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Abstract—In the evolving landscape of cloud-edge federated
systems, Multi-Access Edge Computing (MEC) plays a crucial role
by being closer to user equipment (UEs). However, it has limited
capacity compared to the cloud, leading to challenges during pe-
riods of high network traffic, commonly referred to as hotspot
traffic, when MEC resources can become overwhelmed. To mitigate
this issue, horizontal and vertical traffic offloading between edges
and core sites, and from core sites to the cloud, respectively, is
employed. The offloading decisions, crucial for ensuring network
efficiency, must be made within seconds. Traditional optimization
techniques are unsuitable due to their computational intensity
and time-consuming nature, necessitating a shift toward machine
learning methods. This research introduces a ratio-based offloading
approach, leveraging a multi-agent deep reinforcement learning
(MADRL) approach based on the twin-delayed deep determinis-
tic policy gradient (TD3) algorithm. In a comparative evaluation
against the simulated annealing (SA) algorithm and single-agent
deep reinforcement learning (DRL) approaches, our proposed so-
lution exhibits superior performance, particularly in terms of de-
cision time. The DRL-based approach achieves convergence within
seconds, whereas SA takes minutes. Additionally, the average la-
tency experienced by traffic in the multi-agent TD3 configuration is
approximately 3–4 times less than in the single-agent configuration.

Index Terms—Cloud computing, DRL, edge computing,
offloading, optimization.

I. INTRODUCTION

C LOUD computing offers massive centralized comput-
ing capacity [1], making it valuable for expanding user

equipment (UEs)’ computing capabilities due to its rapid
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elasticity, long-term usability, and suitability for computing-
intensive tasks [2], [3]. With the continuous advancement of
UEs and communication technologies, a substantial volume of
computationally intensive tasks needs to be offloaded from UEs
to cloud servers for processing [4], [5]. However, its centralized
nature causes it to be distant from UEs, resulting in propagation
delay.

The computing paradigm known as Multi-Access Edge Com-
puting (MEC) locates servers close to UEs [6]. This place-
ment provides processing capacity with lower propagation delay
compared to centralized cloud computing [7]. MEC can of-
fer distributed and intermediate computing power near UEs,
making it suitable for ultra-reliable low-latency communica-
tions (URLLC) services within cellular systems. To enhance
MEC capacity, research work [8] introduced a two-tier MEC
system where computing servers are co-located both with the
base station, known as the access network-MEC (AN-MEC),
and in the core network-MEC (CN-MEC), hosted at a central
office (CO) as Central Office Re-Architected as a Data Center
(CORD). The CORD is a new design of a telco central office that
replaces closed and proprietary hardware with software running
on commodity servers, switches, and access devices [9].

The processing tasks in local UEs often face challenges due
to a lack of computing capacity and limited battery power,
leading to high computation times and increased latency in
UEs’ applications [10]. MEC effectively addresses this issue
by enabling the offloading of intensive tasks from UEs to MEC
servers [11]. However, MEC servers have smaller capacities than
cloud servers and may become overloaded by hotspot traffic.
Hotspot traffic can occur during events such as music concerts,
sporting events, or at transport stations. An overloaded MEC
server can offload some traffic to another MEC site [12]. The
control plane makes offloading decisions within seconds based
on the MEC system’s current traffic and system capacity. In
contrast, traditional optimization methods can take minutes or
hours to converge, failing to meet the control plane’s requirement
for rapid decision-making [13]. The best offloading decision
is challenging to determine due to the presence of multiple
distributed sites with varying computing capacities and task
arrivals. In such a complex system, offloading optimization
must tackle the control plane problem [14], making decisions
within seconds to accommodate fluctuating traffic arrivals. A
machine learning (ML)-based approach emerges as a convincing
solution to the control plane problem, offering the advantage of
making quick decisions to accommodate fluctuating incoming
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Fig. 1. Three-tier cloud-edge architecture.

traffic. However, establishing data labels for model training in
supervised learning is costly due to the dynamic nature of MEC
systems [15].

This research investigates the optimization of ratio-based
offloading in a three-tier cloud-edge federated system. Fig. 1
illustrates a three-tier cloud-edge computing architecture for
efficient network management and service delivery. At the top
tier, the cloud connects to the Internet, providing control and
computational resources for high-level communication and data
processing. The middle tier, the Core Network (CN), features
multiple CN-MEC servers distributed across various sites, en-
abling centralized control and resource management. The bot-
tom tier, the Access Network (AN), includes several AN-MEC
servers across multiple sites, offering localized network access
and computing resources. In this cloud-edge federated system,
ratio-based offloading involves determining both where to of-
fload and how much to offload. In contrast, binary offloading
simply decides whether to offload the incoming traffic or not.
In a cloud-edge federated system, ratio-based offloading using
traditional optimization methods can be time-consuming due to
the extensive action space [13].

To address this issue, reinforcement learning (RL) is a valu-
able technique that can learn an optimal offloading decision
by directly interacting with the environment for offloading op-
timization. It uses trial and error to determine a sub-optimal
offloading solution, instead of waiting for the algorithm to
converge to the best solution. Hence, we proposed a ratio-based
offloading strategy that utilizes multi-agent deep reinforcement
learning (MADRL) based on the twin-delayed deep determin-
istic policy gradient (TD3) algorithm [16]. To the best of our
knowledge, this is the first study to propose a MADRL-based
TD3 approach for determining the optimal offloading proba-
bility in cloud-edge federated systems, considering both ver-
tical and horizontal offloading directions. In this research, we
used the terms offloading ratio and offloading probability inter-
changeably. Our main technical contributions are summarized
as follows:

1) We investigated ratio-based offloading optimization, con-
sidering horizontal and vertical offloading decisions

within control plane systems where fast decision-making
is critically important.

2) We designed a cloud-edge RL environment where the
agent interacts with it to optimize decisions or actions to
evaluate system performance.

3) We proposed a MADRL-based TD3 algorithm to solve
ratio-based offloading decisions.

4) We evaluated the performance of the proposed solution
by conducting simulations that considered various factors
such as decision time, convergence time, decision quality,
and unpredictable parameters.

The remaining sections of this research work are organized as
follows: In Section II, previous research on ML-based offloading
in MEC is presented. In Section III, the system model and the
problem formulation are defined. The solution is presented in
Section IV. The simulation results and findings are discussed
in Section V, while Section VI provides the conclusion of this
study.

II. RELATED WORKS

In this section, we reviewed previous research on MEC of-
floading that utilized supervised learning, RL, and DRL ap-
proaches, as summarized in Table I. Our analysis focused on
both agent and network models. For the agent model, we ex-
amine parameters such as the control plane for optimal traffic
offloading decisions and the management plane for device-based
offloading decisions. We consider online learning for real-time
updates, crucial for dynamic MEC environments. We review
supervised learning and RL or DRL for their adaptability and
efficiency, analyzing both single-agent and multi-agent systems
to understand their impact on complexity and scalability, which
is critical for offloading problems. Additionally, it assesses
whether the studies compare machine learning approaches with
traditional optimization techniques, highlighting their advan-
tages and limitations. For the network model, we discuss target
networks, objectives, constraints, and unknown parameters, that
are essential for understanding the scope, goals, and practical
challenges of this study.

Liu et al. [17] addressed offloading and resource allocation
with DDoS resistance using a Bayesian Q-learning game and a
greedy Q-learning algorithm. However, their method presumes
predictable attack patterns, which may not be feasible in real-
world situations. Qiu et al. [18] optimized MEC offloading for
Blockchain and general computation tasks to minimize costs and
enhance algorithm convergence speed using an adaptive genetic
algorithm, but their approach may not generalize well to other
MEC applications. Khayyat et al. [19] used deep Q-learning
with multiple DNNs to reduce latency and energy consump-
tion, demonstrating superior performance over a single DNN,
though scalability is a concern due to increased overhead. Qu
et al. [20] improved DNN portability in MEC offloading with
meta-learning, achieving better performance and convergence
times but only considered binary offloading decisions. Wang
et al. [21] proposed a dynamic MEC offloading solution using
MRL to adapt quickly to multiple tasks, but training these models
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TABLE I
RELATED WORKS ON ML-BASED OFFLOADING OPTIMIZATION

is resource-intensive. Lu et al. [22] enhanced DQN-based of-
floading for time-dependent tasks with LSTM layers, improving
accuracy but increasing complexity and computation time. Ali
et al. [23] developed an energy-efficient DL-based offloading
algorithm to minimize cost and energy consumption, requiring
well-labeled data that is difficult to obtain in dynamic systems.
Wu et al. [24] introduced a lightweight task offloading algorithm
for EIIoT using an improved MAPPO algorithm to minimize
delay and energy consumption, but did not address performance
under varying network conditions. Ale et al. [25] focused on min-
imizing UE energy consumption with a DRL-based approach,
effectively managing energy but it may not adequately address
varying task priorities.

Most studies [19], [20], [21], [22], [23], [24], [25] have
addressed the control plane problem, requiring UE to handle
global information or communicate intensively with a central
monitoring system for optimal offloading decisions. In con-
trast, [17] and [18] focused on management plane problems.
However, in this paper, we addressed the control plane problem,
where the network handles global information. Furthermore,
most prior studies [17], [18], [19], [20], [21], [22], [23] did not
compare their methods with traditional optimization techniques.
Although studies [24] and [25] included such comparisons, they
did so with certain limitations, such as not considering response
time in their evaluations. In contrast, this paper considers vari-
ous parameters, including response time, while comparing the
performance of machine learning with traditional optimization
techniques. The articles [17] and [23] used Q-learning and super-
vised learning, respectively, relying on offline methods, whereas
most studies including [18], [19], [20], [21], [22], [23], [25] and
this paper, employed RL/DRL approaches, which are preferred
for MEC offloading. Regarding the number of agents, most of the
existing works [17], [18], [19], [20], [21], [22], [23], [25] used a
single agent, whereas the article [24] used multi-agents in their
approaches. This paper employs both single-agent and multi-
agent approaches. Furthermore, all the studies [17], [18], [19],
[20], [21], [22], [23], [24], [25] focused on vertical offloading,
primarily using binary offloading to determine the offloading
location. In contrast, this paper introduces ratio-based offloading
optimization for cloud-edge federated systems, considering both

Fig. 2. Cloud-edge ratio-based offloading.

horizontal and vertical directions. This analysis highlights our
research’s unique contributions to performance comparison,
addressing control plane problems, utilizing a flexible agent
approach, and offloading in both directions.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present an overview of the cloud-edge fed-
erated model with optimal ratio-based offloading and the latency
minimization problem. In Table II, we present the notations and
descriptions used for latency model construction and problem
formulation.

A. Cloud-Edge Federated Model With Ratio-Based Offloading

Fig. 2 illustrates the cloud-edge ratio-based offloading model.
Arrival traffic denoted as λi,j , is offloaded to the jth AN-MEC
site of the ith CN-MEC site, including both normal and hotspot
traffic. Each MEC site has servers with capacities μD, μC

i , and
μA
i,j for the cloud, CN-MEC site, and AN-MEC site, respectively.

There is a set of up to M CN-MEC sites vertically connected to
the cloud. Each CN-MEC site is further connected to up to N
AN-MEC sites. The set of AN-MEC sites for the ith CN-MEC
site is denoted by Ni. MEC sites are interconnected through
optical cables. The propagation delays are denoted as follows:
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TABLE II
NOTATION AND DESCRIPTION FOR CLOUD-EDGE ARCHITECTURE

DAC
i,j for the delay between the jth AN-MEC and ith CN-MEC,

DAA
i,j→n for the delay between the jth AN-MEC and nth AN-

MEC, DCC
i→m for the delay between the ith CN-MEC and mth

CN-MEC, andDCD
i for the delay between the ith CN-MEC and

the cloud. Fig. 2 shows that upon receiving traffic from UEs, the
AN-MEC site can perform five possible offloading directions as
follows. 1) Local offloading to the source AN-MEC site from
UEs with offloading ratio PA

i,j . 2) Horizontal offloading from
AN-MEC site to neighboring AN-MEC sites with offloading
ratio PAA

i,j→n. 3) Vertical offloading from AN-MEC site to CN-
MEC sites with offloading ratio PC

i,j . 4) Horizontally from CN-
MEC site to neighboring CN-MEC sites with offloading ratio
PCC
i→m,j . 5) Vertically from CN-MEC site to the centralized cloud

with offloading ratioPD
i,j . These offloading ratios are determined

by the proposed solution, considering system performance.

B. Latency Calculation

We modeled the system using the M/M/1 queuing model,
which features a single server where arrivals follow a Poisson
process and service times are exponentially distributed. To opti-
mize system latency, we found that sequentially allocating tasks
to AN-MEC, CN-MEC, and the cloud does not yield optimal

results. We formulated latency by considering computation,
communication, and propagation delays. Propagation delay was
calculated by dividing the distance between sites by the speed
of light, based on optical cables used for their low attenuation
and high bandwidth in high-speed data transmission. For the
propagation delay of the router, we assumed the router is located
in the central office, connecting AN-MECs to other AN-MECs
and CN-MECs to some AN-MECs, as is typical in network
architectures. This central placement ensures efficient and reli-
able connectivity, making delay calculations straightforward for
AN-MECs. However, determining the precise number of routers
in the cloud is complex due to the abstracted and variable nature
of cloud infrastructure. The latency calculations are as follows:

1) Computing Latency by Source AN-MEC: The first direc-
tion is the arrival traffic served at source AN-MEC, which
is the first entity that receives arrival traffic. The latency of
traffic that is served in the source AN-MEC site, denoted as
lAi,j , is the sum of radio access network (RAN) uplink time,
AN-MEC computing time, and RAN downlink time. This can be
calculated as

lAi,j =
1

BUA
i,j

p − λi,j

+
1

μA
i,j − λA

i,j

+
1

BAU
i,j

p − λi,j

, (1)
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where λA
i,j = PA

i,jλi,j +
∑

n P
AA
i,n→jλi,n, ∀n ∈ Ni\{j} is total

traffic served at the jth AN-MEC of the ith CN-MEC. This
access network receives traffic from UEs at a rate of λi,j .

2) Computing Latency by Neighboring AN-MEC: Traffic ar-
riving at an AN-MEC site (belonging to the ith CN-MEC) may
overload that site. The traffic can be offloaded to other AN-MEC
sites that belong to the same ith CN-MEC. When horizontal of-
floading is carried out, the offloaded traffic experiences an extra
propagation delay between AN-MEC sites. The total latency of
offloaded traffic to the nth AN-MEC site, denoted as lAA

i,j→n, is
equal to the sum of RAN uplink time, nth AN-MEC comput-
ing time, RAN downlink time, and back-and-forth propagation
delay between the jth and nth AN-MECs sites. This can be
expressed as

lAA
i,j→n=

1
BUA

i,j

p −λi,j

+
1

μA
i,n − λAA

i,n

+
1

BAU
i,j

p − λi,j

+ 2DAA
i,j↔n,

where λAA
i,n = PA

i,nλi,n +
∑
x

PAA
i,x→nλi,x, ∀x ∈ Ni\{n}, (2)

DAA
i,j↔n is computed by dividing dAA

i,j↔n by the speed of light.
At each AN-MEC site, the total arrival traffic equals the sum of
vertically offloaded traffic from its AN-MEC and horizontally
offloaded traffic from its neighbors.

3) Computing Latency by CN-MEC: Once all AN-MEC sites
are overloaded, arriving traffic at the jth AN-MEC of the ith
CN-MEC can be vertically offloaded to the CN-MEC sites. The
total latency of traffic offloaded to the CN-MEC sites, denoted
as lCi,j , is the sum of RAN uplink time, CN-MEC processing
time, propagation delay between the AN-MEC and CN-MEC
sites, and RAN downlink time. This can be expressed as

lCi,j =
1

BUA
i,j

p − λi,j

+
1

μC
i − λC

i

+
1

BAU
i,j

p − λi,j

+ 2DAC
i,j ,

where λC
i =

∑
n

PC
i,nλi,n, ∀n ∈ Ni +

∑
m

∑
n

PCC
m→iλm,n,

∀m ∈M\{i}, ∀n ∈ Nm. (3)

DAC
i,j is computed by dividing dAC

i,j by the speed of light. The
total traffic consists of the sum of vertically offloaded traffic
from its AN-MEC sites and horizontally offloaded traffic from
neighbor CN-MEC sites.

4) Computing Latency by Neighboring CN-MEC: The in-
coming traffic at the jth AN-MEC of the ith CN-MEC is
offloaded to the neighbors of CN-MEC site. This offloading
option incurs a higher propagation delay than the preceding
one, which was offloaded to CN-MEC because it involves both
vertical and horizontal propagation delays between AN-MEC
and CN-MEC sites. The total latency of traffic offloaded to
mth CN-MEC site, denoted as lCC

i↔m,j , is the sum of RAN

uplink time, CN-MEC computing time, RAN downlink time,
back-and-forth propagation delay between jth AN-MEC and
ith CN-MEC, back-and-forth propagation delay between ith and
mth CN-MECs. This can be calculated as

lCC
i↔m,j =

1
BUA

i,j

p − λi,j

+
1

μC
m − λCC

m

+
1

BAU
i,j

p − λi,j

+ 2DAC
i,j + 2DCC

i↔m, (4)

where λCC
m =

∑
j P

C
m,jλm,j , ∀j ∈ Nm +

∑
x

∑
n

PCC
x→m,nλx,n, ∀x ∈M, ∀n ∈ Nx, is the total traffic executed

by mth core network. DCC
i↔m is computed by dividing dCC

i↔m by
the speed of light.

5) Computing Latency by Cloud: A heavy traffic arrival can
overload all edge sites, leading to increased computing latency,
which requires offloading to the cloud. The traffic offloaded to
the cloud experiences a propagation delay from AN-MEC to
CN-MEC and from CN-MEC to the cloud. The total latency of
cloud traffic, denoted as lDi,j , is determined by the sum of RAN
uplink time, AN-MEC computing time, RAN downlink time,
twice the propagation delay between the jth AN-MEC and the
ith CN-MEC, and twice the propagation delay to the cloud. This
can be calculated as

lDi,j =
1

BUA
i,j

p − λi,j

+
1

μD − λD

+
1

BAU
i,j

p − λi,j

+ 2DAC
i,j + 2DCD

i , (5)

where λD =
∑M

i

∑Ni

j PD
i,jλi,j , is the total traffic executed by

the cloud. DCD
i is computed by dividing dCD

i by the speed of
light.

C. Problem Formulation

Latency models for all possible traffic destinations in the
cloud-edge system are provided in (1), (2), (3), (4), and (5). As
illustrated in Fig. 2, we assume that traffic arrives at AN-MEC
sites before being offloaded to another site. The average latency
of incoming traffic sourced from the jth AN-MEC site of the
ith CN-MEC site (li,j) is calculated as We have considered
three-tier cloud-edge federated systems, which consist of multi-
ple AN-MEC sites, CN-MEC sites, and the cloud. Our goal is to
minimize the average system latency (l) within these cloud-edge
federated systems. By utilizing the analytical expressions pro-
vided in (6) shown at the bottom of this page, we can calculate
the average system latency l as

l =

∑
i

∑
j li,j∑

i Σjλi,j
, (7)

li,j =

(
lAi,j

(
PA
i,j × λi,j

)
+
∑

n∈Ni\{j} l
AA
i,j→n

(
PAA
i,j→n × λi,j

)
+ lCi,j

(
PC
i,j × λi,j

)
+
∑

m∈M\{i} l
CC
i→m,j

(
PCC
i→m,j × λi,j

)
+ lDi,j

(
PD
i,j × λi,j

)
)

λi,j
. (6)
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where li,j the average latency of incoming traffic sourced from
the jth AN-MEC site of the ith CN-MEC site given in (6). Thus,
the objective function of the problem with the given constraints
is stated as

Minimize(l), (8)

subject to,

PA
i,j + PAA

i,j→n, ∀n ∈ Ni\{j}+ PC
i,j

+PCC
i→m,j , ∀m ∈M\{i}+ PD

i,j = 1, (9a){
0 ≤ PA

i,j , P
AA
i,j→n, P

C
i,j , P

CC
i→m,j , P

D
i,j ≤ 1

}
, (9b)

λA
i,j + λAA

i,n + λC
i + λCC

m + λD ≤ λi,j , (9c)

λi,j ≥ 0 ∀i ∈M, ∀j ∈ Ni. (9d)

The constraints in (9a) guarantee that the summation of the
offloading ratio must be equal to one. The constraints in (9b)
ensure that the value of each offloading ratio should be between
zero and one. Equation (9c) ensures that the sum of all offloaded
traffic must be less than or equal to the total arrival traffic. The
constraint in (9d) guarantees the non-negativity of each traffic
arrival rate.

IV. PROPOSED SOLUTION

The offloading function of the control plane module deter-
mines the cloud-edge offloading ratio. This function, known
as an agent in DRL, interacts with the edge-cloud system to
find the optimal offloading ratio. The agent can be placed in
distributed central offices (CN-MEC) to facilitate traffic redi-
rection to edge servers. We have used a modified DRL-based
TD3 algorithm, which is a model-free, online, off-policy DRL
method. A TD3 agent is an actor-critic DRL agent that searches
for an optimal policy that maximizes the expected cumulative
long-term reward [26]. TD3 agents can be trained in environ-
ments with continuous or discrete observation and continuous
action spaces. This study investigates the impact of single and
multi-DRL agents along SA optimization on offloading. The
primary distinction between single and multi-agents lies in the
agent’s coverage. With a large amount of input and actions, the
single agent covers all cloud-edge systems. Conversely, the use
of multi-agents reduces coverage, resulting in a smaller input
and action space.

The agent is trained using past experiences stored in a memory
buffer. It stores experiences in the format of states, actions, next
states, and rewards (s, a, s′, r). The agent learns the optimal
action to take given a particular state.

A. Ratio-Based Cloud-Edge RL Environment

The environment represents the external system or process
with which an RL agent interacts. We have designed a cloud-
edge environment that involves task control problems, requiring
appropriate decisions to be made at each moment in time to
achieve their objectives. We have implemented RL-based agents
to interact with the environment and make quick decisions. We

define the states, actions, and rewards for cloud-edge offloading
optimization in the designed environment as follows.

1) State: It is a representation of the current environment that
the agent can observe and includes all relevant information nec-
essary for decision-making. It constitutes the cloud-edge site’s
information, arrival traffic rates (λi,j), computation resources
(μD, μC

i , μ
A
i,j), and site latency (li,j). The following are state

arrays built from states that are used as inputs to policy and
Q-value networks,

Tt = {λi,j}M,Ni

i=1,j=1 , (10)

Ct =
{
μC
i

}M

i=1
,
{
μA
i,j

}M,Ni

i=1,j=1
,
{
μD

}
, (11)

and Lt = {li,j}M,Ni

i=1,j=1 , (12)

where Tt denotes a set of all AN-MEC sites’ arrival traffic rates
at the tth step. Ct is an array containing the computing capac-
ity available at the AN-MEC, CN-MEC, and cloud. Capacity
changes throughout time in response to the rate of arrival traffic.
Lt composes the latency of all sites.Tt,Ct, andLt are composed
as an environment state st at tth step,

st = [Tt, Ct, Lt]. (13)

2) Action: An action in a cloud-edge environment is a set of
offloading ratios that determine the amount of offloaded traffic
to the destinations. These offloading ratios can be represented
as follows:
� PA

i,j is the offloading ratio of traffic computed in source
AN-MEC.

� PAA
i,j→n is the offloading ratio to AN-MEC neighbors, where

∀n ∈ Ni\{j}.
� PC

i,j is the offloading ratio from source AN-MEC to CN-
MEC.

� PCC
i→m,j is the offloading ratio to CN-MEC neighbors,

where ∀m ∈M\{i}.
� PD

i,j is the Offloading ratio to the cloud.
The action set, which is an output of the actor-network, is

formulated as

at =

{
PA
i,j , P

AA
i,j→n, ∀n ∈ Ni\{j}, PC

i,j , P
CC
i→m,j ,

∀m ∈M\{i}, PD
i,j

}M,Ni

i=1,j=1

. (14)

Equation (14) applies to single-agent offloading. In multi-agent
TD3, ith agent is responsible only for the offloading decision of
traffic arriving at the jth AN-MEC. Thus, the action set for the
ith agent is

at =

{
PA
i,j , P

AA
i,j→n, ∀n ∈ Ni\{j}, PC

i,j , P
CC
i→m,j ,

∀m ∈M\{i}, PD
i,j

}Ni

i=1,j=x

. (15)

3) Reward: In RL, the agent is not trained using labeled data sets
but rather by providing a reward signal to indicate the quality
of the action executed. Positive reward is given for actions
that contribute to the system’s objective. Otherwise, the agent’s
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Algorithm 1: Proposed MADRL-Based TD3 Algorithm.

reward will be negative. The goal of RL is to maximize the
reward. Since the goal of offloading optimization is to reduce
average latency, the reward for action in tth is calculated as

rt = (Zl(t)) , (16)

where Zl(t) =
1
l and l is given in (8).

B. Simulated Annealing

Simulated annealing (SA) is a global optimization technique
inspired by the annealing process in metallurgy, which avoids
local optima by probabilistically accepting less desirable solu-
tions in a controlled manner [27]. The SA-based offloading agent
initially determines an offloading ratio (Y ) for each AN-MEC
site with incoming tasks. This ratio represents the distribution of
tasks offloaded to AN-MEC sites, stored in an array of floats that
sum to 1. SA uses temperature (T ) to control the optimization
process. At the start, SA has a high temperature, indicating a high
probability of accepting suboptimal solutions. This likelihood
decreases with each iteration as the temperature is gradually

reduced. During each iteration, SA generates a new solution
(Ynew), and the performance of this new solution f(Ynew) is
compared to the previous one f(Y ). If the new solution performs
better, it is retained. If not, the new solution may still be selected
with a probability given by 1

exp(
f(Ynew)−f(Y )

Tt
)
, where Tt is the

temperature at iteration t. The measured performance is the
average latency experienced by incoming traffic.

C. Proposed MADRL-Based TD3 Algorithm

We investigated ratio-based offloading in a continuous action
space under dynamic conditions. The TD3 algorithm, a state-of-
the-art off-policy RL algorithm, is ideal for this due to its ability
to mitigate overestimation and handle continuous action spaces
[28]. However, as the number of sites increases, the input size
grows, extending convergence time. To address this, we pro-
posed a Multi-Agent Deep Reinforcement Learning (MADRL)
approach based on TD3 for ratio-based offloading and faster
decisions. By employing multiple agents, this method reduces
input sizes for each agent, enabling faster convergence and
more efficient processing. Multi-agent systems can collaborate
and handle localized inputs, enhancing overall performance and
adaptability. The MADRL approach optimizes the offloading ra-
tio in a continuous action space, effectively navigating dynamic
conditions and improving system latency and performance.

The proposed MADRL-based algorithm learns a Q-function
and a policy. Each offloading agent in a cloud-edge environment
locally observes and calculates a local offloading ratio, facili-
tated by the policy network. In this scenario, the service provider
equips each central office with a CN-MEC site, connecting
several AN-MEC base stations and the cloud. Equation (15)
provides the offloading ratio in a multi-agent environment, high-
lighting the effectiveness of our approach. The Q-function (value
function) assesses the quality of a state-action pair (st, at), while
a policy takes the environmental state as input and returns an
action (at). Algorithm 1 shows the outlines of the utilization of
a pair of critic networks, a delayed update of the actor model, and
the management of actor noise for the modified MADRL-based
TD3 algorithm.

Algorithm 1 works as follows. Line 2 initializes two critic
models with parameters θi,1, θi,2 and two critic targets with
parameters θ′i,1, θ

′
i,2, where i = 1, 2, . . . , N denotes the number

of agents. The actor model with parameterφi and the actor target
model with parameterφ′

i are initialized in line 4. The actor model
represents the entity that directly interacts with its environment
by determining at in response to the received st. Both the critic
and actor models are implemented as neural networks (NN).
NNs are trained using a batch of N transitions stored in replay
buffer B, as shown in lines 9 and 10. As indicated in line 11,
the actor target model predicts the next action (ãt) by utilizing
s′t and adds exploratory noise to it. In line 12, the critic target
model uses (s′t, ãt) to anticipate the future reward of (st, at).
Target rewards are extracted from the critic target with the lowest
rewards, multiplied by the discount factor γ, and added to the
present reward. While line 13 is used to update the critic model
by evaluating the pair (st, at). The state (st) represents the

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on April 27,2025 at 10:53:47 UTC from IEEE Xplore.  Restrictions apply. 



470 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 12, NO. 1, JANUARY/FEBRUARY 2025

Fig. 3. MADRL-based TD3 offloading structure.

necessary cloud-edge environment information for action deter-
mination, and action (at) is the offloading ratio used to distribute
incoming traffic to cloud-edge sites. The minimum mean square
error (MSE) between the critic model’s reward and the target
reward is subsequently calculated. This error serves as the basis
for updating the twin-critic models through back-propagation
delay. Lines 14–18 illustrate a phase of steady learning, during
which the update of the actor model and all target networks is
postponed. In line 15, the actor model is refined using gradient
descent with respect to the value estimates provided by a critic
model. Lines 16–18 indicate all target networks are refreshed
by duplicating the model parameters with a factor of τ to slow
down the network update process and maintain a minimal MSE.

Fig. 3 depicts the MADRL-based TD3 structure, consisting of
three key components: the cloud-edge environment, the replay
buffer, and the agents. The execution and training processes oc-
cur simultaneously. During execution, the actor model interacts
directly with the cloud-edge environment, which provides the
agent with essential information for determining the offloading
ratio at time t iterations. This information includes node latency,
link latency, communication capacity, and computing capacity,
referred to as states st as in (13).

The replay buffer is used to store the agent-environment
interaction history as a tuple of state, action, next state, and
reward (st, at, s

′
t, rt). These data update the agent model’s pa-

rameters throughout the training phase. The models are trained
using batches of acquired data instead of waiting for a large
accumulation of data in the replay buffer (B).

The cloud-edge offloading agents (Agent-1, Agent-2, . . .,
Agent-n) determine the optimal offloading option to minimize
system latency l. The aim is to maximize the cumulative system
reward as given in (16). Each cloud-edge offloading agent uses
six neural networks: two actor networks (Actor model and Actor

target) and four critic networks (twin critic models and twin
critic targets). The actor model is responsible for determining
the optimal offloading ratio, which includes both the destination
of the offloaded traffic (vertical and horizontal directions) and
the amount of traffic that would be offloaded. The critic model
is used to evaluate the pair (st, at), while the critic target uses
(s′t, ãt) to calculate the future reward of (st, at). Updating
policies and Q-value networks for all offloading agents occurs
through a training procedure that utilizes global cloud-edge
system data stored in a replay buffer (B).

V. SIMULATION AND RESULTS

A simulation has been created to evaluate the comparison
between conventional optimization approaches and RL-based
offloading algorithms in the given cloud-edge federated systems.
The existing network control plane utilizes a network abstrac-
tion [28] similar to simulation models, along with optimization
techniques based on these abstractions.

A. Parameter Settings

Tables III and IV detail the system and agent parameters,
respectively. We developed the DRL environment simulation
using Python. These experiments are available on GitHub.1

All AN-MECs were randomly distributed based on base sta-
tions, typically placed according to population density using
Epitools [29]. We considered up to five CN-MECs, with each
CN-MEC mapped to eight AN-MEC sites. As noted in [8], the
distance between two AN-MECs ranges from 30 to 60 km, while
the distance between two CN-MECs ranges from 40 to 150 km.

1https://github.com/seifuGthab/Cloud-edge-simulation-codes.
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TABLE III
PARAMETER SETTINGS

TABLE IV
SA AND TD3 ALGORITHM PARAMETER SETTINGS

The distance between an AN-MEC and its corresponding CN-
MEC ranges from 30 to 60 km, whereas the distance between a
CN-MEC and the cloud ranges from 100 to 1000 km.

The traffic arrival rate followed a Poisson process, and service
times were exponentially distributed, reflecting real network
traffic patterns. We considered two traffic arrival scenarios:
normal traffic with loads of 10 K, 20 K, 30 K, and 40 K
packets per second (packets/s), and hotspot traffic with double
these rates to simulate peak conditions [8]. A fixed packet size
(p) of 10 Kb was used throughout the experiments to ensure
consistency in data handling and performance evaluation. In
our architecture, CN-MEC servers are positioned at the Internet
Service Provider (ISP) [30] and supported by central office
(CO) infrastructure, which facilitates robust network device
deployment [31]. These servers have a capacity of 2.7× 105

packets/s, which is higher than the AN-MEC servers. AN-MEC
servers, constrained by their location behind base stations with
limited space and cooling capabilities, handle only 3× 104

Fig. 4. Algorithm’s learning curve.

packets/s. The cloud server has a capacity of 3× 106 packets/s,
to handle high volumes of data traffic.

Table IV presents the specific configurations for the of-
floading agents for SA and DRL. To address this, we used
Optuna [32], an automatic hyperparameter optimization frame-
work, to determine the optimal hyperparameter values for our
simulation. The Softmax activation function was applied to the
actor-network, forming a categorical distribution that assigns
inputs to categories. For both the single-agent and multi-agent
actor-networks, the state (as defined in (13)) was used as input
to compute an action, for all MEC sites (as calculated in (14)
and (15), respectively). We used discount factor (γ) of 0.99 and
learning rate (τ) of 0.005 in our experiments. In conclusion,
our framework optimizes performance across a multi-tier edge
and cloud infrastructure by considering specific arrival rates
and server capacities reflective of real-world scenarios. This
approach ensures a robust simulation of different task data
volumes and computational loads.

B. Results Analysis

The experimental results are organized to address the
specified research issues, such as decision time, convergence
time, decision quality (or service performance), offloading
under unpredicted parameters in the context of RL vs. SA, and
a comparison between single-agent and multi-agent offloading.
Since the SA algorithm is based on a probabilistic technique,
we used it as a benchmark to compare our approach. However,
brute force algorithms are impractical to use in this kind of
problem, due to the continuous action space.

1) Evaluation of Learning Curves: Fig. 4 illustrates the eval-
uation of learning curves concerning the algorithm’s ability
to adapt quickly to new traffic patterns. We conducted 50 000
episodes (5000 steps) for multi-agent TD3 and single-agent TD3
to assess this learning curve. For SA, approximately 7 10 000
iterations (71 000 steps) were employed. In RL, a step represents
a complete interaction cycle between the agent and its environ-
ment, including the agent’s action, the environment’s response,
and the agent’s learning from the outcome. In SA, a step refers
to a single iteration or move within the optimization search
space. The multi-agent TD3 and single-agent TD3 required
500–1000 steps to approximate the maximum reward, while
SA required 67 500 steps. This difference arises because of the
sequential optimization of AN-MECs’ offloading decisions by
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Fig. 5. Decision time.

SA, including unvisited sites with arrival traffic that exceeds
their capacity due to the initial random offloading mechanism,
resulting in significant delay and nearly zero reward. The multi-
agent TD3 demonstrated a faster learning curve compared to the
single-agent TD3 approach because it focused only on the in-
formation required by each agent. This necessitated the removal
of unnecessary features from the agent model training, such as
information about AN-MEC sites connected to other CN-MECs
and the cloud that could not serve as offloading destinations.
Additionally, it had smaller input and output dimensions and
yielded more stable results after 500 steps compared to single-
agent TD3.

2) Decision Time: Decision time refers to the duration re-
quired to determine an offloading action, also known as response
time. Since the control plane makes the offloading decision,
fast decision-making becomes imperative. Fig. 5 compares the
decision times for SA, single-agent TD3, and multi-agent TD3
offloading. Before selecting an action, the SA employing ex-
haustive search must first converge. The optimal search for a
decision by SA takes thousands of seconds. With the increase
in sites from 10 to 46, the decision time increases exponentially
from 1447 to 26 177 seconds thereby expanding the search space
for alternative solutions. In single-agent and multi-agent TD3
offloading, the execution and training phases occur indepen-
dently, with the decision to offload made before convergence.
TD3 could make decisions in milliseconds, which is six orders
of magnitude faster than the SA algorithm. The decision time
depends on the input and output sizes of the actor NN, which
maps system information into actions.

Fig. 6 illustrates the state (input) and action (output) sizes,
supporting our analysis of the decision times for the SA, single-
agent TD3, and multi-agent TD3 algorithms. Fig. 6(a) and (b)
show that the state and action sizes for the SA and single-agent
TD3 are larger than those for the multi-agent TD3. This is
because the multi-agent TD3 only needs to consider local system
information to determine the optimal offloading ratio for all
AN-MEC sites. While the input state and action spaces of SA
and single-agent TD3 increase linearly with the growing number
of sites, those of multi-agent TD3 show marginal growth as
they deal exclusively with local network information. These
input and output sizes impact the number of neurons employed
by the neural networks. To decide on an offloading ratio, the

Fig. 6. State and Action space.

Fig. 7. Convergence time.

single-agent and multi-agent TD3 take 5.5 to 1.5 milliseconds
and 1.68 to 1.06 milliseconds, respectively, as the expansion of
sites from 10 to 46. In a multi-agent environment, the number
of agents expands by the number of AN-MEC sites, with the
number of neurons moderately affected by additional CN-MEC
data processed by an offloading agent in an AN-MEC site.

DRL-based techniques are preferred in control plane deci-
sions because they can make decisions in milliseconds or sec-
onds, accommodating fluctuating traffic. DRL models require
pre-training as they rely on trial and error, which may take
considerable time to converge on optimal decisions. Despite SA
choices taking tens of minutes, which might become outdated
due to prevailing traffic volumes, decisions made within an hour
are more likely to be inaccurate.

3) Convergence Time: Convergence time refers to the du-
ration needed for an algorithm to generate optimal results.
Fig. 7 compares the convergence times of SA, single-agent TD3,
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Fig. 8. Step time.

and multi-agent TD3 optimizations. The TD3 agent initially
employed weighted offloading, as using a random float for the
initial offloading ratio would take considerable time to converge.
TD3 exhibited a shorter convergence time than SA because the
model was pre-trained with weighted-based offloading. With
10 sites, the TD3 single-agent and multi-agent required 15 and
14 seconds to converge, respectively. With 46 sites, these times
increased to 86 and 64 seconds, respectively. In contrast, SA
needed 15 seconds to converge with 10 sites and a significant
507 seconds with 46 sites.

Fig. 8 shows the time for each step. The SA step requires
more time compared to the TD3 step during training. This is
because the SA step calculates both the current and new solution
performance and evaluates the chance of selecting a sub-optimal
solution. Since single-agent and multi-agent TD3 models are
trained using global data and share the same replay buffer, their
step times during training are nearly identical.

The input size affects algorithm complexity, influenced by
the number of servers and sites. For the SA algorithm, the
time complexity is O(nk×l), where n is the number of sites.
This complexity arises because each site’s state may need to be
evaluated or modified. The parameter k represents the cooling
schedule, indicating the number of temperature reductions and
iterations. The parameter l denotes the number of neighboring
solutions evaluated at each temperature level. Although SA
doesn’t exhaustively search the solution space, it evaluates many
neighbors per temperature step, thus incorporating l into the
complexity.

For DRL approaches, the time complexity depends on the
input size (n), which is the number of sites, the total number of
training steps (t). The parameter h represents the depth of the
neural network used for offloading. Each neural network layer
involves a matrix multiplication with complexity O(m3), where
m is the number of neurons per layer. Consequently, the overall
complexity of training the neural network can be expressed
as O(n× t× h×m3). The training procedure for the neural
network shows a linear relationship with the input size n.

4) Decision Quality: Fig. 9 compares the performance of
offloading agents based on SA, single-agent, and multi-agent
TD3. The SA that performs exhaustive searching outperforms all
others in all traffic scenarios. The single-agent and multi-agent
TD3 had latency of only 1.5 and 0.2 milliseconds greater than
the SA, respectively. Due to their low propagation delay, locally
available resources are more likely to be offloading destinations

Fig. 9. Offloading performance.

Fig. 10. Distribution of arrival traffic.

than distant ones. multi-agent TD3, which determines the of-
floading ratio of a CN-MEC, had a smaller search space for
actions and outperformed single-agent TD3, which had a larger
search space for actions. For action determination, the actor
model of single-agent TD3 also considered global information.
In multi-agent TD3, an offloading agent may not require certain
information, such as knowledge about a remote AN-MEC site.

Fig. 10 shows the traffic distribution at different arrival rates
for various methods. The bars are stacked to show the cumulative
distribution of other types of traffic (e.g., Multi-agent TD3 Cloud
Traffic, Single-agent TD3 Cloud Traffic, SA Cloud Traffic, etc.)
at different arrival rates. Each segment of a bar represents a
specific traffic type, and their combined height indicates the
total traffic. Most traffic for SA and TD3-based agents was
offloaded to AN-MEC locations. As the traffic rate increased
from 40 K to 80 K, traffic offloaded to CN-MEC sites and the
Cloud also increased, since CN-MEC sites and the cloud were
more centrally located and had greater capacity than AN-MEC
facilities. In a queuing system, a larger centralized capacity
performs better in terms of computing delay than a scattered
capacity with a smaller capacity [8]. In this experiment, the ratio
of traffic offloaded to AN-MEC, CN-MEC, and cloud sites was
nearly the same for all traffic rates with the ratios being 61.53%,
30.82%, and 7.65%, for AN-MEC, CN-MEC, and cloud, respec-
tively. Despite SA-based offloading having the lowest average
latency, it takes minutes or even hours to make a decision,
which is insufficient to accommodate the fluctuating traffic rate.
A TD3-based algorithm with similar orders of magnitude for
average latency as SA could determine offloading ratios five
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Fig. 11. Effect of fluctuating traffic to the agent model.

orders of magnitude faster and accommodate fluctuating traffic
rates in seconds.

5) Decision With Unpredicted Parameter: The agent may
encounter unpredicted parameters, for instance, consider a sce-
nario where an agent model trained on light traffic suddenly faces
fluctuating heavy traffic. If the environmental conditions change,
SA methods will recalculate the offloading decision. Fig. 11
illustrate the responsiveness to traffic fluctuations. Interestingly,
the model trained in heavy traffic demonstrated more efficient
handling of light traffic compared to the model trained in light
traffic when facing heavy traffic conditions. Fig. 11(a) shows that
the single-agent TD3 model trained for light traffic performs
slightly worse with high arrival traffic. In contrast, Fig. 11(b)
highlights that models trained in heavy traffic provide more
accurate offloading ratios and lower average latency compared
to those trained for low traffic.

VI. CONCLUSION

We presented a ratio-based offloading optimization approach
for cloud-edge systems, in which the control plane makes
the decisions. The ratio-based offloading optimization for the
cloud-edge system includes a continuous action search space
for determining the total amount of traffic that needs to be
offloaded. Traditional optimization methods, like SA, require
1,477 to 26 177 seconds to make decisions as the number
of sites increases. However, these decision times violate the
requirements of the control plane, which needs to determine
the offloading ratio within less than seconds in response to
fluctuating arrival traffic. For both single-agent and multi-agent
TD3 takes 1.5 to 5.5 ms and 1.06 to 1.68 ms, respectively, to
decide on an offloading ratio. Notably, the decision time of the
TD3-based approach is six orders of magnitude faster than that
of the SA approach. While single-agent and multi-agent TD3

introduce average latency of 1.5 and 0.2 ms longer than SA,
respectively, they manage to approximate the decision quality of
SA. Compared to multi-agent with single-agent, multi-agent can
provide more accurate and faster decision and convergence time
than single-agent. The model trained with heavy arrival traffic
rates offers greater adaptability to various arrival rate patterns. If
the ratio of heavy traffic rates remains within the limits of edge
and cloud capacity, the model produces similar results when
applied to lower arrival rates.

In future work, it is crucial to consider the resource re-
quirements for allocating resources to MEC sites to minimize
long waiting delays from insufficient processing node resources.
Deploying the proposed approach in practical scenarios will
provide valuable insights. We plan to refine our model by
incorporating detailed server characteristics and dynamic of-
floading strategies to better represent real-world scenarios. An-
other potential extension of our work could be the integration
of explainable AI techniques to enhance the transparency and
interpretability of our MADRL-based solutions.
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