
Received 18 September 2024; revised 12 March 2025; accepted 22 April 2025.
Date of publication 28 April 2025; date of current version 12 May 2025.

The associate editor coordinating the review of this article and approving it for publication was M. Jaber.

Digital Object Identifier 10.1109/TMLCN.2025.3564587

Evolving ML-Based Intrusion Detection:
Cyber Threat Intelligence for Dynamic

Model Updates

YING-DAR LIN1 (Fellow, IEEE), YI-HSIN LU1, REN-HUNG HWANG 2 (Senior Member, IEEE),
YUAN-CHENG LAI 3, DIDIK SUDYANA 4, AND WEI-BIN LEE 5 (Senior Member, IEEE)

1Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300025, Taiwan
2College of Artificial Intelligence, National Yang Ming Chiao Tung University, Tainan 711010, Taiwan

3Department of Information Management, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
4Computer and Network Center, National Cheng Kung University, Tainan 701401, Taiwan

5Hon Hai Research Institute, New Taipei 236401, Taiwan

CORRESPONDING AUTHOR: D. SUDYANA (didik@gs.ncku.edu.tw)

ABSTRACT Existing Intrusion Detection System (IDS) relies on pre-trained models that struggle to keep
pace with the evolving nature of network threats, as they cannot detect new types of network attacks until
updated. Cyber Threat Intelligence (CTI) is analyzed by professional teams and shared among organizations
for collective defense. However, due to its diverse forms, existing research often only analyzes reports and
extracts Indicators of Compromise (IoC) to create an IoC Database for configuring blocklists, a method
that attackers can easily circumvent. Our study introduces a unified solution named Dynamic IDS with CTI
Integrated (DICI), which focuses on enhancing IDS capabilities by integrating continuously updated CTI.
This approach involves two key AI models: the first serves as the IDS Model, detecting network traffic,
while the second, the CTI TransferModel, analyzes and transforms CTI into actionable training data. The CTI
Transfer Model continuously converts CTI information into training data for IDS, enabling dynamic model
updates that improve and adapt to emerging threats dynamically. Our experimental results show that DICI
significantly enhances detection capabilities. Integrating the IDS Model with CTI in DICI improved the F1
score by 9.29% compared to the systemwithout CTI, allowing for more effective detection of complex threats
such as port obfuscation and port hopping attacks. Furthermore, within the CTI Transfer Model, involving
the ML method led to a 30.92% F1 score improvement over heuristic methods. These results confirm that
continuously integrating CTI within DICI substantially boosts its ability to detect and respond to new types
of cyber attacks.

INDEX TERMS Intrusion detection, cyber threat intelligence, sighting, machine learning, online learning.

I. INTRODUCTION

THE significance of Intrusion Detection Systems (IDS)
has become crucial as network attacks continue to

increase in frequency and sophistication. Traditional IDS
relies on signature-based methods to detect attacks. How-
ever, these methods often fail to identify novel or evolving
threats. Consequently, the need for Machine Learning-based
Intrusion Detection Systems (ML-based IDS) has become
apparent. ML-based IDS can outperform traditional IDS by
learning to recognize patterns and anomalies in network traf-
fic, which allows them to detect both known and unknown
attacks more effectively [1].

Typically, ML-based IDS is an offline model that under-
goes periodic updates to maintain its effectiveness against
new threats. However, if a new attack occurs before the next
update, the behavior deviates from previous patterns and
becomes difficult to predict, posing challenges in establishing
reliable behavioral norms. This raises concerns about the
lifespan of learningmodels [2]. Consequently,ML-based IDS
may exhibit defense gaps, rendering it unable to identify new
types of network attacks promptly.

To address these challenges, integrating Cyber Threat
Intelligence (CTI) with ML-based IDS is essential. CTI
encompasses up-to-date information on cyber threats,
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as analyzed by professional teams. In the field of CTI,
‘sighting’ refers to real-world network observations such
as network flows and system logs [3]. When new network
attacks occur, they are typically promptly identified by CTI,
which also provides Indicators of Compromise (IoC) of the
attackers. These IoCs are shared on the CTI platform, and if
used to reinforce ML-based IDS, early prevention of attacks
becomes feasible. Many research works focus on analyzing
IoC from CTI reports to establish an IoC database [3],
[4], [5] for blocklist purposes. However, relying solely on
blocklists and IoC databases can be insufficient as attackers
can circumvent these constraints, for example, by using proxy
servers.

To address this need, our research introduces DICI
(Dynamic IDS with CTI Integrated), a solution focused on
integrating CTI to enhance ML-based IDS. DICI utilizes two
ML models to achieve this integration. The first is an IDS
pre-trained model designed to detect network traffic, while
the second model, the CTI Transfer Model, analyzes CTI
data to generate training datasets for the IDS Model. Given
the complexity of CTI reports, which aggregate data from
various sources, ML techniques within DICI are essential
for analyzing and converting this information into effective
training data.

During the inference phase, DICI integrates these two ML
models to operate cohesively. The IDS Model is responsible
for traffic detection, identifying whether traffic flows are
benign or malicious.When it encounters outlier traffic–traffic
that cannot be definitively classified–the system performs a
CTI lookup using IoCs extracted from the outlier to retrieve a
structured CTI report from the CTI platform. The CTI Trans-
fer Model within DICI then analyzes this report and converts
it into training data for the IDS Model, thereby enabling
dynamic model updates and adaptation to new threats.

This approach differs from others that primarily focus on
analyzing IoCs from CTI reports [6], [7], [8] to create IoC
databases for configuring firewall blocklists. Instead, we uti-
lize the CTI Transfer Model to generate targeted training
data for the IDSModel, ensuring it continuously incorporates
the latest threat information. This method transforms the
IDS Model from a static, pre-trained system into a dynamic
one that evolves in response to new threats through ongoing
interaction with CTI.

In relation to existing research, this paper addresses key
open challenges in ML-based IDS and CTI integration by
making the following contributions:

• Traditional ML-based IDS often struggle with defense
gaps due to their reliance on static models that fail to
adapt to emerging threats. To address this, we propose
DICI, an IDS framework that integrates real-time CTI
updates to enhance threat detection capabilities. Unlike
conventional ML-based IDS, which suffer from delayed
model updates [2], our approach leverages continuously
updated intelligence, improving adaptability and ensur-
ing the detection of evolving malicious activities within
network environments.

• Existing CTI utilization is typically limited to static IoC
databases, which lack dynamic learning capabilities [3],
[4], [5]. We introduce an online learning-based CTI
Transfer Model, which processes structured CTI reports
to enable adaptive updates in ML-based IDS. Unlike
prior approaches, which rely on predefined threat indica-
tors [6], [7], [8], our method automates the integration of
sighting data with CTI, ensuring real-time intelligence
processing and minimizing manual effort in updating
IDS models.

• The lack of comparative analysis between rule-based
CTI processing and ML-driven intelligence correlation
remains an open research gap. Our study evaluates the
benefits of ML in CTI processing by comparing an
ML-based CTI TransferModel against a traditional rule-
based approach.

This study is guided by three key research questions to
evaluate the effectiveness of integrating CTI into ML-based
IDS and the role of the CTI Transfer Model in enhancing
threat intelligence processing.

• Does integrating CTI improve IDS performance?
To assess the impact of CTI, we compare an IDS with
CTI integration against a standalone IDS without CTI as
the baseline. Traditional IDS models operate indepen-
dently and lack real-time intelligence updates, making
them vulnerable to evolving threats. This evaluation
determines whether CTI enhances detection capabilities
and improves adaptability to emerging cyber threats.

• How does the CTI Transfer Model compare to a
traditional IoC database?
This question examines whether the CTI Transfer
Model, which dynamically processes structured CTI
reports, provides advantages over a static IoC database.
The baseline for this evaluation is an IDS integrated
with a precompiled IoC database. By leveraging real-
time intelligence, we evaluate whether the CTI Transfer
Model enhances IDS effectiveness compared to conven-
tional IoC-based approaches.

• Is an ML-based CTI Transfer Model better than a
rule-based approach?
To assess the benefits of machine learning in CTI anal-
ysis, we compare an ML-based CTI Transfer Model
against a rule-based approach, with the latter serving as
the baseline. While rule-based systems rely on prede-
fined conditions, ML techniques enable adaptive pattern
recognition and correlation of complex threat indicators.
This evaluation determines whether ML-based intelli-
gence processing improves threat assessment, detection
accuracy, and adaptability.

The work is organized into seven sections. Section II pro-
vides background information and related work on sighting
and CTI integration. Section III formulates the problem,
including notations and problem statements. Section IV
outlines the proposed solutions and details the system archi-
tecture. Section V describes the system implementation.
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TABLE 1. Survey on recent research in the CTI field.

Section VI presents experimental results, comparing the per-
formance of IDS with CTI. Finally, Section VII concludes the
work and discusses future research directions.

II. BACKGROUND AND RELATED WORKS
A. INTRUSION DETECTION SYSTEM (IDS)
In the realm of cybersecurity, IDS plays a pivotal role in
maintaining network integrity by monitoring hosts and net-
work traffic to identify and counter security breaches. IDS
can be categorized into misuse detection, which uses a
signature-based approach with a low false alarm rate but a
high missed alarm rate and only detects known attacks, and
anomaly detection, which employs an ML approach with a
low missed alarm rate but a high false alarm rate, capable of
detecting both known and unknown attacks [1]. Enhancing
the false alarm rate in ML-based methods could significantly
improve detection performance.

Integrating ML into IDS has introduced various algo-
rithms, such as Support Vector Machines (SVM), Naïve
Bayes, Decision Trees, and Clustering techniques. The trend
is towards ensemble or hybrid models, which combine the
strengths of individual algorithms to develop more sophisti-
cated and accurate intrusion detection capabilities. Research
shows that these models generally outperform single algo-
rithms [1]. Additionally, online learning, or incremental
learning, has emerged as a strategy to adapt to the evolving
nature of cyber threats. Despite challenges like data scarcity,
our research aims to leverage real-time sightings and CTI data
to enhance the efficacy and flexibility of IDS in addressing
contemporary cybersecurity challenges.

B. CYBER THREAT INTELLIGENCE (CTI)
In modern cyber security, CTI is crucial, providing essen-
tial insights into emerging and existing cyber threats. CTI

helps organizations predict, prevent, and respond to threats by
encompassing key components: CTI Collection, Inference,
Sharing, and Defending. CTI Collection gathers data from
various sources such as threat feeds, open-source intelli-
gence, internal logs, and dark web monitoring. CTI Inference
processes this data to identify patterns, trends, and IoCs,
turning raw data into actionable intelligence. CTI Shar-
ing disseminates this intelligence within organizations and
with external partners, enhancing collective knowledge. CTI
Defending implements strategies based on these insights,
such as updating security protocols, deploying new technolo-
gies, conducting training, and developing incident response
plans, ensuring preparedness and swift response to incidents.

Despite significant research on CTI extraction and analy-
sis, applying ML to interpret and reformulate these narratives
into structured data remains underexplored. This transfor-
mation allows structured information to be shared among
intelligence platforms, enabling IT security practitioners to
investigate IoCs and tailor defensive strategies methodically.
However, exploring ML’s capacity to analyze CTI and its
correlationwith sightings data to reinforce IDS is still needed.

CTI platforms such as Threat Miner, GREYNOISE, and
VirusTotal facilitate threat intelligence collection, inference,
and sharing. These platforms gather CTI from multiple
sources, provide results indicating attacker activities, and
offer functionalities to help organizations combat cyber
threats. They improve cybersecurity defenses and provide
APIs for integration with defensive systems. Analyzing these
platforms’ functionalities, advantages, and applications in
academic papers would enhance understanding of CTI’s sig-
nificance and how CTI platforms can bolster organizational
cybersecurity.

Prior research has used ML techniques to analyze CTI and
generate IoCs for IoC databases. However, simply creating
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TABLE 2. Notations.

blocklists of domains and IP addresses is insufficient for iden-
tifying all cyber threats. This limitation highlights the need
for advancing defensive strategies and exploring alternative
approaches beyond relying solely on IoC databases. Notably,
no existing study has explored the advantage of continuously
training an ML-based IDS using the IoC database, which
promises continuous enhancements in IDS efficacy.

C. RELATED WORKS
The field of CTI has been the focus of extensive research
aimed at fortifying defensemechanisms against cyber threats.
Recent literature has often segmented studies into four pri-
mary categories: CTI Collection, CTI Inference, CTI Sharing,
and CTI Defense. These categories represent key aspects of
CTI, each addressing a distinct component of understanding,
analyzing, and counteracting cyber threats. Table 1 com-
pares the methodologies and objectives of these works across
several dimensions, such as automated integration, threat dis-
covery, sighting-CTI correlation, online learning capability,
and adaptability to new IoCs. Automated integration refers
to the ability to seamlessly incorporate CTI into a system,
reducing manual intervention and enhancing real-time threat
intelligence processing. Threat discovery highlights whether
a solution can identify previously unknown attacks. Sighting-
CTI correlation evaluates the ability to combine internal
network observations (sightings) with external threat intelli-
gence for more accurate detection. Online learning indicates
the solution’s capacity to continuously adapt by learning from
new data, while new IoC adaptability measures how well
the system adjusts to newly discovered attack patterns and
indicators.

In the area of CTI Collection, researchers such as [8], [9],
and [10] focused on gathering CTI from various sources,
including blogs, social media platforms, and the dark web.
These studies used ML techniques, such as NLP and CNN,
to transform unstructured CTI into structured data, making
it more useful for cybersecurity applications. However, these
works primarily dealt with static data sources, without incor-
porating dynamic IoC updates or real-time adaptability. For
CTI Inference, [11] and [12] developed methods to analyze
collected CTI data. Reference [11] focused on knowledge
assessment by analyzing red team tactics, while [12] built
a CTI knowledge graph using Named Entity Recognition
(NER) to map relationships between threats. Though these
methods provided useful insights into potential attack trajec-
tories, they did not leverage real-time sighting data or support
continuous learning through online methods.

In CTI Sharing, [4] explored ways to enhance the effi-
ciency of CTI exchange among organizations. Their research
focused on standardizing the sharing process to enable more
effective collaboration across cybersecurity teams. However,
their approach did not involve real-time data or adaptability
to new IoCs, limiting its capacity to address rapidly evolving
threats. In CTI Defense, [3], [5], and [13] worked on applying
CTI to strengthen defense mechanisms. Reference [5] devel-
oped a framework for generating intrusion detection datasets
using CTI, while [13] proposed a threat-hunting framework to
detect unknown threats. Reference [3] worked on augmenting
CTIwith real-time assessments to improve defense strategies.
Although these works made significant contributions, they
relied on traditional data sets and lacked the flexibility of
continuous learning and adaptability.
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FIGURE 1. System architecture.

Our proposed solution, DICI, addresses the limitations
observed in prior research by introducing a system that sup-
ports continuous online learning and real-time adaptability
to new IoCs. Unlike previous approaches that rely on static
IoC databases or pre-trained models, DICI integrates both
sighting data and real-time CTI, enabling the IDS system
to dynamically update and refine its detection capabilities.
This ensures that DICI can not only recognize known threats
but also adapt to new and emerging attack patterns. By uti-
lizing multiple CTI sources, analyzing them with the ML
model, and continuously adapting to new IoCs, DICI offers
a more flexible and comprehensive defense mechanism than
traditional CTI-based systems, which often struggle to keep
pace with evolving cyber threats. Through its integration of
advanced ML techniques and real-time updates, DICI sets
itself apart as a robust solution capable of addressing both
current and emerging cybersecurity challenges.

III. PROBLEM FORMULATION
In this section, the problem formulation is divided into two
parts: firstly, the notations for defining the problem as a
consistent symbol set, and secondly, the problem statements,
which utilize these notations to articulate the issues at hand.

A. NOTATIONS
These notations delineate two categories, as referenced in
Table 2. The first category is a dataset, which represents the
sighting and CTI datasets. The sighting dataset comprises the
actual collection of network traffic flow by a threat intel-
ligence firewall, providing labels accordingly. These traffic
flows are segmented into subsets designated for training
and testing. To correlate with cyber threat intelligence, each
source IP address associated with a traffic flow is considered
an IoC. This facilitates the association of network traffic with
potential threats and aids in identifying and mitigating cyber
risks.

Furthermore, the CTI dataset utilizes IP addresses as IoCs
acquired from sightings for CTI lookup within the CTI Plat-
form, thereby obtaining structured CTI reports. These reports
are similarly partitioned into subsets for training and testing.

Additionally, since it is necessary to correlate with Sightings,
the IP addresses within the CTI dataset are also designated as
IoCs. This ensures a comprehensive alignment between CTI
and Sightings, enhancing the accuracy and effectiveness of
threat intelligence analysis.

The last category is ML. This category primarily defines
two models: one tailored for the IDS Model and another
for the CTI Transfer Model. Each model includes its own
optimized ML algorithms and configurations. These models
will be instrumental in elucidating the issues and formulating
effective solutions in the following sections.

B. PROBLEM OVERVIEW
The objective of this study is to develop an evolving
ML-based IDS that automates CTI integration and enhances
threat detection through continuous learning. Figure 1 illus-
trates the system architecture, where network traffic, denoted
as xS , is processed by the IDS Model to classify activities as
benign, malicious, or outlier traffic that cannot be confidently
categorized.

For outlier traffic, the system performs a CTI lookup,
retrieving structured CTI reports from a CTI platform. The
CTI Transfer Model, denoted as MC , analyzes the retrieved
data, extracts relevant features, and determines whether the
IoCs OC are associated with known threats. This refined
intelligence is then incorporated into the IDS training dataset,
enabling real-time model updates.

This feedback loop ensures that the IDS Model con-
tinuously learns from newly observed threats, improving
detection accuracy and adaptability. The approach focuses on
optimizing the integration between the IDS Model and the
CTI Transfer Model, analyzing them as distinct components
to identify the most effective learning strategy. The perfor-
mance of the integrated system is evaluated using the F1
score, ensuring a balance between precision and recall.

C. PROBLEM STATEMENT
The goal of this study is to develop the IDS Model MS with
a CTI Transfer Model MC to maximize detection accuracy
while efficiently utilizing CTI resources. Specifically, the
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FIGURE 2. Solution overview.

objective is to improve the F1 score of MS , which consists
of supervised MS

0 and unsupervised MS
1 classifiers, using

both sighting data DS and structured CTI reports DC , while
maintaining efficiency under resource constraints for CTI
queries. The formal problem definition is as follows:

• Input

– Sighting dataset: DS
– CTI dataset: DC
– ML algorithms:MLn

• Output

– Optimized IDSModelMS ′

and CTI TransferModel
MC

• Objective

– Maximize F1 score on MS ′

, incorporating sighting
data DTS and CTI data DTC .

• Constraints

– Limited CTI query resources

The CTI Transfer Model serves as the key component for
integrating external threat intelligence into the IDS, enhanc-
ing its detection capabilities. By optimizing both models, the
goal is to create an IDS that is adaptable, scalable, and capable
of continuously learning from real-time intelligence, ensuring
proactive and effective intrusion detection.

IV. DICI: DYNAMIC IDS WITH CTI INTEGRATED
SOLUTION
This section is divided into two main parts to thoroughly
explain our proposed solution. First, we provide an overview
of the DICI solution, including its key components: the IDS
Model and the CTI Transfer Model. Then, we delve into the
specifics of the CTI Transfer Model, detailing its functions
and how it integrates with the overall system.

We have also included multiple figures to illustrate the
proposed solution. Figure 1 provides a system overview,
showing the integration of the IDS Model with the CTI
Transfer Model. Figure 2 details the inference and training

process, while Figure 3 breaks down how threat intelligence
is processed.

A. SOLUTION OVERVIEW
Our proposed solution, DICI, enhances the IDS Model by
integrating the CTI Transfer Model, enabling continuous
online learning. This integration allows the IDS to dynam-
ically gather, process, and utilize CTI-based training data,
ensuring that the model adapts to emerging threats in real-
time.

Figure 2 illustrates the overall solution overview. The IDS
Model, denoted asMS , consists of two components,MS

0 and
MS

1 , which classify network traffic flows xS as benign, mali-
cious, or outliers–where outliers represent traffic that cannot
be confidently classified. Section V provides further details
on the IDS Model.

When the IDS Model encounters outlier traffic, it extracts
IoCs OS from these flows and performs a CTI Lookup on a
CTI platform to retrieve structured threat intelligence reports
xC . The CTI Transfer Model, denoted as MC , is responsible
for processing this data. First, MC analyzes and extracts
relevant features from the CTI reports to determine whether
the IoCs OC are benign or malicious, improving the IDS
Model’s detection accuracy.

Next,MC performs a sighting lookup, referencing original
network traffic records associated with OC to validate the
information provided by the CTI report xC . This correlation
enhances the accuracy and reliability of the training data.

Finally, since rawCTI report data is not directly suitable for
IDS training, the inference results yC from MC undergo fur-
ther processing through sighting lookups. This step ensures
that the IDS Model is updated with validated and meaningful
threat intelligence, allowing it to continuously improve and
adapt to evolving attack patterns.

B. CTI TRANSFER MODEL
The CTI Transfer Model is a critical component in the DICI
solution because it addresses the limitations of traditional
IoC databases, which may miss new or evolving IoCs from
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FIGURE 3. Detailed procedure of the CTI transfer model.

attackers due to their reliance on static data. By integrating
sighting information with real-time CTI data, the CTI Trans-
fer Model enables the IDS Model to detect recurring or new
forms of attacks, ensuring that the system remains effective
in a constantly changing threat landscape.

The CTI Transfer Model plays a critical role in process-
ing structured CTI reports. Some CTI platforms that can
provide such reports include VirusTotal, ThreatMiner, and
GreyNoise. These platforms aggregate threat intelligence
from multiple cybersecurity vendors and public feeds, pro-
viding data across multiple timelines and sources. However,
in our experiments, we use only VirusTotal due to its broader
threat intelligence coverage, higher API query limits, and
ability to provide structured reports aligned with our CTI
processing requirements. The detailed justification for this
selection is provided in Section V-B.

While these reports offer valuable insights, they often come
with significant challenges. Many cybersecurity vendors pro-
vide an initial assessment of an IP’s threat status based on a
specific incident, but this status may not be updated if the IP
becomes benign at a later time. This creates inconsistencies
and potential gaps in threat intelligence over time.

The complexity and volume of structured CTI reportsmake
ML essential for processing and analysis in the CTI Transfer
Model. ML automates the extraction of meaningful patterns
from diverse data sources, handling variations in report struc-
tures and formats that would be difficult to process with
traditional heuristic methods. By leveraging both historical
data and real-time inputs, ML enhances the system’s adapt-
ability to new and evolving threats.

Unlike rule-based approaches that rely on predefined con-
ditions, ML enables more flexible and nuanced analysis.
Instead of being restricted to fixed sets of features, the
ML model learns from multiple data points across different
sources and timeframes, improving the accuracy of threat
assessments. This capability is especially critical for identify-
ing attack vectors that evolve over time, allowing the system
to refine its understanding dynamically rather than depending
on static rule sets.

Additionally, ML strengthens the CTI Transfer Model’s
ability to correlate various threat indicators. By contin-
uously learning from new data, the model can uncover

relationships between seemingly unrelated IoCs, detecting
patterns that signal emerging threats. This real-time intel-
ligence processing enhances the IDS’s ability to respond
proactively, ensuring that the system remains effective in an
ever-changing cybersecurity landscape.

The detailed procedure of the CTI Transfer Model is illus-
trated in Figure 3. The process begins with the sighting
phase, where the IDSModel detects outlier traffic that cannot
be clearly classified. From this outlier traffic, IoCs OS are
extracted. These IoCs are used to perform a CTI Lookup
via an API on a CTI platform, retrieving structured CTI
reports xC .
Once these reports are obtained, they are accumulated as

CTI data XC = {xC1 , xC1 , . . . , xCRC } within the CTI Transfer
ModelMC . This model uses machine learning to analyze the
structured CTI reports, determining if the IoCs OC within
these reports are benign or malicious. The machine learning
component is crucial because it allows for the nuanced analy-
sis of complex data sets that include varied IoC characteristics
and threat indicators from multiple CTI sources.

When the number of accumulated CTI reports n exceeds a
predetermined threshold p, the model initiates online learning
to refine its detection algorithms based on the most current
data. As new CTI reports are analyzed, each IoC OC within
a report undergoes inference to produce an inference result
yC . These IoCs OC are also used for a sighting lookup to
retrieve relevant sighting data xS from the original network
traffic records, categorizing this data as yS to indicate whether
it is benign or malicious.

The training data generated from this analysis, consisting
of sighting data xS and the CTI Transfer Model inference
results yS , is then accumulated as sighting training data
XS = {xS1 , xS2 , . . . , xSRS}. Exceeding another threshold q
with this training data triggers online learning for the IDS
ModelMS , allowing it to continuously update and enhance its
capabilities.

Through this online learning process, we enable the IDS
Model to adapt continuously by utilizing real-time threat
intelligence and the inference results from the CTI Transfer
Model. This method not only enhances the detection capabil-
ities of the IDS system but also ensures it remains dynamic
and effective in a rapidly evolving threat landscape.
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FIGURE 4. IDS Model with hybrid approach.

V. IMPLEMENTATION
This section is organized into three main sections to detail the
implementation of our work. Firstly, we explain the hybrid
ML approach in the IDS Model. Secondly, we introduce
the CTI API. Thirdly, we discuss the open-source tools and
libraries, focusing on data processing tools and ML libraries
selected for their extensive support and alignment with our
research objectives. Lastly, we present detailed information
on the datasets utilized.

A. IDS MODEL
This approach aims to achieve the highest F1 score for the
IDS Model, considering the complexity and diversity of the
traffic flow. Supervised learning offers the advantage of high
precision but lacks adaptability; thus, it may fail to recognize
attack patterns with rich variations. On the other hand, unsu-
pervised learning performs exceptionally well in adaptability
but tends to have higher false positives. Moreover, according
to [1], ensemble and hybrid classifiers tend to outperform
single classifiers. By combining these two types of ML algo-
rithms, we can create a more robust model. Thus, in this
work, we integrate supervised and unsupervised learning into
a hybrid model, leveraging the strengths of both methods to
enhance performance.

Figure 4 illustrates the proposed IDS Model with a hybrid
algorithm approach. In this proposed solution, called a hybrid
model, there are two types of ML models for prediction:
supervised modelMS

1 , which produces results denoted as S1,
and unsupervised model MS

2 , which produce results denoted
as S2. Subsequently, a hybrid decision is employed to amal-
gamate decisions from both types of models, predicting the
final output of yS .
Based on Figure 4, the hybrid model operates on the con-

sensus of its constituent supervised and unsupervised models.
If both models classify traffic flow as malicious, the hybrid
model similarly labels it as malicious. Likewise, if both mod-
els agree the traffic is benign, the hybrid system classifies it as
benign, reflecting the consistency in their assessments. This
design leverages the equivalent inference results of the two
machine learning approaches for clear-cut decisions.

However, discrepancies between the models trigger a dif-
ferent protocol. If the supervised model identifies traffic as
malicious but the unsupervised model does not, the hybrid
model still deems the traffic malicious, valuing the higher
reliability typically associated with supervised learning.

Conversely, if the unsupervised model alone flags traffic as
malicious while the supervised model does not, the hybrid
system categorizes the traffic as an outlier. This approach
acknowledges that while the unsupervised model may have
a higher rate of false positives, its detection signals potential
ambiguity in the traffic’s nature, suggesting it may neither be
clearly benign nor malicious. Such outlier traffic flows are
earmarked for further analysis via the CTI Transfer Model,
accommodating the unsupervised model’s greater adaptabil-
ity without prematurely labeling the traffic.

In ML-based IDS, hybrid models have been shown to be
more effective than single classifiers [1]. Selecting appropri-
ate supervised and unsupervised learning algorithms within
the hybrid framework is essential for achieving optimal per-
formance.

For the supervised component, Support Vector Machines
(SVM) has been chosen due to its effectiveness in han-
dling high-dimensional data and classification tasks. While
tree-based models have demonstrated strong performance in
IDS [14], [15], they come with limitations such as node depth
constraints and the need for pruning to prevent overfitting,
particularly in online learning environments. SVM, on the
other hand, provides a more efficient and robust approach
by defining optimal decision boundaries while avoiding
excessive complexity [16]. These characteristics make SVM
well-suited for online learning in IDS applications.

For the unsupervised component, K-means clustering is
widely used for anomaly detection in network traffic [17],
[18]. K-means is particularly beneficial in online learning as
it continuously updates cluster centers, allowing it to adapt to
evolving traffic patterns in real time. Its ability to self-adjust
based on new data distributions makes it an effective choice
for enhancing the adaptability of ML-based IDS.

By combining SVM for precise classification andK-means
for dynamic anomaly detection, the hybrid IDS model effec-
tively balances detection accuracy and adaptability, making it
a robust approach for identifying both known and emerging
threats.

Furthermore, to prevent outliers from being misclassi-
fied as inliers, detected outliers undergo a CTI lookup to
verify their threat status before being incorporated into the
model. The CTI Transfer Model processes structured intelli-
gence reports to ensure that only validated threats contribute
to training, reducing the risk of incorrect classifications.
Additionally, the hybrid IDS model mitigates overfitting,
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FIGURE 5. Example of a structured CTI report. Sensitive
information has been obscured for privacy reasons.

as the combination of SVM and K-means clustering pre-
vents the system from becoming too specialized in detecting
only certain attack patterns. While SVM effectively handles
high-dimensional traffic data, K-means clustering enhances
adaptability by identifying new attack behaviors without rely-
ing solely on predefined labels. This hybrid approach also
helps counteract bias by continuously integrating real-time
CTI updates, ensuring the model does not become overly
focused on specific attack types but remains responsive to
evolving threats.

B. CTI API
The CTI API facilitates automated threat intelligence lookups
by retrieving structured reports from CTI platforms. Our
study evaluates various CTI platforms to select the most
comprehensive source for integration. Table 3 compares sev-
eral platforms based on their capabilities, supported IoC
types, and API query limits, including Shodan [19], Mal-
wareBazaar [20], Threat Miner [21], GREYNOISE [22], and
VirusTotal [23].

Each platform has distinct functionalities. Shodan [19]
specializes in querying internet-connected devices, making
it more suitable for reconnaissance tasks rather than direct
CTI correlation. MalwareBazaar [20] only supports hash-
based queries, limiting its usefulness for network-based threat
detection. While Threat Miner [21] and GREYNOISE [22]
support IP lookups, their restrictive API query limits reduce
their practicality for large-scale correlation analysis. Virus-
Total [23], on the other hand, provides broader capabilities
with higher API limits, making it the most suitable platform
for our CTI lookups.

VirusTotal [23] offers an extensive repository of threat
intelligence, integrating multiple security tools, including
antivirus engines and file analysis tools, within a single
interface. With real-time updates and a large global cyberse-
curity community, VirusTotal provides valuable insights into
emerging threats, vulnerabilities, and attack patterns, allow-
ing organizations to strengthen their cybersecurity defenses.

The CTI API from VirusTotal enables seamless integration
into security infrastructures throughRESTful HTTP requests,
such as the GET method. Figure 5 presents an example of
a structured CTI report, containing key information such as

Whois details, last analysis date, ownership data, and aggre-
gated security assessments from multiple sources. In this
study, we utilize IP addresses as input to acquire structured
CTI reports, extract relevant features, and analyze critical
threat information to enhance IDS detection accuracy.

C. OPEN-SOURCE TOOLS AND LIBRARIES
Table 4 details the open-source tools and libraries utilized
in this work. Nfdump [24] played a crucial role in capturing
NetFlow records directly from the router and processing the
data for subsequent analysis. This method facilitated effi-
cient collection and in-depth examination of NetFlow data,
allowing us to gain a deeper understanding of network traffic
patterns and behaviors. Additionally, we used Imbalanced-
learn and Scikit-learn to develop theMLmodels, and Seaborn
and Matplotlib to visualize the data.

D. DATASET
In this section, we introduce the datasets utilized in this study.
Our research leverages two primary datasets: the Sighting
Dataset D0, which captures actual network traffic in a real
network as sighting, and the CTI Dataset D1, designed to
address contemporary IoCs. Each dataset serves a specific
purpose and is integral to our experimental framework.

1) Sighting Dataset
The sighting dataset is used to train the IDS models by
incorporating real-world IoCs obtained through CTI lookups.
However, publicly available intrusion detection datasets often
exclude IP information due to privacy concerns, making them
unsuitable for CTI integration. While some public datasets,
such as CIC-IDS-2017, do contain IP information within the
PCAP files, they represent historical snapshots of network
traffic rather than real-time threat intelligence. Since CTI
platforms continuously update their databases with the latest
indicators of compromise (IoCs), querying a CTI platform
with IPs from an outdated dataset may not yield meaningful
intelligence. Many of these IPs may no longer be relevant
or lack available information in CTI platforms because they
originate from local IP addresses within controlled testbed
environments. This temporal limitation makes it impractical
to effectively integrate CTI with public datasets for real-time
threat intelligence evaluation. To address this, we use a pro-
prietary threat intelligence firewall to collect NetFlow traffic
data over two periods: January 6, 2023, to June 31, 2023, and
October 1, 2023, to October 31, 2023, totaling eight months.
The dataset, processed with Nfdump, contains 2,774,241
traffic flows with a total size of 137.3 MB. The firewall’s
built-in threat intelligence mechanisms label traffic as benign
or malicious, with network traffic features summarized in
Table 5.
The dataset underwent comprehensive preprocessing to

ensure quality and suitability for analysis. Missing val-
ues were handled through a combination of imputation
and removal of records exceeding a predefined threshold.
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TABLE 3. Threat intelligence platform comparison.

TABLE 4. Open source tool and library.

To prevent dependency on specific network identifiers, meta-
data fields such as time_start, time_end, src_ip, dest_ip, and
src_port were removed. Categorical variables were encoded
using one-hot encoding for seamless integration into ML
models, while feature standardization ensured consistent
scaling, improving model performance and interpretability.
Class imbalance was addressed using undersampling tech-
niques to reduce bias in model training. These preprocessing
steps were carefully implemented to enhance the reliability
and robustness of the dataset.

The sighting dataset provides a detailed view of network
traffic, making it valuable for intrusion detection and security
analysis. Retaining essential traffic characteristics allows for
meaningful correlation between network activity and IoCs,
enabling more effective CTI integration. The dataset supports
advanced intrusion detection by facilitating nuanced behav-
ioral analysis and identifying emerging security threats.

2) CTI Dataset
The CTI dataset ensures the reproducibility of our experi-
ments by incorporating structured CTI reports downloaded
locally, as CTI information undergoes continual changes over
time. We utilized the VirusTotal CTI API to perform lookups
on all IPs in the sighting dataset, storing a total of 2,112 struc-
tured CTI reports with a file size of 48.4MB. By using locally
storedCTI reports, the dataset provides consistent results over
multiple experiments, ensuring that repeated CTI lookups
yield stable and reproducible evaluations. The CTI dataset
includes all extracted properties from structured CTI reports
as features. During training, the model assigns higher weights
to important features while reducing the influence of less

relevant ones. The extracted CTI features include network
information, last analysis date, ownership details, security
vendor assessments, reputation scores, country, and total
votes for malicious or harmless classifications, amounting to
a total of 105 features. While IP addresses were initially used
to map CTI records to their corresponding labels, they were
excluded from theMLmodel’s training process, ensuring that
the model learns meaningful behavioral patterns rather than
relying on static IoC indicators.

To ensure quality and suitability for analysis, the dataset
underwent comprehensive preprocessing. Missing values
were handled through imputation and removal of records
with excessivemissing data. Categorical variables were trans-
formed using one-hot encoding to integrate them effectively
into machine learning models. The dataset was standardized
for uniform feature scaling, improving model performance
and interpretability. Additionally, undersampling was applied
to address the class imbalance and mitigate potential biases
in model training. These preprocessing steps enhance the
reliability and robustness of the dataset for threat intelligence
analysis.

The structured CTI reports obtained from the VirusTo-
tal CTI API allow for consistent and reliable experimental
evaluations. By providing a wide range of extracted threat
intelligence features, the dataset facilitates an in-depth anal-
ysis of the impact of different CTI attributes on ML-based
IDS. Additionally, by leveraging well-defined preprocess-
ing steps, the dataset maintains high-quality inputs, ensuring
valid and reproducible research findings. The dataset is also
used for comparison between the CTI Transfer Model and an
IoC database approach, as IP addresses and vendor analysis
results are utilized for blocklisting.

VI. RESULTS AND ANALYSIS
This section begins with a description of the parameter con-
figuration for all classifiers that we used. The remainder of
this section presents the experimental results addressing the
key issues under investigation. Specifically, we examine the
following: (1) the comparative performance of the IDSModel
with and without CTI integration, to assess the impact of CTI
on IDS effectiveness; (2) the defensive capabilities of inte-
grating the IDS Model with the CTI Transfer Model versus
using an IoC database, to evaluate which method provides
superior threat detection and mitigation; and (3) the overall
performance of the CTI Transfer Model when applied with
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TABLE 5. Description of dataset features.

ML techniques against the rule-based method, to analyze its
effectiveness in real-world scenarios.

A. PARAMETER SETTINGS
In this research, the proposed IDS Model used a hybrid
approach that combines SVM for supervised learning and
K-means clustering for unsupervised learning. The SVM
component allows us to classify traffic flow patterns accu-
rately, leveraging the power of supervised learning to detect
known threats. Meanwhile, K-means clustering provides the
ability to detect outliers and emerging anomalies, which
may not conform to known attack patterns, thus augment-
ing the system with unsupervised learning capabilities. This
hybrid framework enables the IDS Model to effectively
identify both known threats and emerging anomalies with
precision.

For the development of the CTI Transfer Model,
we employed K-means++, a variant of K-means clustering.
The key difference between K-means and K-means++ lies
in how the initial centroids are determined. K-means++

selects the initial centroids at the start of the algorithm, while
K-means does not. Since the CTI Transfer Model begins with
an empty dataset and progressively learns through online
learning, it is crucial to establish an initial feed to make the
model’s learning process controllable and structured, which
is why we require K-means++. In contrast, the IDS Model
is pre-trained offline, so the initial setup of centroids is not as
critical, allowing us to use the traditional K-means clustering
algorithm.

Moreover, the input data types for the IDS and CTI Trans-
fer Models are different, and therefore, there is no strict
requirement that both models use the same algorithm. The
CTI Transfer Model handles unlabelled CTI data, while
the IDS Model processes network traffic flows. These two
AI models solve different problems independently, and

TABLE 6. Hyperparameter settings.

the choice of algorithms is based on their specific learn-
ing environments and data characteristics. Optimizing the
hyperparameters for both K-means++ and K-means is a
crucial step to ensure the efficiency and accuracy of both
models.

To this end, we embarked on exhaustive grid searches, sys-
tematically exploring various hyperparameter combinations.
This meticulous process allowed us to pinpoint the configura-
tion that yields the most favorable performance metrics. The
culmination of these efforts is showcased in Table 6, where
we present the meticulously tuned hyperparameter settings
pertinent to our models.

Furthermore, the experiments were conducted on a system
equipped with an AMD Ryzen 7 PRO 7840U processor with
Radeon 780M Graphics and 64GB of RAM. Additionally,
to assess the effectiveness of IDSwith CTI integration, we use
the F1 score, which balances precision and recall. This metric
is widely used in IDS research to measure how well a system
can correctly identify attacks while minimizing false posi-
tives and false negatives. By using the F1 score, we ensure a
comprehensive evaluation of detection performance, demon-
strating the impact of CTI on improving threat intelligence
processing and overall IDS effectiveness.
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B. IDS WITH CTI VS. IDS WITHOUT CTI
The empirical findings regarding the integration of CTI into
the IDS Model for online learning reveal significant perfor-
mance improvements. As illustrated in Figure 6, the blue line
represents the ML-based IDS with CTI integration, which
dynamically updates using real-time threat intelligence, while
the red and green lines correspond to the ML-based IDS and
DL-based IDS without CTI, operating as an offline model
without continuous updates.

Online learning enables the model to update its param-
eters based on newly received data points iteratively. With
each iteration, the model adapts in real-time, improving its
detection capabilities. The figure clearly demonstrates that as
online learning progresses, the F1 score of the IDS with the
CTI Transfer Model steadily improves. In contrast, the IDS
without CTI does not exhibit the same level of enhancement.
After ten iterations, the IDS with CTI achieved an F1 score
of 89.52%, whereas the offline IDS without CTI stagnated
at 80.22%. This 9.29% increase in performance underscores
the effectiveness of incorporating CTI into the IDS learning
process, allowing for a more adaptive and responsive cyber-
security defense.

This experiment shows that integrating CTI into an IDS
significantly enhances its efficiency and adaptability. Con-
tinuous CTI updates keep the IDS current with emerging
threats, improving detection accuracy. The F1 score increase
highlights its enhanced threat identification, making detec-
tion more reliable. Results confirm that real-time CTI is
crucial for maintaining high IDS performance in dynamic
environments and strengthening resilience against sophisti-
cated cyber attacks.

Further analysis of detection performance highlights how
the hybrid IDS model handles attack identification. The com-
bination of supervised (SVM) and unsupervised (KMeans)
models ensures balanced detection, with KMeans capable
of flagging previously unseen threats, albeit at the cost of
increased false positives. In our evaluation, SVM achieved a
false positive rate of 7.70% and a false negative rate of 4.95%,
while KMeans exhibited a significantly higher false positive
rate of 42.78% and a false negative rate of 34.69%. While
KMeans has a higher false positive rate, its broad anomaly
detection scope helps identify novel attack patterns that SVM
might miss. However, the primary cause of missed detec-
tions stems from KMeans failing to classify certain malicious
traffic as anomalous rather than incomplete feedback to the
SVM.

To address this, our hybrid IDSmodel introduces an outlier
category, ensuring that uncertain traffic flagged by KMeans
does not go unexamined. Instead of directly classifying such
traffic as benign, it undergoes further analysis using the CTI
Transfer Model, which queries real-time threat intelligence to
validate its threat status. This process helps refine detection
accuracy by allowing CTI to verify ambiguous cases, pro-
viding a mechanism for re-labeling previously misclassified
flows based on new intelligence. By continuously updat-
ing training data and incorporating feedback from CTI, our

FIGURE 6. Comparison of F1 scores over iterations for IDS
model with CTI transfer model.

system enhances its ability to detect evolving threats while
minimizing the limitations of individual models.

Additionally, Figure 6 also presents a comparative evalua-
tion between ML-based IDS and DL-based IDS, both with
and without CTI integration. For DL models, we use an
LSTM-based IDS from [29]. The results show that while
both ML and DL models benefit from CTI, ML gains signifi-
cantlymore fromCTI integration. This is becauseMLmodels
can effectively learn from small sample sizes, and with the
additional intelligence provided by CTI, they can contin-
uously refine their detection capabilities without requiring
massive datasets. In contrast, DL models typically require
large datasets to generalize well, making them less efficient
in scenarios where labeled attack data is limited and costly
to collect. The CTI-enhanced ML model exhibits stronger
adaptability, leveraging real-time intelligence updates to con-
tinuously improve performance, whereas the DL model
benefits less from CTI due to its higher dependence on
extensive training data. These results highlight that ML-
based IDS, when integrated with CTI, is more effective in
real-world cybersecurity applications where data availability
is constrained.

Figure 7 presents a comparison of training time, mem-
ory consumption, and CPU utilization between ML-IDS and
DL-IDS. The results clearly demonstrate that ML-IDS is
significantly more resource-efficient than DL-IDS. In terms
of training time, ML-IDS completes training in 3.22 sec-
onds, whereas DL-IDS requires 59.30 seconds, indicating
that deep learning models demand significantly longer com-
putational time due to their complex architectures and
iterative optimizations. Similarly, in terms of memory con-
sumption, ML-IDS uses only 17.43 MB, while DL-IDS
consumes 65.14 MB, as deep learning models typically
require large parameter sets and activations, leading to
higher memory overhead. Additionally, CPU utilization for
ML-IDS remains at 36.6%, while DL-IDS consumes 79.5%,
further emphasizing the lightweight nature of ML-based
approaches.
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Those findings highlight a key advantage of usingML-IDS
over DL-IDS in real-world cybersecurity applications, where
computational efficiency is crucial for deployability, scal-
ability, and responsiveness. Given that network intrusion
detection systems often operate in resource-constrained envi-
ronments, ML-IDS presents a more practical solution by
maintaining strong detection performance while ensuring
minimal resource consumption.

While evaluating computational efficiency is essential,
analyzing the complexity trade-offs between an IDS with and
without CTI integration presents additional challenges. Com-
plexity can be interpreted in different ways, often referring
to time or space complexity in an algorithmic sense (big-O
notation). However, comparing an online learning IDS with
CTI and a traditional offline IDS is not straightforward due
to fundamental differences in their training paradigms.

An offline IDS undergoes periodic large-scale training,
incurring a one-time overhead when retrained with new data,
whereas an online IDS updates incrementally as new threats
emerge. Since these models operate differently, direct time
complexity comparisons do not fully capture real-world per-
formance. Additionally, inference complexity remains the
same for both systems, as they rely on the same ML models
such as SVM andK-Means. The primary computational over-
head in an IDS with CTI arises when outlier traffic triggers a
CTI lookup and an incremental model update. However, these
updates run asynchronously, ensuring that real-time classi-
fication remains unaffected. Moreover, CTI updates occur
only for uncertain (outlier) traffic, reducing unnecessary pro-
cessing overhead. Although CTI lookups introduce additional
processing, this cost is offset by enhanced detection accuracy
and adaptability in handling evolving threats.

The scalability of continuous CTI updates depends on
the frequency of outlier detections and the volume of IoCs
retrieved. To mitigate potential delays, our implementation
leverages caching mechanisms to reduce redundant queries
for previously analyzed IoCs. The incremental update mech-
anism ensures that the IDS remains responsive, as updates
are localized to new threat intelligence rather than requir-
ing full dataset reprocessing. Furthermore, our evaluation
includes resource usage metrics such as CPU consumption,
memory utilization, and update time, demonstrating that
the approach maintains efficient real-time operation without
excessive computational burden.

Similarly, space complexity varies depending on imple-
mentation. An offline IDS stores training datasets on disk and
loads them when retraining, while an online IDS processes
data incrementally, reducing peak memory usage but requir-
ing multiple updates over time. CTI lookups may introduce
additional storage overhead when caching threat intelligence
data, but this depends on implementation-specific factors
such as database retention policies and memory management
strategies.

Furthermore, in order to understand which types of sight-
ings can produce better quality training data for the CTI
Transfer Model, we explored the impact of training data

FIGURE 7. Comparison of ML-IDS and DL-IDS in terms of
resource utilization.

FIGURE 8. Comparison of F1 score for different types of sighting.

generated from different sightings. Figure 8 shows the
F1 score performance for six different sighting categories:
Benign, Malicious, Outlier, Benign and Malicious, Benign
and Outlier, Malicious and Outlier, and all categories com-
bined (Benign, Malicious, Outlier).

From the figure, it is evident that the outlier-only category
scores the highest with an F1 score of 89.52%. In contrast,
although other categories and combinations also enable the
CTI TransferModel to generate training data that can enhance
the IDS Model, the training data generated from outlier
sightings most significantly improves its performance. This
is because the IDS Model has a certain level of recognition
capability for benign and malicious types of sightings. There-
fore, while the training data generated by the CTI Transfer
Model can enhance the model’s capabilities, the effect is not
as strong as that of outliers.

Outliers are initially difficult for the IDS Model to accu-
rately classify as benign or malicious, indicating a weaker
recognition ability for these types. However, through the
enhancement provided by the CTI Transfer Model, the pre-
viously uncertain outlier sightings can be classified more
accurately. The combination of all categories (Benign, Mali-
cious, and Outlier) performs the worst because it includes
too many types of sightings, resulting in excessive diversity
in the training data. This reduces the model’s performance
in identifying specific types of events. Due to the inclu-
sion of too many types, the model struggles to learn and
recognize all types effectively, which instead decreases the
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FIGURE 9. Case of training data generation through CTI Transfer
Model.

overall performance of the model. These results suggest that
the model’s detection effectiveness seems to improve when
incorporating the outlier category, possibly due to the more
distinct characteristics of outlier instances.

Lastly, we perform the experiment with a case study that
involves generating training data for the IDSModel. This case
study showcases the CTI data we obtained, and the training
data produced using our solution, DICI.

As shown in Figure 9, a structured CTI report for an
IoC of outlier sighting is obtained via CTI Lookup. Sub-
sequently, by utilizing the CTI Transfer Model to analyze
the features extracted by the structured CTI report, we can
confirm whether this IoC in the structured CTI report is
benign or malicious. In other words, the IoC originally iden-
tified as an outlier by the IDS Model would be classified as
benign or malicious by the DICI solution. Next, we use the
IoC classified as malicious to perform a lookup in sighting
records, identifying all sightings associated with this IoC.
These sightings are then labeled as malicious, and the data is
used to train the IDS model. Through this process, the model
learns attack patterns associated with malicious IoCs.

Adversarial attacks pose a significant challenge to ML-
based IDS, particularly gradient-based adversarial attacks,
which manipulate extracted features to evade detection [30],
[31]. While it is theoretically possible for attackers to manip-
ulate packet data to reshape packet-level features, modifying
packet content while maintaining the attack’s effectiveness
is highly challenging, especially in limited-knowledge attack
scenarios. Most adversarial research assumes that attackers
modify extracted network features rather than raw packet
data. If an attacker alters only the packet data, the IDS may
process a modified version of the traffic, but the network
attack itself could fail due to protocol inconsistencies or
unintended disruptions. This makes feature-based adversarial
attacks more viable, as they allow attackers to evade IDS
detection while still successfully executing their attacks–a
strategy known as a double attack.

However, modifying extracted features post-capture
requires privileged access to IDS devices, routers, or network
probes, making such attacks impractical unless the attacker
controls the IDS itself [32].While an attacker can send crafted

FIGURE 10. Case of port obfuscation attack.

FIGURE 11. Case of port hopping attack.

traffic, they cannot alter extracted features post-capture with-
out compromising the IDS or its processing pipeline. Since
ML-based IDS extracts features before analysis, adversarial
research often assumes that attacks occur at the feature level,
which is unrealistic without direct control over the IDS.

Instead, real-world adversarial tactics are more likely to
involve host-based perturbations, where attackers modify
their behavior at the command level rather than tampering
with extracted network features. These host-based perturba-
tions can alter network behavior, making the ML-based IDS
fail to detect attacks because the behavioral shift does not
match its training data. However, by integrating real-time CTI
updates, DICI can detect attacks even if the initial packet or
flow was classified as benign. CTI provides contextual intel-
ligence beyond raw traffic analysis, allowing the system to
recognize attack patterns linked to known adversarial tactics.

In this work, we evaluate DICI’s performance against
host-based perturbations, using port obfuscation and port
hopping attacks as representative techniques. Port obfusca-
tion involves dynamically altering source ports to disguise
malicious traffic, making it difficult for traditional IDS mod-
els to recognize attack patterns. Similarly, port hopping
allows attackers to frequently switch communication ports,
bypassing firewall rules and predefined detection thresholds.
Since ML-based IDS relies on static training data, these
behavioral shifts cause the IDS to misclassify attacks as the
new patterns deviate from its training data. By leveraging
real-time CTI updates, DICI continuously adapts to evolving
threats, mitigating the risk of adversarial evasion.

Figures 10 and 11 demonstrate the effectiveness of our
proposed solution, DICI, in detecting these attack strate-
gies. These results were achieved through the integration of
CTI with the IDS Model, which enabled the generation of
enhanced training data. In conventional IDS models, these
techniques often go undetected due to the lack of real-time
updates. However, by integrating CTI, DICI can identify
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FIGURE 12. Performance metrics for IDS Model with CTI
approaches.

IoCs associated with changing port numbers, continuously
learning from new intelligence to maintain updated detection
capabilities. This approach allows DICI to effectively detect
port obfuscation and port hopping attacks, ensuring that
adversaries cannot exploit static detection rules to evade clas-
sification. The dynamic learning mechanism enhances the
IDS’s resilience against evolving attack techniques, prevent-
ing adversarial tactics from bypassing detection. Sensitive IP
information in the figures has been masked in response to
privacy concerns.

C. CTI TRANSFER MODEL Vs. IoC DATABASE
In this section, we evaluate the defensive effectiveness of
integrating the IDSModel with either the CTI TransferModel
or the IoC database. Figure 13 presents the performance
metrics of four different configurations: IDSModel with CTI
Transfer Model, IDS Model with IoC Database, standalone
IDS Model, and IoC Database alone, with the vertical axis
representing percentages and the horizontal axis representing
various performance metrics.

The IDS Model integrated with the CTI Transfer Model
achieved an F1 score of 89.52%, outperforming the IDS
Model with the IoC database, standalone IDS Model, and
IoC database. In terms of precision, the standalone IDS
Model achieved a score of 94.46%. However, integrating
the IDS Model with the IoC database reduced the precision
to 93.06%, and further integration with the CTI Transfer
Model resulted in a slight decrease to 92.67%. This approx-
imate 1% reduction in precision can be attributed to the
IoC database’s partial inaccuracies in capturing real-world
attacks, as reflected by its own precision of 81.26%.

Despite the minor decline in precision, the recall metrics
showed notable improvement. The integration of the IDS
Model with the CTI Transfer Model led to a substantial
15.95% increase in recall. This significant enhancement in
recall indicates a greater ability to detect real threats.

In summary, while the IDS Model with the CTI Trans-
fer Model experienced a slight 0.39% decrease in precision
compared to the ML-based IDS with the IoC database,

it demonstrated a 7.16% improvement in F1 score and a
substantial 12.61% increase in recall. These results high-
light that the IDS Model with the CTI Transfer Model not
only enhances the detection of genuine network attacks but
also significantly outperforms the IDS Model with the IoC
database, underscoring its effectiveness in bolstering IDS
capabilities.

D. ML ON CTI TRANSFER MODEL
In our CTI Transfer Model, we combine ML and heuristic
methods to evaluate the analytical capabilities of CTI. We
use the rule-based approach as the baseline because, to the
best of our knowledge, this is the first study to process and
analyze structured CTI reports using an ML model. The
rule-based classifier follows predefined heuristics to deter-
mine whether an IoC is malicious or benign based on static
rules derived from CTI reports. This approach is commonly
used in traditional CTI processing, where security policies or
thresholds define how intelligence is applied for detection.
However, it lacks adaptability to evolving threats since it
cannot generalize beyond predefined conditions. Since no
prior ML-based methods exist for structured CTI processing,
comparing our model to a rule-based classifier provides a
meaningful evaluation of its effectiveness in dynamically
adapting to real-time threat intelligence.

Furthermore, we extract all available information from
structured CTI reports to determine the most effective auto-
mated approach for their analysis. Since CTI evaluation lacks
labels, we perform sighting lookups on IoCs within the CTI
and use labels derived from these sightings as external indi-
cators to assess the model’s performance.

Figure 13 compares the performance of KMeans++

and KMeans against a rule-based classifier for analyzing
CTI reports. The x-axis represents the number of features
extracted from structured CTI reports. The primary intention
of this figure is to illustrate the impact of feature selection
on model performance and to emphasize that increasing the
number of features does not necessarily improve the F1 score.

Notably, we observe a performance degradation when
fewer than five features are used, suggesting that the model
requires a sufficient number of features to learn meaningful
patterns effectively. Furthermore, while the dataset contains
110 features, using all of them does not provide additional
benefits. These results highlight that simply increasing the
number of features does not inherently enhance performance.
Instead, it underscores the importance of feature quality over
quantity in CTI reports, as high-quality features contribute
more significantly to meaningful threat intelligence analysis.

Therefore, CTI platforms should focus on enhancing the
quality of key features in CTI reports. Additionally, the
rule-based classifier employs a consistent and transparent set
of predefined rules applied uniformly across all CTI reports.
This approach ensures that evaluation criteria remain con-
stant, reducing the potential for subjective bias or algorithmic
inconsistencies, thus providing robust and reliable analysis
that can be systematically replicated.
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FIGURE 13. F1 score of ML on CTI transfer model.

Furthermore, KMeans++ improves the average F1 score
by 30.92% compared to the rule-based classifier, indicating
that KMeans++ offers a more effective approach for analyz-
ing CTI reports and identifying potential threats compared to
traditional heuristic methods. As the features and character-
istics of structured CTI reports evolve or new ML methods
emerge, future research can build on this work to further
enhance CTI report analysis.

Lastly, we employed a rigorous grid search technique for
both KMeans++ and KMeans models, carefully configuring
relevant parameters such as model initialization to ensure a
thorough exploration of the parameter space. For the rule-
based classifier, we developed specific rules based on key
features within the CTI reports to automate the classification
process. These rules were derived from expert insights, allow-
ing for efficient analysis of CTI data and the identification of
potential threats.

E. BATCH SIZE AND MODEL PERFORMANCE
The online learning capability of the IDS Model means
that training data is continuously updated and processed in
batches, rather than all at once, as in traditional offline learn-
ing. This incremental learning process enables the model to
adapt to new data in real-time. However, it also introduces
challenges in determining the optimal batch size and number
of epochs required for training. These configurations directly
affect the trade-off between model performance, computa-
tional resource usage, and the dynamic nature of the incoming
data. Balancing these parameters is essential to ensuring both
the effectiveness and efficiency of the IDS in real-world
applications.

Smaller batch sizes can limit the model’s overall perfor-
mance, as they may not provide sufficient data for effective
learning in each iteration. Conversely, larger batch sizes ini-
tially improve performance but demand significantly more
computational resources. However, after a certain point, fur-
ther increases in batch size yield diminishing returns, where
additional resources do not result in proportional perfor-
mance gains. As a result, selecting a moderate batch size

FIGURE 14. F1 score variation with batch size across different
epochs.

FIGURE 15. Loss variation with batch size across different
epochs.

combined with a higher number of training iterations often
proves to be the most effective strategy for achieving a higher
F1 score.

Figure 14 illustrates the relationship between batch size
and the F1 score. The horizontal axis represents the batch
size, and the vertical axis represents the F1 score, with each
line corresponding to a different number of epochs. The
analysis reveals that for batch sizes below 224, increasing
the number of epochs consistently improves the F1 score.
Similarly, larger batch sizes also contribute to higher F1
scores. However, when the batch size exceeds 224, further
increases in both batch size and the number of epochs fail to
yield improvements. This suggests that for practical applica-
tions, identifying an optimal batch size is essential to avoid
unnecessary computational costs while still ensuring suffi-
cient training iterations to enhance model performance.

Additionally, Figure 15 explores the relationship between
batch size and model loss. As batch size increases, the loss
function steadily decreases, reflecting the model’s improving
ability tominimize errors. The loss function reaches its lowest
point at a batch size of 224, indicating optimal performance
at this size. Beyond this threshold, further increases in batch
size and epochs do not lead to significant reductions in loss,
suggesting a saturation point where further fine-tuning results
in minimal gains. This observation highlights the importance
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of careful parameter selection during training, as the appro-
priate batch size can significantly impact the model’s overall
performance and efficiency.

VII. CONCLUSION AND FUTURE WORKS
In this study, we proposed an approach that integrates CTI
to enhance ML-based IDS, enabling dynamic model updates
and improved threat detection. Our results revealed that the
integration of the IDS Model with the CTI Transfer Model
achieved a 9.29% higher F1 score compared to the IDS
Model solely. We also observed that increasing the number
of features in CTI reports did not enhance the F1 score,
emphasizing the importance of feature quality. Notably,
KMeans++ clustering improved the F1 score by 30.92%
compared to rule-based methods, underscoring the effective-
ness of machine learning for analyzing complex data.

These findings underscore the value of integrating CTI into
IDS, especially in enabling the capability of dynamic model
updates through online learning environments, where both
security and efficiency are critical. The results also emphasize
the need for careful selection of machine learning algorithms
to optimize threat detection.

While our results demonstrate the effectiveness of using
CTI to enhance ML-based IDS, there are several directions
for further exploration. First, developing algorithms that
enable ML-based IDS to evolve autonomously, minimizing
manual intervention. This includes enhancing the unsuper-
vised component of the IDS model with advanced anomaly
detection techniques or deep clustering models to improve
its ability to identify subtle or highly sophisticated attack
patterns that traditional clustering methods may overlook.
Second, future research should explore the integration of
multiple CTI platforms dynamically to enhance threat intel-
ligence coverage, improve detection accuracy, and reduce
reliance on a single source. By leveraging diverse CTI data,
IDS models can achieve a more comprehensive understand-
ing of evolving attack patterns and improve adaptability to
emerging threats. Finally, privacy-preserving methods for
data sharing are crucial for enabling the correlation between
sightings and CTI without compromising sensitive informa-
tion. Developing these methods will facilitate more effective
analysis while ensuring user privacy is maintained.
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