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Abstract—Machine Learning-based Intrusion Detection Sys-
tems (ML-IDS) rely on high-quality datasets with structured
labels to effectively identify complex and evolving cyber threats.
However, most existing IDS datasets rely on single data sources
and coarse labels, which restrict their ability to accurately model
multi-stage adversarial behavior. To address these issues, we
propose AR-MANO (Attack Reproduction with Management
and Orchestration), a modular framework for orchestrating syn-
chronized attack reproduction and data collection from various
sources, including accounting, Syslog, and traffic. AR-MANO
enables the creation of CREMEv3, a scalable, multi-source IDS
dataset labeled with MITRE ATT&CK techniques and the attack
lifecycle. We evaluated CREMEv3 using eight machine learning
classifiers and obtained average F1-scores of 0.6483 for technique
classification and 0.5410 for lifecycle classification without feature
selection. After applying feature selection, these scores improved
to 0.9572 and 0.8317, respectively. CREMEv3 outperformed CIC-
IDS2017, CSE-CIC-IDS2018, and UNSW-NB15, with a class
imbalance ratio of about 0.1, class entropy of 0.56, and a Gini
coefficient of approximately 1.0. CREMEv3 provides a robust
and scalable foundation for the development and evaluation of
ML-based IDS.

Index Terms—Intrusion Detection System, Machine Learning,
MITRE ATT&CK, Dual-Labeled Dataset, Techniques, Lifecycles,
Attack Reproduction

I. INTRODUCTION
Intrusion Detection Systems (IDS) play a critical role in

identifying and mitigating cyber threats. Traditional IDSs are
mostly rule-based, which makes them challenging to adapt to
new or evolving attack behaviors [1]. In contrast, Machine
Learning-based IDS (ML-IDS) addresses this limitation by
learning attack patterns from data. However, the effectiveness
of ML-IDS is heavily reliant on the quality of the training
dataset, particularly regarding the richness, structure, and
accuracy of its labels [2].

Numerous public IDS datasets have primarily relied on
binary or coarse-grained multi-class labels [3]. Notable exam-
ples include KDD99 [4] and NSL-KDD [5], which are legacy
datasets that utilize network traffic data and only categorize
attacks into broad types, such as denial-of-service or brute-
force attacks. Subsequent datasets, like UNSW-NB15 [6] and

CIC-IDS2017 [7], expanded the range of attacks but continued
to focus exclusively on traffic data and generic labels. More
recent efforts, such as CSE-CIC-IDS2018 [8], introduced host-
level visibility through system logs. However, they still failed
to align with standardized models of adversary behavior.
Furthermore, these datasets predominantly depend on a single
data source, most often network traffic, which limits their
capacity to capture system-level or host-specific behaviors.
To facilitate more contextual and effective threat detection,
there is a growing demand for multi-datasource datasets that
integrate traffic, logs, and accounting data into a cohesive and
semantically rich representation of attack behavior.

The MITRE ATT&CK framework offers a structured tax-
onomy of adversary tactics, techniques, and sub-techniques
[9]. It also models how attacks progress through sequential
stages, often referred to as the adversary lifecycle. Integrat-
ing ATT&CK into dataset labeling enhances granularity by
providing detailed labels that describe specific adversarial
behaviors, rather than broad attack categories [10]. While
these advantages make ATT&CK highly valuable for IDS
dataset design, its adoption remains limited. For instance,
UWF-Zeek [11] attempted to incorporate ATT&CK-based
labeling but was restricted to tactic-level, lacking fine-grained
technique or lifecycle information. More broadly, most existing
IDS datasets rely on isolated labeling and do not include dual
labels that capture both the technique used and the stage in
which it occurs.

Dual labeling offers two distinct benefits. First, it enables the
model to learn what technique is being used. Second, it enables
the model to identify where the technique occurs within
the lifecycle. This combination supports adversary tracking
and sequence learning, which are critical for modeling real-
world multi-stage intrusions. One prior dataset, CREMEv2,
attempted to incorporate both techniques and lifecycle labels
[12]. As the first effort to develop a dual-labeled IDS dataset,
it relied on manually crafted lifecycles to demonstrate the
feasibility of the approach. At that time, no automation tools
were available to convert narrative threat descriptions into



TABLE I
SUMMARY OF WORK IN IDS DATASET GENERATION

Paper Data 𝑎

Sources
Attack 𝑏

Diversity
Complete

Kill Chain
Label Scaleable Automation

Technique Lifecycle Lifecycle
Generation

Attack
Reproduction

[4] T S, Bf, D

✕ ✕ ✕
✕ ✕ ✕

[6] T S, Bf, D
[13] T S, Bf, D, D2, B
[7] T S, Bf, D, D2, B
[14] T, L S
[8] T, L S, Bf, D, D2, B
[15] A, L, T D, D2, B, E
[12] A, L, T S, Bf, D, D2, B, E

⚪ ⚪ ⚪Ours A, L, T S, Bf, D, D2, B, E ⚪ ⚪ ⚪

𝑎 Different types of data sources that were collected during the attack reproduction process; T: Network Traffic, L: Log/Syslog, A: Accounting/Host Statistics
𝑏 Different types of attack that were launched during the attack reproduction process; S: Scanning, Bf: Bruteforce, D: Denial of Services, D2: Distributed Denial of Services, B:
Botnet, E: Exploitation

structured execution plans. Consequently, the dataset depended
heavily on manual scripting and was limited to five predefined
lifecycles, inherently restricting its scalability.

To address the limitations, we adopt a structured and
controllable attack reproduction strategy. Executing prede-
fined attack lifecycles in a virtualized testbed enables the
consistent and scalable generation of datasets. This approach
enables step-by-step simulation of adversary behaviors while
collecting synchronized data from multiple sources, including
accounting, Syslog, and network traffic. Structured execution
ensures that each technique is precisely mapped to a cor-
responding lifecycle, while event-based labeling aligns each
label with its actual execution window. These properties
improve label accuracy, facilitate multi-perspective alignment,
and support the construction of semantically rich datasets
suitable for training ML-based IDS models.

This work addresses these limitations by proposing an au-
tomated, scalable dataset generation pipeline tailored for dual
labeling using ATT&CK techniques and lifecycle. The core
challenges include: (1) reproducing multi-stage attacks in a
consistent and extensible manner, (2) collecting synchronized
data from accounting, Syslog, and traffic sources, and (3)
assigning precise dual labels without manual intervention.

To achieve this goal, we are introducing AR-MANO (Attack
Reproduction with Management and Orchestration), a virtual-
ized orchestration framework built on the MANO architecture.
AR-MANO executes predefined lifecycles encoded in modular
YAML files, coordinates virtual machine (VM) operations,
manages benign and adversarial behavior, and gathers synchro-
nized data across multiple processes. It facilitates event-based
dual labeling through timestamp-aligned execution. We assess
the resulting dataset using the F1-score to evaluate learnability
across eight machine learning classifiers and benchmark it
against CIC-IDS2017, CSE-CIC-IDS2018, and UNSW-NB15,
employing structural fairness metrics to confirm class balance
and separability.

This work presents five primary contributions. Firstly, it
introduces AR-MANO, an orchestration framework designed

to automate the processes of attack reproduction, data col-
lection, and labeling for the generation of dual-labeled IDS
datasets. Secondly, it proposes a scalable lifecycle definition
approach that utilizes modular configuration files, allowing
for the incorporation of new attack scenarios without the
need to rewrite existing scripts. Thirdly, it illustrates how this
automation facilitates the efficient generation of synchronized,
semantically rich datasets from multiple sources, including
accounting, Syslog, and traffic data. Fourthly, it evaluates
the resulting dataset using the F1-score across eight different
classifiers to measure learnability under consistent training
conditions. Finally, it benchmarks CREMEv3 against CIC-
IDS2017, CSE-CIC-IDS2018, and UNSW-NB15 by employ-
ing both performance metrics and structural fairness indica-
tors, such as imbalance ratio, class entropy, and the Gini
coefficient, to validate the dataset’s quality and practical utility.

II. RELATED WORKS
Table I summarizes prior efforts to generate datasets for

Intrusion Detection Systems (IDS), comparing key properties
including data sources, attack diversity, ATT&CK labeling
(technique and lifecycle), completeness of the attack lifecycle,
and support for scalable design and automation. The column
"Data Sources" refers to the types of information collected
during attack reproduction: A for accounting or host statistics,
L for system logs (e.g., Syslog), and T for network traffic.
"Attack Diversity" lists the types of adversarial behaviors
included, such as Scanning (S), Bruteforce (Bf), Denial of
Service (D), Distributed Denial of Service (D2), Botnet (B),
and Exploitation (E). The "Complete Kill Chain" column
indicates whether a dataset models a full lifecycle of multi-
stage attacks rather than isolated actions. The label columns
indicate whether ATT&CK technique-level or lifecycle-level
labels were applied. The final columns indicate whether the
dataset supports a scalable approach and includes automation
in lifecycle generation and attack reproduction. The former
represents the process of defining reusable and extensible
attack lifecycles, typically through structured configuration



Fig. 1. AR-MANO Architecture

files, while the latter denotes the automatic execution of those
lifecycles to generate labeled data.

Early efforts such as [4] and [6] focused solely on traffic data
and labeled only a narrow set of attacks, including scanning,
brute force, and denial of service. These datasets did not model
complete attack progressions or provide semantic labeling
of behavior. Later datasets such as [13] and [7] included
more diverse attack types (e.g., botnets, distributed denial of
service), but continued to rely exclusively on network traffic
and did not adopt the ATT&CK framework.

More recent efforts have explored multi-source data col-
lection to improve visibility. For example, [8] combined sys-
tem logs with traffic data, adding a host-level perspective.
However, these datasets still lacked ATT&CK-based labels
and focused on isolated attacks rather than modeling struc-
tured sequences. The CREME framework introduced by [15]
incorporated traffic, log, and accounting data, but did not
support ATT&CK technique or lifecycle labeling. Its second
generation, CREMEv2 [12], addressed these gaps by adopting
dual-labeling aligned with ATT&CK. However, the lifecycle
configurations were handcrafted, limited to five scenarios, and
required manual scripting, making the system difficult to scale
and extend to new attacks.

In contrast, our work introduces a dual-labeled dataset that
integrates both ATT&CK techniques and lifecycles, supported
by synchronized data collection across accounting, system
logs, and traffic sources. We present AR-MANO, an orchestra-
tion framework that automates the end-to-end dataset genera-
tion process, including lifecycle execution, multi-source data
capture, and structured labeling. Compared to prior works, our
dataset supports more diverse attacks, full lifecycle modeling,
and a scalable, automation-friendly pipeline, making it better
suited for training and benchmarking ML-based intrusion
detection systems.

III. AR-MANO: SOLUTION FOR SCALABLE
DUAL-LABELED DATASET GENERATION

To address the challenges involved in dataset generation,
this work presents a modular and automated framework known
as AR-MANO (Attack Reproduction with Management and
Orchestration). AR-MANO serves as a robust foundation
for structured attack execution, facilitating synchronized data
collection from various sources and dual-label assignment in
accordance with the ATT&CK framework.

AR-MANO addresses three fundamental challenges: (1)
Complexity of Dual-Labeling: this stems from the necessity
for precise alignment between data sources and lifecycles;
(2) Lifecycle Scalability: the scalability constraints associ-
ated with manual lifecycle scripting; and (3) Evaluation and
Comparison: the lack of consistent evaluation practices for
multi-datasource, dual-labeled IDS datasets. Although various
metrics such as F1-score and label distribution indicators exist,
they are rarely applied systematically to evaluate datasets that
integrate both techniques and lifecycle labels.

The overall system architecture of AR-MANO is depicted in
Figure 1. It operates on a Proxmox virtualization platform and
consists of four primary functional components: Management
and Orchestration, Attack Entities, Benign Entities, and Data
Handling Entities. The Management and Orchestration layer
is further divided into four submodules: lifecycle management,
attack management, benign management, and data handling.
These submodules establish execution logic and workflows
based on configuration files. At its core, the Command and
Control Orchestrator issues control commands and coordinates
the behavior of nodes by utilizing Ansible playbooks, facili-
tating scalable and automated task execution.

The Attack Entities group comprises two roles: the attacker,
who initiates exploit techniques as outlined in the lifecycle,
and the malicious client, which facilitates attacks such as
botnets. In contrast, the Benign Entities group comprises
normal clients and a benign server that simulates legitimate
traffic and background noise, ensuring the dataset captures a
diverse range of behaviors. These roles operate in parallel to
create a realistic and dynamic intrusion environment during
data collection.

The Data Handling Entities include a Data Collector, which
acquires raw data streams through tools such as tcpdump [16]
(for traffic), Rsyslog [17] (for Syslog), and Atop [18] (for
accounting). Complementing this, the Data Processor extracts
features and prepares the data for labeling. The communication
pathways are color-coded for clarity: blue lines signify control
flow, red lines indicate attack traffic, black lines represent
benign traffic, and purple lines illustrate data transfer to the
collector. Entities managed via Ansible are denoted with
dashed borders, while scalable components are emphasized
with blue outlines. This architecture facilitates synchronized,
modular, and scalable attack reproduction, with accurate la-
beling aligned with ATT&CK techniques and lifecycles.

According to the three fundamental challenges mentioned
before, we introduce the proposed approaches to conquer them



Fig. 2. Dataset Generation Process

below.
A. Complexity of Dual Labeling

Assigning ATTCK technique and lifecycle labels to intru-
sion detection datasets is challenging, especially when attacks
involve multiple stages and sources like accounting, Syslog,
and traffic. Temporal alignment of events with their techniques
and lifecycles can be difficult, leading to mislabeling and com-
promised data quality. To address these issues, AR-MANO
introduces a time-aligned, breakpoint-driven labeling pipeline
that ensures consistency across all modalities.

The overall flow of the dataset generation process is shown
in Figure 2. AR-MANO begins with a list of lifecycle config-
urations 𝐿 = {𝑙1, 𝑙2, . . . , 𝑙𝑛}, where each lifecycle represents
a specific attack scenario, such as ProFTPD 1.3.5 command
execution, defined by an ordered sequence of ATT&CK tech-
niques structured across logical stages. For each lifecycle 𝑙𝑖,the framework sequentially executes the associated techniques
𝑇 = {𝑡𝑖,1, 𝑡𝑖,2, . . . , 𝑡𝑖,𝑗} as defined in the YAML configuration
file. Each technique execution is determined by a pair of
breakpoints 𝜃𝑖,𝑗 = {𝜃𝑖,𝑗,2𝑘, 𝜃𝑖,𝑗,2𝑘+1}, which are logged by the
controller at runtime to capture the execution window of each
technique.

During execution, AR-MANO collects raw data from three
synchronized sources: accounting, Syslog, and traffic. These
sources are represented as raw data streams 𝑅𝑖,1, 𝑅𝑖,2, and 𝑅𝑖,3,
respectively, where 𝑖 denotes the lifecycle index and the second
index 𝑙 ∈ {1, 2, 3} corresponds to accounting (1), Syslog (2),
and traffic (3). After all techniques in 𝑙𝑖 are executed, AR-

MANO extracts features from each raw source to produce
intermediate datasets 𝐷𝑖,𝑙, where each 𝐷𝑖,𝑙 is derived directly
from its corresponding raw stream 𝑅𝑖,𝑙. These datasets are
then labeled using the stored breakpoints to assign: a technique
label corresponding to the technique 𝑡𝑖,𝑗 active during that time
window, and a lifecycle label identifying the overall attack
scenario 𝑙𝑖The resulting dual-labeled dataset is denoted as 𝐷𝐿

𝑖,𝑙, which
encapsulates both the execution-specific and scenario-level
semantics. This notation ensures consistent mapping across
all data modalities and enables multi-perspective learning for
ML-IDS models.

The automation of the alignment process using break-
points and lifecycle-aware execution in AR-MANO eliminates
manual effort, reduces labeling errors, ensures consistency
across data sources, and enhances understanding of adversarial
behaviors through fine-grained learning.
B. Lifecycle Scalability

A major challenge in scalable dataset generation is the in-
flexible and manual definition of attack lifecycles. In previous
work, each lifecycle was scripted in a hardcoded manner,
making it unmanageable to modify or adapt scenarios. As the
number of attack lifecycles grows, maintaining and expanding
these lifecycles becomes increasingly inefficient and suscepti-
ble to errors.

AR-MANO addresses this limitation by introducing a mod-
ular, configuration-driven approach. Each attack lifecycle is
defined through a structured YAML configuration that outlines



Fig. 3. Lifecycle Execution Graph for ProFTPD 1.3.5 Command Execution
the attack name, variant, and a sequential set of stages. Within
each stage, one or more ATT&CK techniques are detailed,
along with the corresponding parameters for exploitation mod-
ules, such as payloads, IP addresses, ports, and module types
(e.g., exploit, shell, or handler). This format facilitates precise
control over attack logic while effectively decoupling it from
the underlying scripting implementation.

AR-MANO simplifies lifecycle management by using con-
figuration files for execution logic, allowing for quick creation
and modification. New scenarios can be added by extending
YAML definitions without changing the reproduction engine.
Automation can also help generate configurations, such as
extracting technique sequences from CTF writeups or threat
reports to improve coverage and reduce manual effort.

Figure 3 presents the lifecycle execution flow for a scenario:
the ProFTPD 1.3.5 command execution attack. The pro-
cess begins with reconnaissance techniques (T1595.001 and
T1592.002), followed by a conditional check (𝐶0) to determine
whether the target is exploitable. If successful, the attack pro-
ceeds through exploitation (T1203), persistence (T1574.010),
and privilege escalation stages (T1055 and T1548.003). If
the exploit condition fails, the lifecycle terminates early (𝐹0),
capturing a realistic failure branch.

In the execution graph, each node represents a technique
step, with conditional nodes (𝐶0) allowing branching. Failure
states (𝐹0, 𝐹1) indicate alternate exit paths, capturing both
successful and failed executions. This structure, along with
configuration-based lifecycle definitions, enables AR-MANO
to model diverse adversarial behaviors efficiently, minimizing
manual scripting efforts.
C. Evaluation and Comparison

In addition to generating a dual-labeled dataset, it is crucial
to validate whether the resultant data supports effective ma-
chine learning and holds up against established benchmarks.
Traditional metrics such as accuracy and precision may fall
short in capturing structural quality, particularly in situations
characterized by class imbalance or label overlap. Therefore,

this work employs an evaluation strategy that emphasizes both
learnability, measured through the F1-score, and structural
fairness, assessed via imbalance ratio, class entropy, and the
Gini coefficient. This approach facilitates a comprehensive
quality assessment and allows for an equitable comparison
with publicly available IDS datasets.

To evaluate learnability, we train machine learning classi-
fiers on the generated dual-labeled dataset, utilizing standard
performance metrics such as F1-score, precision, recall, and
accuracy. The F1-score is prioritized as the primary metric
due to its ability to balance precision and recall, which is
particularly crucial in the context of imbalanced datasets. We
assess model performance separately for technique prediction
and lifecycle classification. Additionally, results are averaged
across multiple classifiers and data sources, including account-
ing, Syslog, and traffic.

To enhance our understanding of the dataset’s impact on
classification performance, we compare the results obtained
before and after feature selection. By retaining only the most
relevant features from the complete dataset, we demonstrate
that the dual-labeled structure retains sufficient discriminative
information, even with a reduced number of features. This
suggests that the dataset effectively captures significant adver-
sarial patterns and facilitates generalizable learning.

To assess the quality of our dataset in a broader context, we
perform a comparative analysis with three widely recognized
IDS datasets: UNSW-NB15 [6], CIC-IDS2017 [7], and CSE-
CIC-IDS2018 [8]. Since these datasets do not incorporate
MITRE-based techniques or lifecycle labels, we use their
attack labels as proxies for technique labels to maintain
consistency in evaluation. Each dataset is subjected to a fair
comparison setup, utilizing the same train-test split (80/20),
identical machine learning models, and corresponding feature
groups (e.g., flow duration, packet length, flag counts, etc.).
We exclude metadata-related or source-specific features to
enhance generalizability.

In addition to assessing classification performance, we also
examine the structural fairness of each dataset through three
distribution-aware metrics: imbalance ratio, class entropy,
and Gini coefficient. These metrics are widely employed in
imbalanced learning and intrusion detection to evaluate the
statistical quality of label distribution, especially within multi-
class classification scenarios.

∙ Imbalance Ratio (IR) measures the skewness between the
most and least representative classes, defined as the ratio
of samples in the majority class to those in the minority
class. A lower IR indicates a more balanced distribution,
which helps in training fair models that avoid overfitting
to dominant classes [19].

∙ Class Entropy (CE) measures the diversity of class dis-
tribution using Shannon entropy on label frequencies.
Higher entropy indicates a more uniform label distribu-
tion, enhancing generalization across attack types [20].

∙ The Gini Coefficient (GC) measures the uniformity of
sample distribution across classes, helping to evaluate a



dataset’s effectiveness in learning decision boundaries for
various attack types [21].

These metrics offer a broader perspective on dataset quality,
extending beyond typical classifier performance. They help
assess class distributions for balance, diversity, and separabil-
ity, which improves the fairness and robustness of machine
learning-based intrusion detection systems (IDS).

In summary, these findings indicate that the dataset gen-
erated through AR-MANO is not only well-structured and
learnable but also suitable for benchmarking against widely
recognized datasets within the machine learning IDS commu-
nity.

IV. IMPLEMENTATION DETAILS
This section outlines the technical realization of AR-

MANO, including testbed setup, attack execution, data collec-
tion, labeling, and evaluation. Each component supports the
scalable, dual-labeled dataset generation process described in
Section III.
A. Testbed Setup

AR-MANO is implemented on a Proxmox-based virtualiza-
tion platform [22], which manages 12 virtual machines orga-
nized into four distinct roles: Management and Orchestration,
Attack Entities, Benign Entities, and Data Handling Entities.
The orchestration is facilitated through Ansible playbooks,
which have successfully replaced over 90 legacy scripts with
20 modular workflows. Each lifecycle is designated for a
specific target set, and breakpoints are documented to allow
for accurate technique labeling.
B. Lifecycle Execution and Dataset Generation

Each attack lifecycle 𝑙𝑖 is defined through a YAML configu-
ration that outlines a sequence of ATT&CK techniques. In this
study, these YAML-based lifecycles are utilized as predefined
inputs. While the focus here is on automating execution, data
collection, and labeling based on these configurations, a recent
study [23] suggests a method for automatically generating
such lifecycle definitions from unstructured Capture The Flag
(CTF) writeups. This modular approach allows the current
framework to function with reusable lifecycles, facilitating
scalable dataset generation without the need for manual script-
ing.

Once a lifecycle configuration is established, AR-MANO
parses the YAML file and executes each technique 𝑡𝑖,𝑗 in suc-
cession. The controller dispatches commands to the attacker
nodes and coordinates data capture, logging breakpoints 𝜃𝑖,𝑗to record the start and stop times of each technique. This
arrangement allows for the seamless addition of new lifecycles
by simply introducing more YAML files, without the need to
alter the orchestration logic.

1) Lifecycle Configuration: Each YAML file specifies a
lifecycle’s name, type, and relevant ATT&CK techniques,
along with associated parameters such as module names, IP
addresses, and ports. AR-MANO transforms these specifica-
tions into a Python script, which is deployed through Ansible,

allowing for branching logic and conditional paths. This
configuration-based approach facilitates the scalable expansion
of attack scenarios.

2) Multi-Datasource Collection: Three synchronized data
sources are gathered: (1) accounting data via Atop, (2) system
logs through Rsyslog, and (3) network traffic captured using
Tcpdump. The raw files, denoted as 𝑅𝑖,1 for accounting, 𝑅𝑖,2for Syslog, and 𝑅𝑖,3 for traffic, are stored for subsequent
processing.

3) Labeling and Dataset Construction: Raw data is trans-
formed into features, specifically host data (including ac-
counting and Syslog), utilizing methodologies outlined in
[24]. Traffic data is processed through NFStream [25]. The
datasets denoted as 𝐷𝑖,𝑙 are labeled using breakpoint tech-
niques, resulting in the labeled datasets 𝐷𝐿

𝑖,𝑙 for each lifecycle
and source. The final datasets are constructed by combining
labeled segments across all identified lifecycles.
C. Evaluation and Comparison

We assess the learnability and structural fairness of the
dataset. In terms of learnability, eight classifiers are trained
using an 80/20 split and evaluated using the F1-score, both
before and after feature selection. This approach emphasizes
the model’s capacity to recognize both technique and lifecycle
labels under realistic training conditions.

Structural fairness is evaluated using three standard metrics:
imbalance ratio (class distribution), class entropy (label diver-
sity), and Gini coefficient (label separability). These metrics
provide insight into the dataset’s balance, expressiveness, and
clarity in classification.

CREMEv3 is benchmarked against the UNSW-NB15, CIC-
IDS2017, and CSE-CIC-IDS2018 datasets. Given that these
datasets do not include MITRE labels, we utilize their native
attack labels as proxies. A consistent feature grouping strategy
is employed, retaining only five shared behavior-based groups:
packet length, packet count, flow duration, TCP flags, and
flow ratios. This normalization ensures a fair and unbiased
comparison of models across the different datasets.

V. EVALUATION
This section presents the experimental evaluation of the

dataset generated by AR-MANO, focusing on two aspects: (1)
learnability, how well machine learning models can classify
techniques and lifecycles; and (2) comparative fairness, how
CREMEv3 compares to existing public IDS datasets in terms
of model performance and label structure. All evaluations use
consistent classifier settings, an 80/20 split, and only non-
metadata features, as defined in Section IV-C.
A. Learnability Evaluation

We evaluate eight standard classifiers: Logistic Regression,
Stochastic Gradient Descent (SGD), Passive Aggressive, De-
cision Tree, K-Nearest Neighbors (KNN), Random Forest,
Bagging, and XGBoost. Each model is trained using default
hyperparameters with an 80/20 train-test split. The F1-score



(a)

(b)
Fig. 4. Learnability Evaluation

serves as the primary metric due to its reliability in situations
with class imbalance.

As illustrated in Figure 4a, CREMEv3 demonstrates ro-
bust baseline performance across all three data sources. The
technique classification yields average F1-scores of 0.661 for
accounting, 0.705 for Syslog, and 0.651 for traffic, indicating
that the dataset contains significant behavioral signals. Syslog
achieves the highest performance, likely due to the rich con-
textual information found in log entries. In contrast, lifecycle
classification proves to be more challenging, exhibiting a
performance decline of 8–25% depending on the source. This
decline is expected, as lifecycle labels necessitate abstraction
over multiple stages rather than the detection of isolated
patterns.

To assess the impact of semantic feature structuring on
classification performance, we conduct a feature engineering
experiment. In this context, non-FE indicates that feature
selection was not applied, while FE refers to the application of
feature engineering. Specifically, we implement statistical and
semantic selection methods to eliminate irrelevant or redun-
dant features. The results, illustrated in Figure 4b, demonstrate
significant improvements: the F1-score rises from 0.6483 to
0.9572 for technique classification and from 0.5410 to 0.8317
for lifecycle classification. These enhancements indicate that
aligning features with adversarial semantics boosts model
learnability.

(a)

(b)
Fig. 5. Comparison with Other Datasets

Despite using no hyperparameter tuning, CREMEv3 sup-
ports high-quality classification. This confirms that the dataset
is inherently learnable and semantically rich, making it a
strong candidate for benchmarking ML-based intrusion detec-
tion systems.
B. Comparison with Other Public Datasets

As indicated in Section IV-C, this study conducts a compar-
ative analysis of CREMEv3 against the UNSW-NB15, CIC-
IDS2017, and CSE-CIC-IDS2018 datasets. The comparison
employs consistent training protocols and focuses on seman-
tically grouped, non-metadata features.

Figure 5a illustrates that CREMEv3 achieves the high-
est average F1-score of 0.70, slightly surpassing UNSW-
NB15, which has an F1-score of 0.68. Although CIC-IDS2017
demonstrates high precision, its low recall indicates that its
models tend to overfit to the more frequent classes and
struggle to generalize, likely due to the presence of imbalanced
labels. Conversely, CSE-CIC-IDS2018 exhibits the lowest
performance, with F1-scores falling below 0.10 across all
classifiers. This aligns with previous findings regarding issues
of noise, mislabeling, and flaws in feature extraction within
the CICFlowMeter datasets [26].



The fairness metrics in Figure 5b further confirm the struc-
tural quality of CREMEv3. Its imbalance ratio of 0.1 suggests
an even distribution of samples across classes, minimizing
majority-class bias. A class entropy of 0.56 indicates a healthy
variety of label categories, supporting generalization beyond
dominant patterns. The Gini coefficient, which is close to
1.0, reflects strong label separability, a key requirement for
building models with clear decision boundaries. Together,
these results demonstrate that CREMEv3 is well-structured
for both accurate and fair model training.

In summary, CREMEv3 demonstrates improved classifica-
tion performance and stronger structural balance compared to
existing public datasets. Among all evaluated datasets, CRE-
MEv3 achieves the highest class entropy and Gini coefficient,
reflecting diverse and well-separated label distributions. While
its imbalance ratio is slightly higher than that of UNSW-
NB15, it still significantly outperforms CIC-IDS2017 and
CSE-CIC-IDS2018. This minor difference stems from UNSW-
NB15 having fewer attack classes, resulting in naturally bet-
ter balance. However, CREMEv3 covers a broader range of
techniques and lifecycles while maintaining strong fairness
metrics, making it more comprehensive and realistic.

VI. CONCLUSION
This work presents CREMEv3, a scalable, multi-datasource

IDS dataset labeled with ATT&CK techniques and lifecycles.
Built using the AR-MANO framework, it automates attack
reproduction, synchronized data collection, and dual-label
assignment across accounting, Syslog, and traffic. CREMEv3
addresses key limitations in existing datasets, such as coarse
labels, single-source dependency, and limited behavioral cov-
erage. Empirical results demonstrate strong learnability: for
technique classification across all data sources, the average F1-
score improves significantly after feature engineering, showing
that the dataset captures semantically rich patterns. In com-
parison to CIC-IDS2017, CSE-CIC-IDS2018, and UNSW-
NB15, CREMEv3 shows improved structural fairness, with
a low imbalance ratio of 0.1, a class entropy of 0.56, and
a Gini coefficient close to 1.0. These characteristics support
balanced training and better class separation. While these
results suggest that CREMEv3 is suitable for benchmarking
ML-IDS solutions, future work is needed to evaluate how well
the models trained on it generalize to real-world traffic.
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