝑇𝐻". As we can see that both analytical and simulation 
results indicate that 𝑇𝐻! = 1 and 𝑇𝐻" = 2  are indeed the 
optimal thresholds, although the values of analytical and 
simulation do not match well. 

TABLE III  
Simulation and analytical results for all combination of 𝑇𝐻! and 𝑇𝐻" 	(small 

network) 
		𝑇𝐻! 
𝑇𝐻" 

0 1 2 3 4 
S A S A S A S A S A 

0 1.0 1.0 0.58 0.60 0.62 0.54 0.50 0.32 0.51 0.33 
1 0.65 0.67 0.11 0.05 0.20 0.11 0.33 0.20 0.44 0.29 
2 0.76 0.61 0.10 0.04 0.20 0.11 0.33 0.21 0.44 0.29 
3 0.70 0.54 0.11 0.05 0.21 0.11 0.33 0.21 0.44 0.30 
4 0.71 0.54 0.12 0.06 0.21 0.12 0.33 0.21 0.44 0.30 
5 0.73 0.56 0.13 0.07 0.21 0.12 0.34 0.21 0.45 0.30 

S: Simulation results; A: Analytical results 
The system parameters of the large network are shown in 

Table IV. This setting emulates a real-world system with 1600 
UEs, where each edge server is associated with 40 UEs, and the 
cloud server is associated with 40 edge servers. Fig. 5 illustrates 
the comparison of analytical results with simulation results for 
the large network scenario. Similar to Fig. 4, they do not match 
well, but they show the same trend. In summary, the analytical 
model underestimates the QoS violating probability due to the 
invalid Poisson arrival assumption; however, it is still useful to 
estimate the optimal 𝑇𝐻! and 𝑇𝐻". 
C. POL vs. QOL 

Fig. 6 compares the QoS violating probability of POL and 
QOL. As we can observe, QOL significantly outperforms POL. 
The rationale is that QOL leverages the advantage of offloading 
a task to the upper-tier server by checking the current queue 
length status. This real-time on-demand approach allows tasks 
to be offloaded to the upper tier only when necessary. On the 
other hand, POL blindly offloads tasks to upper-tier servers 
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randomly with a pre-defined probability. However, we also 
notice that the curve of the QoS violating probability is not 
smooth in Fig. 6(b). This is due to the fact that the value of the 
threshold can only be a discrete (integer) value. One possible 
solution to this problem is to combine queue length-based 
offloading with probabilistic offloading. That is, when the queue 
length is greater than or equal to the threshold, the task is 
offloaded to the upper tier with some probability less than 1. 

TABLE IV 

Large network’s system parameters (M=N=40,	θ = 2) 
λ=1 𝜇$=200 𝜇"=20 𝜇!=1 𝑇𝐻####! = 5 

𝜇!"=40 𝜇"$=800 𝜇$" =800 𝜇"!=40 𝑇𝐻####" = 10 

 
Fig. 5. Comparison of simulation and analytical results (large network). 

 
Fig. 6. Comparison of QoS violating probability of PLO and QLO 

V. CONCLUSIONS 
This paper investigates queue-length-based offloading under 

a delay constraint in a three-tier computation system comprising 
a cloud server, edge servers, and fog servers (mobile devices). 
We propose an approximate analytical model by assuming the 
independence of all queues in the system. While the analytical 
model's results do not precisely match those of simulations due 
to an invalid assumption of the input process as a Poisson 
process, both sets of results share the same trend. Thus, the 
analytical model still provides a good estimation of the optimal 
thresholds for the queue lengths of the edge server and mobile 
devices (UE). By setting the thresholds based on the analytical 
model, our simulation results demonstrate that the queue-length-
based offloading scheme can achieve a better QoS violating 
probability compared to the probabilistic offloading scheme. 

There are several areas that require further investigation. 
First, we can consider modeling the output process of the 
M/M/1/K queue as an MMPP process and deriving the delay 
distribution of a tandem of MMPP/M/1 queues. Secondly, as 
evident from Fig. 6, the performance of QLO is limited due to 
the integer value constraint of the queue length threshold. To 

address this, we are exploring an approach that combines QLO 
and PLO. Specifically, when a task arrives, if the queue length 
equals the threshold minus one (e.g., 𝑇𝐻! − 1), the task will be 
offloaded to the upper-tier server with a certain probability. As 
a result, we have four parameters in the 3-tier system: thresholds 
for UE and edge server queue lengths, and the probability of 
offloading when the queue length equals the threshold minus 
one. We can derive analytical models and design a search 
algorithm to find the optimal thresholds and offloading 
probabilities. 
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