Tracing Linux Networking
Through Remote Kernel

g Debug

Written by Tsai Ping Tsai
ie855160@csie.fju.edu.tw
High Speed Lab 2000/08/14

* What situation we use Remote debug?

= debug a system kernel

= a limited resource target
= low memory
= NO Monitor

[— bR TR

i How to use Remote Debug,

= Two way to use GDB to remote debug
= Use gdbserver
= Use stub.c

= If we want to debug an operating
system, we can’t use gdbserver

Remote debug — Use gdbserver

= Use gdbserver

= The gdbserver is packet with GDB but not compiler
when you compiler the GDB.We must compiler
gdbserver .

= ./configure
= cd gdb/gdbserver
= Make

= Command

= Target: ' gdbserver /dev/com1 ping —c1 eva |
= Host: ' target remote /dev/ttySO ; (in GDB)

i Remote debug — Use stub.c

= Use stub.c

= Client:compiler the program with —g and link with
stub.c . Then just run the program.

= Server:target remote /dev/ttySO

« We must write some code for stub.c such as
getchar(),putchar()...

i Remote Kernel debug — Use kGDB..,

= Use kGDB

= KGDB is a kernal patch for GDB to provide Linux to
remote debug on i386 kernal.

« Step to install
« Ccd /usr/src/linux
= patch -p0 < kgdb0.2-2.2.12

= make xconfig (or "make menuconfig")
= [at "Kernel hacking" turn on "Kernel support for GDB"]

=« make bzImage (or as you normally do)
= Then you can use remote debug on boot time

Remote Kernel debug — Use kGDB

B image labe -
[Ta rg et(kgd b) / ge label /7 2 Ebaud rate

- at boot prompt: LILO : linux gdb [gdbttyS=2] [gdbbaud=38400]
YU NG J \ AR FCOMI/COM2
= HOSt(gdb/ddd)

= Load symbol: FILE /usr/src/linux/vmlinux

= Set baud rate:set remotebaud 38400 I

= change target: target remote /dev/ttyS3 | z
= continue booting: cont [=
= interrupt target: interrupt :

= set break point: break sys_socketcall dddiifi

< DD dhomefevalianstnetizocket o '_ A5 |I:I|i|
File Edit View Program Commands Status Source Data ﬂelpl

p—

{]:lSDcket.c:14D$

i argument checking <leaned up. Saved 20% in sizZe.

This function doesn”t need to set the kernel lock because
#* jt is set by the callees.

iy

asmlinkage long svs_socketcall{int <all., unsigned long *args)

i

unsigned long alE]:
unsigned long al.al:
int err;

— ificall<l|lcall »SYS_RECYMSG)
Freturn —EIMWAL:

F# copy_from_user should be SMP safe. =/
if Ccopy_from userCa, args, nargs[calllld
return —EFAULT;

al=al[0];
al=al1];

syitch{calll —

3
Case SY5_SOCKET:
err = sys_socketial,al.al2]);

K

igdb) <ont
Continuing.

Breakpoint 1, sws_socketcall (call=5, args=0xzbffffbe0) at socket.c:1406
igdb) <ont
Continuing.

=l

A Enter and modify GDE commands

Linux TCP/IP Networking Layers

BSD Socket
INET Socket
TCP UDP
IP A
D IP SLIP ETHERNE'I; ARP

Client/Server package’s flow chart

User Space I
| Server X Client :
-		
Server socket creation y _ send data »	_ Client socket creation y, recv data y.	
socket) i bind) !l iisten() !7 accept() il write) ! l:"'sb'ck'étb"'"g	comnect() ! read)	

1 ' |1 i -1 v [s 1|
! v Ti v i v i v L v R N o N i v Ul
: !sys_socketcaI:!sys_socketcali!sys_socketcalilsys_socketcaII:! sys_write ! | :!sys_socketcaII:! sys_socketcall i! sys_read ! :
1 1 1 I -1 1 1 o 1
| g | X [K ! i ! th ! Bt y ! :
: : | !; | . :: l. :: sysfafcept :: socklwrite : : |; sys_socket i : sys_ci)nnect :: sockIread : :
| i sys_socket :! sys_bind i sys_listen i i i li : | i i
I) I } i J i1 inet accept ;'sock_sendmsg i | li sock_create ! iinet stream connect ;i sock recvmsg i |
| ! sock create {1 inetbind i inetlisten il 1 o L bbge L oo
]) ; tep_accept i inet sendmsg ! | |' inet create ;' tcp_v4 getport i inet recvmsg ! !
(T d ! -1 i h 0 i |
| i, inet create ! i Hoo T LI ¥ / oo
| | wait_for_connect '] tcp_sefdmsg Pl | i tcp_v4 connect ii tcp_recvmsg 1 |
| o il i ! i)
: | tep_write xmit | : I inet_wait_connect ; 'memcpy_toiovec' :
! L ! i]
[N B	e TN	
		A
e] —_— L _
Kernel Space
Internet

Kernel Space

system call -- write

User Space

write(sockfd,&ch,1); //send a character to client

Kernel Space
sys write() =

sock_write()
sock_sendmsg()
inet_sendmsg()
tcp_do_sendmsg()
tcp_send_skb()
tcp_write_xmit()
tcp_transmit_skb()

sys_write()

asmlinkage ssize_t sys_write(unsigned int fd, const char * buf, size_t count)
{
file = fget(fd);
if (file) {
if (file->f_mode & FMODE_WRITE) {
struct inode *inode = file->f_dentry->d_inode;
ret = locks_verify_area(FLOCK_VERIFY_WRITE, inode, file,
file->f_pos, count);
if (Iret) {
ssize_t (*write)(struct file *, const char *, size_t, loff_t *);
ret = -EINVAL;
if (file->f_op && (write = file->f_op->write) = NULL)
ret = write(file, buf, count, &file->f_pos);

<

sock_write()

static ssize_t sock_write(struct file *file, const char *ubuf,

{

sock = socki_lookup(file->f_dentry->d_inode);

msg.msg_name=NULL,

msg.msg_namelen=0;

msg.msg_iov=_&iov;

msg.msg_iovlen=1;

msg.msg_control=NULL;

msg.msg_controllen=0;

msg.msg_flags=!(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
return sock_sendmsg(sock, &msg, size);

sock_sendmsg()

int sock_sendmsg(struct socket *sock, struct msghdr *msg, int size)

{

int err;
struct scm_cookie scm;

err = scm_send(sock, msg, &scm);

if (err >=0) {
err = sock->ops->sendmsg(sock, msg, size, &scm);
scm_destroy(&scm);

}

return err;

inet_sendmsg()

int inet_sendmsg(struct socket *sock, struct msghdr *msg, int size,
struct scm_cookie *scm)

struct sock *sk = sock->sk;

/* We may need to bind the socket. */

if (sk->num==0 && inet_autobind(sk) '= 0)
return -EAGAIN;

return sk->prot->sendmsg(sk, msg, size);

KernProf’s

Report

0.00 0.00

14/14

system_call [4720]

sys_socketcall = sys_socket
Sys_connect sock_map_fd
sys_recvirom

> sock_create > sock alloc =2
inet_create

unix_create

[165] 0.0 0.00 0.00 14 sys_socketcall [165]
w.. 0.00 0.00 14/105 _generic_copy_from_user [5233]
T0:000 0.00 4/4 sys_socket [267]
0.00 0:00_ 3/3 sys_connect [296]
0.00 0.00 —~2/2 sys_recvirom [374]
0.00 000 1/~ _ sys_bind [429]
000 000 111 “sys_getsockname [430]
0.00 0.00 1/1 sys_seﬁd{4§2]
0.00 0.00 1/1 sys_setsockopt{436]
0.00 000 U1 sys_sendmsg [433] "~ _
~
~
0.00 0.00 4/4 sys_socketcall [165] b ~A
[267] 0.0 0.00 0.00 4 sys_socket [267]
0.00 0.00 4/4 sock_create [258]
0.00 0.00 4/4 sock_map_fd [260]
0.00 0.00 4/4 sys_socket{267]
[258] 0.0 0.00 0.00 4 sock_create [258]
6.60 —0.00 4/4 sock_alloc [256]
0.00 0.00 3/3 inet_create [281]
0.00 0.00 1/1 unix_create [444]

= EE AR o |
I FHZRS (A E
EEEEwNIAESS

- SR TR
IR FIER S a2
i A

HFIETE]]

