
 1

Linux 路由器：建構、測試與追蹤

. Ⅰ 實驗目的

本實驗中將學習如何使用一般個人電腦建構一台 Linux 路由器，再分別使用

除錯工具軟體與測試方法，了解此路由器之設定及運作方式。

實驗一開始先學習使用 Linnux 路由 (route) 的基本指令以及了解其設定方

式，接著安裝一套 routing daemon 套件－Quagga，並學習其設定方式。最後安裝

KDB 套件，追蹤核心內對於 routing 的處理流程。

. Ⅱ 實驗設備

一、硬體

二、軟體

項目 版本 數量 備註

Linux

distribution

Fedora V [1] 1 本實驗採用 Fedora 系統的 Linux 來說明。

採用其他 distribution 亦可。Linux 可由各大

FTP 站取得。

Linux

kernel[2]

2.6.16 1 可以到 http://www.kernel.org/取回。因為我

們選的 KDB patch 版本的關係，所以我們選

用此一版本。

Kdb[3] 4.4 1 至 http://oss.sgi.com/projects/kdb/下載此軟

體。此軟體為一 kernel patch 檔、需與 kernel

版本互相搭配。

Quagga[4] 0.99.4-1 1 請至 http://www.quagga.net/下此軟體。

項目 數量 備註

個人電腦 1 本身需具有 on board 的網路卡。

網路卡 1 需選用 Linux kernel 有支援之網路卡。

 2

. Ⅲ 背景資料

一、 路由器概念

 一般來說，電腦數量小於數十部的區域網路不需要路由器，只需要用

hub 或 switch 連接每一部電腦， 然後透過單一線路連接到 Internet。但如

果是電腦數量過多的網路環境， 就會需要考量到實際佈線的困難以及效

能。例如大樓內不同樓層要使用 hub/switch 連接所有的電腦，在佈線上相當

困難。要解決這個問題，可以透過每一個樓層架設一部路由器， 並在各樓

層間，用路由器相連接，就能夠簡單的管理各樓層的網路；否則，因為各樓

層之間沒有架設路由器，而是直接以網路線串接各樓層的 hub/switch 時，

由於同一網域的資料是透過廣播來傳遞的，整棟大樓的電腦因而處於同一

collision domain，當整個大樓的某一部電腦在廣播時， 所有的電腦將會予

以回應，會造成大樓內網路效能低落。所以架設路由器將實體線路區隔開，

能夠區隔出各樓層之間的 collision domain，藉以提昇網路效能。

 由於各樓層之間為不同網域，當主機想要將資料傳送到不同的網域時便

得透過路由器。路由器會分析來源端封包的 IP 表頭，找出目標的 IP 後，

透過路由器本身的路由表 (routing table) 將這個封包向下一個目標傳送。

二、 Linux Route 介紹

 通常，在 Linux 系統上的路由都是靜態路由，也就是由系統管理員使

用”route”命令所加入之靜態路由規則。

相對於靜態路由，另一種路由方式為動態路由。動態路由的規則是由各

路由器之間，藉由路由協定程式互相交換路由規則而形成的。常見的路由協

定有 RIPv1、RIPv2、ISIS、BGP 等。

以下介紹幾個在 linux 中處理網路封包路由之函式：

ip_rt_ioctl：

此函式主要負責處理使用者以 route 指令所加入或刪除之靜態路由規

則。如果要作的是刪除路由的動作，則先清除路由表中的規則，再檢查

快取中有無副本，有的話也一併刪除，以確保其一致性。如果請求是增

加路由的話，則先檢查指定的介面是否已存在此路由規則，沒有的話便

新增這個路由規則，但此時並不會在路由快取新增資料。

ip_route_input：

每次的進入系統的封包，都會觸發此函式，查詢此封包之路由。

首先會使用 hash function rt_hash_code()來查詢此封包之路由資訊，是否

 3

存在系統之 route cache，若不存在，則接著觸發 ip_route_inpute_mc 對

此封包作處理。

ip_route_input_mc：

當發現該封包之目的位址為 multicast，則將此封包用此函式處理，否則

就交給函式 ip_route_input_slow 處理。

ip_route_input_slow：

當封包之路由資訊不存在於系統之快取且不屬於 multicast 的封包，則會

由此函式作處理。

三、Linux 之 route 指令

在 Linux 系統中，使用”route –n”，可以列出目前系統中的路由規則。

四、追蹤 Linux 核心

本實驗採用 KDB 來追蹤 Linux 核心。目前在 Linux 上常用的 GDB，其

對 kernel 除錯功能僅限於讀取核心資料而不能使用如設定 breakpoints 或者

step by step 的執行。其它的延伸套件(如 kdebug)則多了一些優點，包括對模

組進行除錯，但仍缺乏以上二項功能。

KDB 提供在本機端設定 breakpoints 以及 step by step 執行的動作。GDB

[root@localhost /]# route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0

欄位名稱 功能

Kernel IP routing table Kernel 內的 IP routing table

Destination 目的地的 IP 網路位址（Network Address）

Gateway Gateway 的 IP address

Genmask Destination 的 subnet mask

Flag 用來指示此 route rule 的狀態

Metric 需要經過幾個 hops 才能到達 destination

Ref Reference 到此 rule 之 daemon 個數，如 RIP

Use 至目前為止，使用此 rule 之封包個數

Iface 此 rule 所套用之網路介面(如 eth0、eth1)

 4

雖可達到相同目的，但卻需要使用者透過 serial port 在一台機器上執行而對

另外一台機器進行除錯。

KDB 的指令列表如下：

Command Description
bc
bd
be
bl
bp
bpa
bt
btp
cpu
env
ef
go
help
id
ll
md
mds
mm
ps
reboot
rd
rm
sr
ss
ssb
set

Clear Breakpoint
Disable Breakpoint
Enable Breakpoint
Display breakpoints
Set or Display breakpoint
Set or Display breakpoint globally
Stack Traceback
Display stack for process <pid>
Switch cpus
Show environment
Display exception frame
Restart execution
Display help message
Disassemble Instructions
Follow Linked Lists
Display memory contents
Display memory contents symbolically
Modify memory contents
Display active task list
Reboot the machine
Display register contents
Modify register contents
Magic SysRq key
Single Step
Single step to branch/call
Add/change environment variable

本實驗需要在 kernel 設定中斷點，觀察在 stack 中的資料及執行單個指

令的功能。以下為節錄自其 manual 的相關指令說明及其範例。

1. bp 和 bd

bp schedule
 Sets an instruction breakpoint at the begining of the function schedule.
bp schedule+0x12e
 Sets an instruction breakpoint at the instruction located at schedule+0x12e.
bp ttybuffer+0x24 dataw
 Sets a data write breakpoint at the location referenced by ttybuffer+0x24 for
 a length of four bytes.
bp 0xc0254010 datar 1
 Establishes a data reference breakpoint at address 0xc0254010 for a length of
 one byte.
bp List current breakpoint table.
bd 0 Disable breakpoint #0.

 5

2. bt

[root@host /root]# cat /proc/partitions
Entering kdb on processor 0 due to Debug Exception @ 0xc01845e3
Read/Write breakpoint #1 at 0xc024ddf4
kdb> bt
 EBP Caller Function(args)
0xc74f5f44 0xc0146166 get_partition_list(0xc74d8000)
0xc74f5f8c 0xc01463f3 get_root_array(0xc74d8000, 0x13, 0xc74f5f88,
0xf3, 0xc00)
0xc74f5fbc 0xc0126138 array_read(0xc76cd80, 0x804aef8, 0xc00, 0xc76cdf94)
0xbffffcd4 0xc0108b30 sys_read(0x3, 0x804aef8, 0x1000, 0x1000, 0x804aef8)
kdb> bp
Instruction Breakpoint #0 at 0xc0111ab8 (schedule) in dr0 is disabled on cpu 0
Data Access Breakpoint #1 at 0xc024ddf4 (gendisk_head) in dr1 is enabled on cpu
0 for 4 bytes
kdb> go
[root@host /root]#

3. ss

kdb> bp gendisk_head datar 4
Data Access Breakpoint #0 at 0xc024ddf4 (gendisk_head) in dr0 is enabled on cpu 0
for 4 bytes
kdb> go
[root@host /root]# cat /proc/partitions
Entering kdb on processor 0 due to Debug Exception @ 0xc01845e3
Read/Write breakpoint #0 at 0xc024ddf4
[0]kdb> ssb
sd_finish+0x7b: movzbl 0xc02565d4,%edx
sd_finish+0x82: leal 0xf(%edx),%eax
sd_finish+0x85: sarl $0x4,%eax
sd_finish+0x88: movl 0xc0256654,%ecx
sd_finish+0x8e: leal (%eax,%eax,4),%edx
sd_finish+0x91: leal (%eax,%edx,2),%edx
sd_finish+0x94: movl 0xc0251108,%eax
sd_finish+0x99: movl %eax,0xffffffc(%ecx,%edx,4)
sd_finish+0x9d: movl %ecx,0xc0251108
sd_finish+0xa3: xorl %ebx,%ebx
sd_finish+0xa5: cmpb $0x0,0xc02565d4
[0]kdb> go
[root@host /root]#

[0]kdb> ss
sys_read: pushl %ebp
SS trap at 0xc01274c1
sys_read+0x1: movl %esp,%ebp
[0]kdb> ss
sys_read+0x1: movl %esp,%ebp
SS trap at 0xc01274c3
sys_read+0x3: subl $0xc,%esp
[0]kdb> ss
sys_read+0x3: subl $0xc,%esp
SS trap at 0xc01274c6
sys_read+0x6: pushl %edi
[0]kdb>

 6

五、Quagga 套件

Quagga 為一路由軟體套件，此套件為一共享軟體，可以在網路上自由

下載使用。Quagga 由著名的路由軟體 Zebra 改版而來，支援 OSPFv2, OSPFv3,

RIP v1 and v2, RIPng 以及 BGP-4 協定。

Quagga 在安裝完後，會在本機使用第 2601 號埠，提供使用者遠端登入

設定。登入後為 Quagga 之 view mode，只提供基本觀察指令，不能修改其

設定。另一模式為 configure mode，可供遠端設定更多 Quagga 設定。

Quagga view mode 指令列表如下：
Command Description

echo

enable

exit

help

list

quit

show

terminal

who

Echo a message back to the vty

Turn on privileged mode command

Exit current mode and down to previous mode

Description of the interactive help system

Print command list

Exit current mode and down to previous mode

Show running system information

Set terminal line parameters

Display who is on vty

Quagga configure mode 指令列表如下：
Command Description
access-list

banner

debug

enable

end

exit

help

hostname

interface

ip

ipv6

line

list

log

no

Add an access list entry

Set banner string

Debugging functions (see also 'undebug')

Modify enable password parameters

End current mode and change to enable mode.

Exit current mode and down to previous mode

Description of the interactive help system

Set system's network name

Select an interface to configure

IP information

IPv6 information

Configure a terminal line

Print command list

Logging control

Negate a command or set its defaults

 7

password

quit

router-id

service

show

table

write

smux

Assign the terminal connection password

Exit current mode and down to previous mode

Manually set the router-id

Set up miscellaneous service

Show running system information

Configure target kernel routing table

Write running configuration to memory, network, or ..

SNMP MUX protocol settings

. Ⅳ 實驗方法

 我們的實驗的過程大致可分為三個部分，這三個部份並沒有一定的先後關

係。KDB 為一個 Linux 核心除錯工具，我們將利用它來了解核心對於網路封包

處理流程。再使用 route 指令來對 Linux router 作設定，並安裝 Quagga 套件，讓

router 支援動態路由。最後再用簡單的 ping 指令來對實驗所建構的 Linux 路由器

進行測試，確認該路由器的封包傳送功能是否正常運作。

. Ⅴ 實驗步驟

1. 安裝 Linux

安裝 Linux 非常簡單，只需要用光碟或 FTP 等就可以灌好。坊間有許

多參考書籍介紹安裝這部分，網路上也有很多網站有說明文件，在此就不贅

述。

2. 設定並測試 Linux router

1. 設定 Linux router 的二張網路卡的 IP 位址分別為 192.168.1.254 和

192.168.2.254，netmask 皆為 255.255.255.0

2. 分別於兩張網卡之 interface 接上一 PC，IP 位址分別為 192.168.1.1，

GATEWAY 為 192.168.1.254 和 192.168.2.1，GATEWAY 為 192.168.2.254

netmask 皆為 255.255.255.0

3. 分別於 PC A 及 PC B，使用 PING 指令，測試 router 是否正常運作。

於 ip 為 192.168.1.1 之 PC 上，鍵入 ping 192.168.1.2，測試該主機是否有

回應。反之於 192.168.1.2 之 PC 上，作相同測試。

 8

3. 安裝核心與 KDB

依前面「 .Ⅱ 實驗設備」中所提及的方法取得 Linux 核心和 KDB。在/usr/src

下 解 開 核 心 的 原 始 碼 ， 接 著 將 kdb-v4.4-2.6.16-common-5.bz2 以 及

kdb-v4.4-2.6.16-i386-3.bz2 放到 /usr/src/linux-2.6.16 這個新解開的目錄，

bzip2 –d kdb-v4.4-2.6.16-common-5.bz2 、bzip2 -dkdb-v4.4-2.6.16-i386-3.bz2

解開，要 patch 之前最好先檢視一下 patch 檔，選定以 patch –p1 <

kdb-v4.4-2.6.16-common-5 和 patch –p1 < kdb-v4.4-2.6.16-i386-3 指令進行

patch，最後便要進行核心編繹的動作。

編譯新核心的部份可以參照實驗二：Linux 下網路驅動程式追蹤的實驗

步驟 2.，但在設定核心時有幾點要特別注意：1.確認所選用的網路卡裝置應

能 在 核 心 版 本 (Linux-2.6.16) 正 確 驅 動 。 2. 需 選 用 CONFIG_KDB 、

CONFIG_KDB_FRAMEPTR 和 CONFIG_KDB_OFF，才能開啟 KDB 的功能。

4. 使用 KDB 追蹤核心流程

安裝完核心並重新開機後，使用 echo “1” > /proc/sys/kernel/kdb 手動開啟

KDB module 之功能，任意時候都可以按 Pause 鍵來啟動 KDB。在啟動 KDB

後，我們設定 ip_rt_ioctl 這個函式中斷點並且在 shell prompt 下鍵入指令 route

del default，這個指令有用到 kernel 中的 ip_rt_ioctl 函式，所以此時自動進入

KDB 中，我們可以透過 bt，ss 和 ssb 等指令觀察 kernel 的運作並將 ip_rt_ioctl

所呼叫過的函式紀錄起來【記錄 1】，另外在【記錄 2】中，觀察 ip_route_input。

你也可以和/usr/src/linux 的 kernel source tree 交互比對驗證。

5.安裝和設定 Quagga 套件

1.請至 Quagga 官方網站[2]下載此套件 quagga-0.99.4-1.fc5.i386.rpm，使用 rpm

方式安裝套件

2.設定 Zebra 並且啟動 Zebra

[root@localhost]# rpm -ivh quagga-0.99.4-1.fc5.i386.rpm

Preparing... ####################################### [100%]

 1:quagga ####################################### [100%]

 9

3.登入 Quagga 並秀出目的路由資訊

4.在 Quagga 中加入靜態路由
esslab16.cis.nctu.edu.tw> enable 進入 enable mode

Password:nctu 輸入密碼 nctu

esslab16.cis.nctu.edu.tw# configure terminal 進入 configure mode

新增一靜態路由

esslab16.cis.nctu.edu.tw(config)# ip route 192.168.100.0/24 eth0

esslab16.cis.nctu.edu.tw(config)# exit 離開 configure mode

esslab16.cis.nctu.edu.tw# show ip route 秀出路由資訊

Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

 I - ISIS, B - BGP, > - selected route, * - FIB route

C>* 127.0.0.0/8 is directly connected, lo

C>* 192.168.1.0/24 is directly connected, eth0

C>* 192.168.2.0/24 is directly connected, eth1

S>* 192.168.100.0/24 [1/0] is directly connected, eth0 靜態路由資訊加入成功

[root@ localhost]# vi /etc/quagga/zebra.conf

hostname linux.router 設定此路由器之主機名稱

password nctu 設定密碼為 nctu

enable password nctu 啟動密碼

log file zebra.log 將所有 zebra 產生的資訊存到 zebra.log 中

[root@ localhost]# /etc/init.d/zebra start 啟動 zebra

[root@ localhost]# netstat –tunlp 查詢 zebra 是否正確啟動

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 127.0.0.1:2601 0.0.0.0:* LISTEN 6422/zebra

[root@localhost ~]# telnet localhost 2601

Trying 127.0.0.1...

Connected to localhost.localdomain (127.0.0.1).

Escape character is '^]'.

Hello, this is Quagga (version 0.99.4).

Copyright 1996-2005 Kunihiro Ishiguro, et al.

User Access Verification

Password:

localhost> show ip route

Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

 I - ISIS, B - BGP, > - selected route, * - FIB route

C>* 127.0.0.0/8 is directly connected, lo

C>* 192.168.2.0/24 is directly connected, eth0

C>* 192.168.2.0/24 is directly connected, eth1

K>* 169.254.0.0/16 is directly connected, eth1

 10

K>* 169.254.0.0/16 is directly connected, eth1

5.設定 ripd 服務

. Ⅵ 實驗記錄

記錄 內容

1 觀察 ip_rt_ioctl 所呼叫的函式。

2 觀察 ip_route_input 所呼叫的函式。

[root@localhost]# vi /etc/quagga/ripd.conf

hostname linux.router 設定 Router 的主機名稱

password nctu 設定密碼為 nctu

router rip 啟動 Router 的 rip 功能

network 192.168.1.0/24 指定監聽此網域

network eth0 指定監聽此介面

network 192.168.2.0/24 指定監聽此網域

network eth1 指定監聽此介面

version 2 啟動 RIPv2 服務

log stdout 在螢幕輸出標準輸出的資料

[root@localhost]# /etc/init.d/ripd start

[root@localhost]# netstat -tulnp

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:2602 0.0.0.0:* LISTEN 21373/ripd

 11

3 如何用 route 指令，刪除 192.168.1.0 端之 pc 對 192.168.2.0 之路由?並

使用 ping 指令測試對 routing table 之修改是否成功。

4 於 192.168.1.1 架設 ftp server，並使用 PC:192.168.1.2 為 client 測試傳輸

速度，並記錄最高傳輸速度。

5 步驟 2-3 中，使用 ping 指令測試 router 功能是否正常，請將 ping 之結

果畫面截取下來，並紀錄之。

6 實驗步驟中登入 quagga，並 show 出當時 router 之路由資訊，請紀錄實

驗之 router 的完整路由資訊。

7 使用 netstat – tulnp 指令查詢主機之有開啟服務的埠號，並紀錄下來。

. Ⅶ 問題與討論

一、請問如果需要製作具有 IP Masquerade 和 Firewall 功能的 Linux 路由器，有

那些地方是需要修改或新增的？而那些地方又是應該要注意的？

二、如果希望為這台 Linux 路由器加上具有 QoS 的功能，請問有那些地方需要

增加或修改，又那些地方具有這些資訊？（可以列出 paper 或者網站）

三、請問在 Linux kernel 中，每個封包進入之後，路由查詢的處理流程為何，由

那幾個函式處理?

 12

四、在 Linux kernel 中，除了一般的路由表以外，還有快取路由表。試比較這兩

個路由表之結構。

五、在安裝 KDB 這個套件的步驟中，版本的相依性絕對地重要，試從你實驗過

程中的觀察，說明為何版本相依性如此重要。

六、自問自答。(可以是您在操作所遇到的問題並解決的方法，或是新的啟示和

想法)

VIII. 參考文獻

[1]. Fedora Project, sponsored by Red Hat,http://fedora.redhat.com/.

[2]. The Linux Kernel Archives,http://www.kernel.org/.

[3]. SGI - Developer Central Open Source | KDB, http://oss.sgi.com/projects/kdb/.

[4]. Quagga Software Routing Suite, http://www.quagga.net/.

[5]. Alessandro Rubini, "Linux Device Drivers", O’Reilly & Associations, Feb 1998.

