
US 20140337674A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2014/0337674 A1 

Ivancic et al. (43) Pub. Date: NOV. 13, 2014 

(54) 

(71) 

(72) 

(73) 

(21) 

(22) 

(60) 

NETWORK TESTING 

Applicant: NEC Laboratories America, Inc., 
Princeton, NJ (US) 

Inventors: Franjo Ivancic, Princeton, NJ (US); 
Cristian Lumezanu, East Windsor, NJ 
(US); Gogul Balakrishnan, Princeton, 
NJ (US); Willard Dennis, 
Lawrenceville, NJ (US); Aarti Gupta, 
Princeton, NJ (US) 

NEC Laboratories America, Inc., 
Princeton, NJ (US) 

Assignee: 

App1.No.: 14/270,445 

Filed: May 6, 2014 

Related US. Application Data 

Provisional application No. 61/821,796, ?led on May 
10, 2013. 

Publication Classi?cation 

(51) Int. Cl. 
H04L 12/26 (2006.01) 

(52) US. Cl. 
CPC .................................... .. H04L 43/50 (2013.01) 

USPC .......................................................... .. 714/43 

(57) ABSTRACT 

A network testing method implemented in a software-de?ned 
network (SDN) is disclosed. The network testing method 
comprising providing a test scenario including one or more 
network events, injecting said one or more network events to 
the SDN using an SDN controller, and gathering network 
traf?c statistics. A network testing apparatus used in a soft 
ware-de?ned network (SDN) also is disclosed. The network 
testing apparatus comprising a testing system to provide a test 
scenario including one or more network events, to inject said 
one or more network events to the SDN using an SDN con 

troller, and to gather network traf?c statistics. Other methods, 
apparatuses, and systems also are disclosed. 

Wogtammabie 
523$; {lemmiier 



Patent Application Publication Nov. 13, 2014 Sheet 1 0f 6 US 2014/0337674 A1 

¥>wgmmmabiie 
58M Contrmiiar 



Patent Application Publication Nov. 13, 2014 Sheet 2 0f 6 US 2014/0337674 A1 

"mama ': 

FIG. 2 



Patent Application Publication Nov. 13, 2014 Sheet 3 0f 6 US 2014/0337674 A1 

FIG. 3 



Patent Application Publication Nov. 13, 2014 Sheet 4 0f 6 US 2014/0337674 A1 

FIG. 4 



Patent Application Publication Nov. 13, 2014 Sheet 5 0f 6 US 2014/0337674 A1 

3?? wii; 

FIG. 5 



Patent Application Publication Nov. 13, 2014 Sheet 6 0f 6 US 2014/0337674 A1 

Pragrammabie 
5m Cantm?esr 



US 2014/0337674 A1 

NETWORK TESTING 

[0001] This application claims the bene?t of Us. Provi 
sional Application No. 61/821,796, entitled “SDTN: Soft 
ware-De?ned Testing Network,” ?led on May 10, 2013, the 
contents of which are incorporated herein by reference. 

BACKGROUND OF THE INVENTION 

[0002] The present invention relates to network testing and, 
more particularly, to network testing of a software-de?ned 
network (SDN). 
[0003] The recent emergence of cloud computingithe use 
of hardware or software computing resources over a network 
such as the intemetihas led to new opportunities for large 
scale systems such as Big Data applications. End users of 
cloud-based applications often entrust the user’s data to 
remote services by software and infrastructure providers. For 
example, in the Software as a Service (SaaS) business model, 
the end user typically accesses the on-demand provided soft 
ware through a thin client via a web browser, while the user’ s 
data is stored at the application-service provider. According 
to a recent estimate, SaaS sales reached $10 billion in 2010, 
and are projected to double by 2015. The rapid growth of this 
business model is partially explained by the ease of deploy 
ment of applications, resiliency of a deployed system through 
fault tolerance, performance, scalability and elasticity. 
[0004] However, testing cloud/ distributed applications 
faces major new challenges: Cloud applications are an intri 
cate combination of complex and dynamically changing 
components such as virtual machines (VMs), servers and 
services that communicate through a potentially wide-area, 
unreliable and uncontrollable network connection such as the 
internet. Systematic testing of interactions between complex 
components is non-trivial. 
[0005] We consider the problem of testing a distributed 
cloud application for resilience and performance against net 
work congestion and network connection loss. Rather than 
mimicking real-world network traf?c through arbitrary back 
ground tra?ic, or wide-area network emulators such as Dum 
mynet, netem, NISTNet or WANem, we propose to utilize the 
framework of software-de?ned networking (SDN) for this 
task. 
[0006] SDN is often considered as an essential building 
block in virtualiZing networks. Here, we propose to use SDNs 
to help test distributed applications in a controlled, but real 
test environment, by controlling and forcing hard-to-capture 
network degradations in the wild. We stress that the main 
difference between this approach and the well-studied use of 
network emulators is that all data traf?c actually ?ows 
through a real software-de?ned network such as an Open 
Flow network, rather than through simulations or emulations 
of modeled communication links. 
[0007] Related art on large-scale distributed cloud applica 
tion testing has focused on two distinct testing goals: Testing 
for resilience and robustness to failures, and testing for per 
formance. One approach is to use stress testing, which has 
been used for both goals. In stress testing, the application is 
put in a test environment under a heavy load situation and 
performance and robustness are inspected. For this, one needs 
to somehow create network traf?c and conditions with heavy 
loads. 
[0008] In the realm of performance testing, network emu 
lators have been used to allow testing of network performance 
in a potentially stressed environment without having to actu 

Nov. 13, 2014 

ally stress the network. This requires a model of the network 
that can be used for network emulations. 

[0009] In the realm of resiliency and robustness testing, 
fault injection-based techniques are frequently used to test 
distributed applications. These faults are generally injected 
by forcing certain events (such as prematurely terminating 
instances of a running distributed service as in chaos monkey 
testing). 
[0010] We observe the effects of network failures on the 
distributed applications without having to actually stress a 
real network. Furthermore, for effectiveness of testing and 
improved tester productivity, we want to avoid modifying the 
applications being tested. Instead, we propose to use SDNs to 
help test distributed applications in a controlled, but real test 
environment, by controlling and forcing hard-to-capture net 
work degradations in the wild. We stress that the main differ 
ence between this approach and the well-studied use of net 
work emulators is that all data traf?c actually ?ows through a 
real software-de?ned network such as an OpenFlow network, 
rather than through simulations or emulations of modeled 
communication links. 

[0011] The key idea of our approach is to utilize the pro 
grammability of the SDN controller to provide an easy-to 
control network virtualization layer that cloud system testers 
can use to test their cloud applications, for resilience to net 
work failures such as network tra?ic spikes, congestion, con 
nection loss, etc. In our approach, the SDN controller exer 
cises control over all installed network traf?c rules on the 
switches to purposefully inject such network failures and to 
monitor network-level events. We posit that this approach 
could be extended to perform performance testing of distrib 
uted applications, by building upon some of the advance 
features of modern network emulators. 

[0012] Our main goal is to allow effective testing of modern 
distributed cloud services that rely on network communica 
tion. Many robustness issues of such distributed services are 
likely due to communication issues that are simply hard to test 
in the current standard test environments, which generally 
consist of a test server hosting many VMs. From an applica 
tion testers’ perspective, we offer to lift the network virtual 
ization capability of software-de?ned networking to her, so 
that she can easily focus on her task of testing interesting 
scenarios rather than on modeling the actual network condi 
tions precisely. 

[0013] Finally, we note that we propose the use of Open 
Flow for distributed cloud application testing in an OpenFlow 
test network environment. However, this does not mean that 
the ?nal deployed distributed application requires an Open 
Flow-enabled network. Note that we use the OpenFlow-en 
abled network just as a way for a tester to control the network 
in an ef?cient manner with respect to the testing priorities and 
policies. In other words, the ?nal deployed application may or 
may not use an OpenFlow-enabled network. 

[0014] Cost of testing is lowered since a testbed is built 
using open-source components only, or it can be used in a live 
SDN already in use, by creating a separate virtual slice for 
testing. 
[0015] Complexity and effort of setting up a test environ 
ment are also reduced, since it does not require de?ning 
low-level network characteristics/conditions as needed by 
network emulators. This also improves tester productivity. 



US 2014/0337674 A1 

REFERENCES 

[0016] [1] M. Canini, D. Venzano, P. Peresini, D. Kostic’, 
and J. Rexford. Automating the testing of OpenF low appli 
cations. In NSDI. USENIX, 2012. 

[0017] [2] M. Carbone and L. Rizzo. Dummynet revisited. 
Computer Communication Review, 40(2):12-20, 2010. 

[0018] [3] N. Foster, R. Harrison, M. J. Freedman, C. Mon 
santo, J. Rexford, A. Story, and D. Walker. Frenetic: A 
network programming language. In IFIP. ACM, 2011. 

[0019] [4] H. S. Gunawi, P. Joshi, P. Alvaro, J. Yun, J. M. 
Hellerstein, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dus 
seau. FATE and DESTINI: A framework for cloud recov 
ery. In NSDI, 2011. 

[0020] [5] P. Joshi, H. S. Gunawi, and K. Sen. PREFAIL: A 
programmable tool for multiple-failure injection. In OOP 
SLA, pages 171-188. ACM, 2011. 

[0021] [6] M. KuZ’niar, P. Peresini, M. Canini, D. Venzano, 
and D. Kostic’ . A SOFT way for OpenF low switch interop 
erability testing. In CoNEXT, 2012. 

[0022] [7] R. Liibke, R. LungwitZ, D. Schuster, and A. 
Schill. Emulation of complex network infrastructures for 
large-scale testing of distributed systems. In WWW/Inter 
net. IADIS, 2012. 

[0023] [8] P. D. Marinescu and G. Candea. Ef?cient testing 
of recovery code using fault injection. ACM Trans. Com 
put. Syst., 29(4):11, 2011. 

[0024] [9] N. McKeown, T. Anderson, H. Balakrishnan, G. 
Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner. 
OpenFlow: Enabling innovation in campus networks. SIG 
COMM Comp. Comm. Review, 38(2), 2008. 

[0025] [10] C. Monsanto, N. Foster, R. Harrison, and D. 
Walker. A Compiler and Run-time System for Network 
Programs. In POPL. ACM, 2012. 

[0026] [11] M. Nambiar and H. K. Kalita. Design ofa new 
algorithm for WAN disconnection emulation and imple 
menting it in WANem. In ICWET, pages 376-381. ACM, 
201 1. 

[0027] [12] L. Nussbaum and O. Richard. A comparative 
study of network link emulators. In SpringSim. SCS/ACM, 
2009. 

[0028] [13] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, 
and A. Moore. OFLOPS: An open framework for Open 
Flow switch evaluation. In PAM, 2012. 

[0029] [14] B. White, J. Lepreau, L. Stoller, R. Ricci, S. 
Guruprasad, M. Newbold, M. Hibler, C. Barb, and A. 
Jo glekar. An integrated experimental environment for dis 
tributed systems and networks. In OSDI, 2002. 

[0030] [15] A. Wundsam, D. Levin, S. Seetharaman, andA. 
Feldmann. OFRewind: Enabling record and replay 
troubleshooting for networks. In ATC, 2011. 

BRIEF SUMMARY OF THE INVENTION 

[0031] An objective of the present invention is to lower the 
cost of testing a network. The present invention also reduces 
complexity and effort of setting up a test environment. 
[0032] An aspect of the present invention includes a net 
work testing method implemented in a software-de?ned net 
work (SDN). The network testing method comprises provid 
ing a test scenario including one or more network events, 
injecting said one or more network events to the SDN using an 
SDN controller; and gathering network traf?c statistics. 
[0033] Another aspect of the present invention includes a 
network testing apparatus used in a software-de?ned network 

Nov. 13, 2014 

(SDN). The network testing apparatus comprises a testing 
system to provide a test scenario including one or more net 
work events, to inject said one or more network events to the 
SDN using an SDN controller, and to gather network traf?c 
statistics. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0034] FIG. 1 depicts a Conceptual test view. 
[0035] FIG. 2 depicts a static ?ow rule for ZooKeeper test 
mg. 
[0036] FIG. 3 depicts a command to remove ZooKeeper 
testing rule. 
[0037] FIG. 4 depicts network topology of the testbed. 
[0038] FIG. 5 depicts a NULL pointer bug in ZooKeeper. 
[0039] FIG. 6 depicts combining OpenFlow-based testing 
with network emulators. 

DETAILED DESCRIPTION 

[0040] We are interested in ?nding issues in distributed 
cloud applications and services with respect to network com 
munication degradations such as failures or congestions. We 
assume that the service is distributed on a number of virtual 
machines (VMs). The tester uses a software-de?ned network 
to control network events and communication links between 
the distributed application running on several VMs. We use a 
programmable controller. In the following picture we show a 
conceptual view of the test network consisting of a program 
mable software-de?ned networking controller, two switches 
S1 and S2, and several VMs denoting the distributed applica 
tion. 

[0041] The tester provides a high-level test scenario 
description, which includes relevant events in the distributed 
application and relevant events in the controlled network. For 
example, the tester has a particular work load that is used for 
testing, and also speci?es what type of network events should 
occur at various stages of the execution of the distributed 
application. These network events relate to network connec 
tion loss or network connection degradations. The test system 
dynamically injects these network events using an SDN con 
troller such as through the OpenFlow application program 
ming interface (API). 
[0042] The advantage of using a full network for testing is 
that it allows us to test the actual application in a realistic 
network environment rather than just in an emulated environ 
ment. Furthermore, the executed tests can run in a dynami 
cally changing network environment rather than a static emu 
lation setting. 
[0043] It may also be possible to use some ofthe advanced 
capabilities provided by network emulators in an SDN-based 
test network. One such use case would be to con?gure certain 
network characteristics captured within several instances of 
network emulators, and have the SDN-based test network 
dynamically change which traf?c to route through these con 
?gured sub-network emulators. For example, as shown in the 
next picture, we may consider having three paths between 
switches S 1 and S2. The three paths would have different 
network characteristics which could be pre-con?gured with 
specialized network emulator VMs, or could be dynamically 
adaptable. 
[0044] There are different use cases for such a combination 
of programmable network control with network emulators. 
First, we can utilize this approach as an extension of distrib 



US 2014/0337674 A1 

uted application testing. This would let the tester check for the 
application robustness and performance given certain emu 
lated network conditions. 

[0045] A second use case is to allow network emulators 
better scalability by distributing their workload onto multiple 
servers connected through an actual network. Network emu 
lators still face performance bottlenecks in estimation of net 
work effects in high data rate emulations. By distributing the 
emulation to various servers, the emulation performance can 
be increased. The additional advantage of using this in the 
context of SDNs is that we can design a programmable SDN 
module that monitors the performance of the distributed emu 
lation. Furthermore, the SDN module can act as a load bal 
ancer for network emulators by adapting ?ows to underuti 
lized emulation servers. 

[0046] We also observe that OpenFlow allows network traf 
?c statistics generation on individual switches, which are 
communicated to the OpenFlow controller. This information, 
in conjunction with the fact that the controller can choose 
desired lifetime lengths of installed rules, can be utilized by 
the tester for debugging purposes as well. For example, the 
tester can gather network-level statistics about how often a 
distributed application tried to connect to a certain port on 
different destination hosts. 

[0047] Further System Details 
[0048] Distributed cloud applications are an intricate com 
bination of complex and dynamically changing components, 
that communicate through an unreliable and uncontrollable 
network connection. Thus, testing such applications and ser 
vices in a systematic fashion is non-trivial. We show how to 
use software-de?ned networks (SDNs) to effectively test dis 
tributed applications for resilience to network issues such as 
communication delays. We rely on the programmability 
aspect of SDNs to virtualize the network to the tester. We 
present a promising initial implementation of these ideas 
using OpenFlow API. 
[0049] 
[0050] Cloud computingithe on-demand use of remote 
hardware or software computing resources over a networki 

has emerged as the de facto way of deploying new applica 
tions and services at scale. Applications and data reside on the 
cloud provider infrastructure and are accessed by users over 
the Internet using a web browser or thin client. According to 
a recent estimate, the sales of Software as a Service (SaaS), 
one of the most popular cloud-service models, reached $10 
billion in 2010, and are projected to double by 2015. 
[0051] Effective diagnosis of abnormal behavior is essen 
tial for maintaining availability and controlling costs of 
cloud-based applications. Operational problems can have 
severe ?nancial or availability implications. A recent study 
showed that every minute of outage costs US-based providers 
on average $5,600 (see http://tinyurl.com/cc23gb7). Anec 
dotal evidence suggests that the April 2011 AWS service 
outage cost Amazon around $2 million in revenue loss (see 
http://tinyurl.com/brvt50x). 
[0052] However, testing cloud applications and services is 
challenging. First, such applications contain complex and 
dynamic components with unpredictable interactions 
between them. In addition, these components are distributed 
across VMs and servers in the cloud and communicate among 
them and with the users through an unreliable network. For 
example, the aforementioned Amazon outage appears to have 
been caused by a networking event that triggerd repeated 

1 Introduction 

Nov. 13, 2014 

backups of the same data (see http://tinyurl.com/43tooca). 
Ideally, any service should be resilient to any networking 
event. 

[0053] Second, for accuracy and completeness, testing dis 
tributed cloud applications should cover a wide range of 
realistic testing scenarios. Testing applications under their 
natural environment, i.e., the unreliable and best-effort Inter 
net, is ideal but dif?cult because it is impossible to control 
network conditions to generate various testing scenarios. As a 
result, researchers have resorted to network emulators and 
simulators. Such tools enable ?ne-grained control over net 
work behavior and properties (e.g., delay, loss, packet reor 
dering, etc.) but focus on accurate network protocol emula 
tions rather than testing distributed applications. In addition, 
setting up a realistic emulation is not trivial because it 
requires abstractions and approximations of the real network 
and because it may not scale under certain scenarios (e.g., 
high data rates) [12]. 
[0054] We propose to use the framework of software-de 
?ned networks (SDN) to test distributed cloud applications 
for resilience against communications issues, such as net 
work congestion and loss. We do not speci?cally address 
hardware fault-tolerance. However, given that many applica 
tions are distributed, hardware failures affecting some hosts 
often result in communication delays or failures for other 
hosts. SDNs allow operators and administrators to manage 
the network from a centralized server and provides both the 
control and the coverage necessary to perform cloud testing. 
Similarly to network emulators, testers have control over 
network properties (by installing forwarding rules that direct, 
drop, or delay traf?c), but unlike emulators, the testing occurs 
in a real network and does not require generating network 
traf?c and simulating its properties and behavior. 
[0055] Software-de?ned networking enables us to build a 
testing network that is completely under control of the tester. 
The tester uses the centralized controller to con?gure the 
network with forwarding rules based on high-level testing 
goals, to inject network failures, and to monitor network-level 
statistics. For example, to test an application for reliability 
against partial connection loss, the controller can temporarily 
remove the rules that forward traf?c towards the application 
nodes. 

[0056] We build our testing network using OpenFlow [9], 
the most popular SDN protocol. OpenFlow is enabled in 
hardware switches offered by many vendors, including Cisco, 
IBM, Juniper, and NBC, and in software switches such as the 
Open vSwitch (see openvswitch.org). Furthermore, there are 
a number of open-source OpenFlow controllers available, 
including NOX, PDX (see http://www.noxrepo.org), and 
FloodLight (http://www.project?oodlight.org), amongst oth 
ers. We also emphasize that, although we propose to use 
OpenFlow to test cloud applications, the deployed applica 
tions do not require OpenFlow or any other SDN protocol to 
run. 

[0057] Contributions. 
[0058] Our contributions are, for example: 

[0059] We propose to use an OpenFlow-enabled test net 
work to test for resilience of distributed cloud applica 
tions to network stress and connection failures. 

[0060] We show how a tester may utilize such an envi 
ronment for ef?cient testing of cloud applications by 
presenting an implementation using open-source com 
ponents. 



US 2014/0337674 A1 

[0061] We present initial promising experiments on such 
an OpenFlow-enabled network test environment for 
some popular distributed services and applications. 

[0062] Overview. 
[0063] First, we present some relevant background on 
OpenFlow and network emulators in Section 2. Then, Section 
3 introduces desired aspects of a cloud application testing 
framework. Section 4 discusses our OpenFlow-based test 
framework. In Section 5, we showcase some early promising 
experimental results using our approach. Next, we discuss 
additional related work in Section 6. Finally, Section 7 ends 
with a discussion of the proposed framework and directions. 
[0064] 2 Background 
[0065] 2.1 OpenFlow 
[0066] Software-de?ned networking separates the control 
plane from the data plane in a network. The control plane 
resides on a logically centralized server (the controller), while 
the fast data plane remains on the network switches. The 
controller enforces network administrator policies by trans 
lating them into low-level con?gurations and inserting these 
dynamically into switch ?ow tables using an API such as 
OpenFlow. 
[0067] A network’s con?guration consists of the forward 
ing rules installed at the switches. Every rule consists of 
matching entries that specify which packets match a rule, an 
action to be performed on matched packets, and a set of 
counters (which collect statistics). Possible actions include 
“forward to output port”, “forward to controller”, “drop”, etc. 
The controller uses a specialized control packet, called Flow 
Mod, to insert a rule into a switch’s data plane. 
[0068] Rules canbe installed proactively (i.e., at the request 
of the application or operator) or reactively (i.e., triggered by 
a PacketIn message as described below). Rules can be 
matched based on many parameters of a packet header, 
including the source and destination IP addresses or media 
access control (MAC) addresses, port numbers used for com 
munication, type of communication protocol used, etc. The 
OpenFlow network operates in the following (simpli?ed) 
way. 
[0069] On the arrival of the ?rst packet of a new ?ow (i.e., 
a sequence of packets from a source to a destination), the 
switch looks for a matching rule in the ?ow table and per 
forms the associated action. If there is no matching entry, the 
switch buffers the packet and noti?es the controller that a new 
?ow has arrived by sending a PacketIn control message con 
taining the headers of the packet. The controller responds 
with a FlowMod message that contains a new rule matching 
the ?ow that is to be installed in the switch’s ?ow table. The 
switch installs the rule and forwards the buffered and subse 
quent ?ow packets according to it. 

TABLE 1 

A simpli?ed OpenFlow ?ow entry table 

Priority src—IP dest—IP action 

17 192.168.10.10 * outport3 
12 192.168.10.* * outport 7 
5 192.168.*.* 192.168.105 drop 

Example 1 

[0070] Consider the simpli?ed ?ow entry table presented in 
Table 1. It only shows rule matches based on the IP addresses 

Nov. 13, 2014 

of the sending host and the destination host. We assume that 
all other rule components are wildcard matches in this 
example. Each rule has a priority, which decides the order of 
processing. When a new packet arrives at a switch con?gured 
in this way, the rule with priority 17 will be analyzed ?rst. If 
the packet originated at 192.168.10.10, the switch forwards it 
to port 3. However, if the packet originated from any other IP 
with pre?x 192.168.10, then the packet is sent to port 7. If 
neither rule matches the incoming packet, and the packet 
originated at a host with IP pre?x 192.168 and destination 
192.168.10.5, the last rule is used to drop the packet. This 
could be for reasons of SPAM removal or ?rewall related 
issues. Finally, if none of the installed rules matches the 
incoming packet, the switch creates a PacketIn message to be 
sent to the controller for further processing. 

[0071] 2.2 Network Emulators 
[0072] Network simulators and network emulators have 
been investigated for the past two decades for protocol-level 
performance testing. The Linux kernel provides the netem 
package (see http://tinyurl.com/25uxcbo), which is a network 
emulation functionality that allows protocol testing by emu 
lating different properties of wide area networks. WANem 
[11] provides a browser-based GUI to control netem. It also 
provides some standard connection metrics such as band 
width for well-known communication standards or connec 
tion cables. Dummynet [2] is another popular emulator. There 
are also large-scale emulation environments such as Emulab 

[14]. 
[0073] Network emulators are used to model the behavior 
of wide-area networks using a simulated network, which a 
user controls using information such as bandwidth, capaci 
ties, roundtrip packet propagation delays, and other param 
eters related to networks and tra?ic shaping. It was shown that 
network emulators can estimate the performance of protocols 
very well, although they may face scalability issues, espe 
cially when emulating high data rates [12]. In addition, net 
work emulators often allow speci?cation of other possible 
network effects such as packet loss, packet duplication, 
packet re-ordering, etc. Although our testing framework does 
not speci?cally test against these events, we believe it can 
effectively replicate their effect by degrading network perfor 
mance. 

[0074] Furthermore, setting up a realistic emulation model 
is non-trivial and contains abstractions and approximations of 
the real network and traf?c management. In order to perform 
a realistic network emulation, we may need to generate real 
istic background network traf?c to model potentially con 
gested network conditions. Instead, our approach allows ?ne 
grained testing in a real (OpenFlow) network with actual 
switches, and with actual background tra?ic in a live network. 

[0075] 
[0076] In this section, we present our SDN-based test net 
work framework for testing of distributed applications. A 
conceptual test environment overview is shown in FIG. 0. The 
distributed application runs on a number of connected VMs, 
depicted in the ?gure as connected through two switches S 1 
and S2. The control plane of the network is shown in red 
(dashed lines), while the data plane is shown in blue (solid 
lines). The tester can create work-loads for the distributed 
application (dotted green line). However, the tester also con 
trols the OpenF low controller by programming it to install 
rules that manage or shape the traf?c for some network test 
scenarios. 

3 Cloud Application Testing 



US 2014/0337674 A1 

[0077] 3.1 Resiliency Test Requirements 
[0078] There are a number of features that a distributed 
application testing framework needs to support. At a high 
level, we can distinguish between tests for functional correct 
ness, performance (and other non-functional requirements), 
and resiliency of the application to network/communication 
latencies and loss. Our main focus is on resiliency of the 
application to communication bottlenecks. Therefore, the test 
framework should have the following capabilities: 
[0079] 1. Network-Based Resiliency-Related Scenarios: 

[0080] (a) Throttling or link failure of switch-level traf?c 
on central communication links, e.g. between routers 

[0081] (b) Throttling or link failure of application mes 
sages only (application-level degradation) 

[0082] (c) Throttling or link failure of all traf?c between 
two VMs (localized, or VM-level degradation) 

[0083] (d) Throttling or link failure of localized applica 
tion-level communication between two VMs 

[0084] (e) Network monitoring capabilities for messages 
in the distributed system under test 

[0085] 2. VM-Based Resiliency-Related Scenarios 
[0086] (a) Health monitoring and logging of the distrib 

uted service or application 
[0087] (b) High-level control of application such as shut 
down of component, shutdown of VM, etc. 

[0088] 3. Work-Load Generation 
[0089] 4. Dynamic and Fast Changes of Network Condi 
tions 
[0090] Since we focus on testing cloud applications with 
respect to network communication failures and congestions, 
we assume that the tester has relevant test scenarios in mind. 
Thus, we will not discuss further the capabilities mentioned 
above in (2) and (3). In Section 4, we show how SDN can 
naturally provide features (1) and (4). 
[0091] 3.2 Defect Types 
[0092] Similar to other testing strategies such as stress test 
ing and fault-injection based testing, this approach can dis 
cover a variety of defects. These range from high-level design 
mistakes where desired properties are not maintained, to low 
level coding bugs such as NULL-pointer exceptions. Our 
tests do not target any observed defect type in particular. We 
leverage any testing policy that is used, including any existing 
tests and monitors or health checks. Crashes and other visible 
defects reported in logs are easy to detect. 
[0093] 4 OpenFlow-Based Test Framework 
[0094] In this section we present two SDN modules that 
enable dynamic and fast changes of network conditions by 
dropping, degrading, or rerouting communication ?ows. 
These modules offer a natural way to satisfy the test features 
(1) and (4) in Section 3. Both modules are implemented under 
the open-source FloodLight OpenFlow controller: static ?ow 
pusher comes with FloodLight and ?ow delay was developed 
by us. 
[0095] 4.1 Static Flow Pusher Module 
[0096] The static ?ow pusher module allows a network 
administrator to insert forwarding rules into an OpenFlow 
network. This module is typically used based on a priori (or 
out-of-band) knowledge of incoming ?ows, and thus allows 
to proactively install rules on switches before such packets 
arrive. This module is exposed to the administrator through a 
RESTAPI and, for each request, generates FlowMod packets 
that communicate the desired rule change to the OpenF low 
switch. 

Nov. 13, 2014 

Example 2 

[0097] Consider the case where the tester analyzes the dis 
tributed service ZooKeeper (see http://zookeeper.apache. 
org). FIG. 1 shows a sample curl command that the tester can 
issue to the static ?ow entry pusher module. Here we model 
the effect of a bad connection from a particular sourceVM. As 
shown, the rule only matches on TCP packets (protocol 6), 
and one source VM. It applies only to messages that are sent 
to port 2888, the default port number that ZooKeeper uses for 
followers to connect to the leader. Thus, any other traf?c 
originating from the sender VM would not be impacted by 
this rule. However, note that the rule does not specify a des 
tination host. The tester can further specialize this rule by 
adding a destination MAC address to impact only traf?c 
between two particular end host VMs. 
[0098] This rule forwards all matching packets to the Open 
Flow controller. The programmable controller, and thus the 
tester, can decide how to further process these packets. In our 
current implementation, the ?ow delay module, described 
below, processes these packets. If the tester wants to drop 
matching packets (modeling a communication loss), the rule 
would end in an empty actions command, as in “actions”:“ ”. 
[0099] Finally, the tester can re-establish the connection by 
deleting the rule using another curl command, as shown in 
FIG. 2. Note that the deletion utilizes the name of the rule. 
[0100] Wildcard Usage. 
[0101] So far, we have presented how to use the OpenFlow 
protocol to selectively degrade individual communication 
links, between one source and one destination. The tester can 
thus affect large parts of the communication network by com 
bining several updates to individual communication links. 
However, sometimes the tester wants to impact a large section 
of a network at once (requirement 1 a). For this, we use the 
OpenFlow protocol facility of wildcards. 
[0102] The OpenFlow protocol allows use of wildcards in 
rule matching. Consider, for example, that all VMs for the 
switch on the left in FIG. 0 are assigned an IP in the range 
192.168.10.0-255, whereas all VMs for the switch on the 
right are assigned an IP in the range 192.168.20.0-255. We 
can thus model a large-scale disconnect of the two switches 
by specifying that any traf?c from 192.168.10.* to and from 
192.168.20.* is impacted using only two rules. 
[0103] 4.2 Flow Delay Module 
[0104] The FloodLight static ?ow pusher module allows 
our tester to control the behavior of one or many network 
communication ?ows between VMs. As discussed above, the 
tester can install rules that drop particular types of commu 
nication. The tester may thus observe the applicationbehavior 
under complete or partial connectivity loss. Note that partial 
connectivity loss is likely to become a debugging issue as 
more application traf?c is shaped by routing it through dif 
ferent virtual sub-networks. 
[0105] While dropping packets is enough to model (partial) 
connectivity loss, we also want to test applications in con 
gested network situations. To do so, we developed a new ?ow 
delay module in FloodLight. This module, implemented in 
under 200 lines of Java, accepts a con?guration ?le that 
contains pertinent information about the application that is 
being tested. This information includes MAC addresses of the 
participating hosts/VMs, the relevant port numbers etc., 
which is used to generate the appropriate rule updates by the 
controller. 
[0106] The tester con?gures the ?ow delay module by 
specifying a range of delays to be applied to matching packets 



US 2014/0337674 A1 

(in ms) When a switch forwards a packet to the SDN control 
ler, the ?ow delay module ?rst checks whether this packet is 
part of a ?ow under test. If it is not, it will be processed by 
other standard FloodLight modules. Otherwise, the module 
randomly chooses a delay from within the speci?ed range of 
delays. The module holds on to the current packet for the 
speci?ed delay period, and releases it to continue its path to 
the destination. The tester can thus emulate network conges 
tion or long routes for only the particular network ?ows of 
interest. By allowing the tester to specify a range of delays, 
the tester can not only check for congested networks but also 
increase the chance of packets arriving at the destination 
out-of-order. 
[0107] 5 Experiments 
[0108] 5.1 Implementation 
[0109] We implemented the techniques on a server with 
two physical Intel Xeon processors, and each processor con 
tains 4 cores. The server has 32 GB memory, and runs Ubuntu 
12041 with the virtualization library libvirt version 1.0.4. 
We use the OpenvSwitch version 1.10.90, and the FloodLight 
controller using development version 0.90+. Each bench 
marks described below was tested and analyzed in less than 
one work-day each. 
[0110] 5.2 Apache ZooKeeper 
[0111] The Apache ZooKeeper project is a centralized ser 
vice meant for maintaining high-level con?guration informa 
tion, providing distributed synchronization and group ser 
vices. ZooKeeper provides a well-tested, industry-standard, 
open-source Java implementation that is used by many other 
distributed services or applications. The VMs use the current 
ubuntu ZooKeeper version 3.3.5+dfsg1-1ubuntu1. The of? 
cial ZooKeeper project has currently two stable releases, 
which are release 3.3.6 and release 3.4.5. 

[0112] 5.2.1 Test Strategy 
[0113] We use a ZooKeeper ensemble of three VMs. In 
ZooKeeper, an ensemble is regarded as being in a good state 
if at least a majority (here, two VMs) are communicating with 
each other, and they agree upon a leader amongst the con 
nected VMs. When a leader becomes unresponsive, and if the 
other two follower-VMs are still in communication, they will 
re-elect a new leader amongst themselves. Should the third 
VM re-j oin the ensemble, it joins it as a follower. 
[0114] As a proof-of-concept of our SDN test framework, 
we developed a naive random test strategy for ZooKeeper. 
Each VM runs a random sequence of ZooKeeper events, 
including stopping and then re-starting the ZooKeeper ser 
vice, creating new elements in the shared con?guration state, 
re-setting values, querying some states, or deleting some 
states. The tester randomly disconnects communication links, 
or re-routes them through the delay ?ow module, and re 
connects them after some time. The rules that are installed and 
removed on the switches only apply to ZooKeeper messages. 
Since two ports are used for communication, one for leader 
election, and the other for following an elected leader, our 
random tester also decides whether to impact all ZooKeeper 
communications on a link or only one message type. 

[0115] 5.2.2 Resiliency Test Analysis 
[0116] We performed initial experiments using the 
described test setup. Notably, we observe that many com 
mands that are randomly executed as a work-load on some 

VM end with an uncaught KeeperException for reasons of 
communication loss. This is due of the fact, that our distrib 
uted work-loads do not check whether the VM is part of the 
ZooKeeper ensemble when a new command is started. Such 

Nov. 13, 2014 

executions are thus not a cause of concern, and are deemed 
recoverable errors in ZooKeeper’s terminology (see http:// 
wiki.apache.org/hadoop/ZooKeeper/ErrorHandling). 
[0117] However, we also found four distinct types of issues 
that we believe require further investigation. One of these is a 
NULL-pointer exception in the current Ubuntu precise ver 
sion of ZooKeeper, which has been ?xed in the official stable 
version 3.4.5. We highlight part of the offending code in FIG. 
3. Interestingly, the function call to zk.exist(.) may end with 
an exception or return NULL. The former is gracefully 
handled in an outer exception handler. 
[0118] We also noted three instances where the ZooKeeper 
application fails abruptly in a fatal state or error state, because 
ZooKeeper ends up in an unrecoverable state. Note that we 
are testing the ZooKeeper service as the application, and thus 
unrecoverable errors where the system cannot return in a 
good state are a problem. We believe that at least one of these 
cases is still not resolved in the newest version. 
[0119] 6 Related Work 
[0120] A related work with respect to distributed testing is 
the work by Lubke et al. on NESSEE [7]. They provide an 
architecture, based on Dummynet, that allows network emu 
lation of systems with typical client/server-based architec 
tures. The tool allows a tester to specify the network charac 
terics in detail using an XML-based test description language. 
The main goal, as is common for standard network emulators, 
is to get precise and accurate performance measurements. 
Our initial goal is to ?nd distributed application resiliency 
issues. We also address arbitrary distributed service architec 
tures. 

[0121] Generally, various stress testing or fault injection 
based methods are used to test for performance and robust 
ness in applications. During stress testing, a test network is 
saturated with heavy load conditions. Typical stress testing 
tools are Selenium (http://seleniumhqorg) or LoadRunner by 
HP. 
[0122] Random fault-inj ection based methods are also fre 
quently used for distributed application resiliency testing, 
such as chaos monkey testing or GameDay exercises. To 
allow testers more control where faults should be injected, 
various test description languages have been proposed. One 
such example is the tool LFI by Marinescu and Candea for 
fault-injection based testing of recovery code when library 
calls fail [8]. A recent work also targets robustness/resiliency 
testing of cloud applications. It allows a tester to specify a 
desired testing policy using application-dependent abstrac 
tion labels that expose internal states of the system. This is 
more effective than black-box testing, but needs support 
through an application instrumentation and a scheduler that 
controls and manages the ordering of certain execution 
events. Here, we treat the applications as black boxes and 
design programmable modules for an SDN to exercise rel 
evant network event orderings. 
[0123] Some recent work discusses formal veri?cation of 
OpenFlow modules [1, 3, 10] and testing of OpenFlow 
switches [6, 13]. Diagnosing and debugging of errors at the 
SDN level has also been investigated [15]. All these tech 
niques target the veri?cation and testing at the network level. 
We are instead using the SDN to test distributed cloud appli 
cations. 
[0124] 7 Directions 
[0125] We proposed the use of software-de?ned network 
ing for testing of distributed cloud applications. Our main 
goal is to ?nd resiliency-related issues in distributed services 



US 2014/0337674 A1 

that are due to network communication failures such as loss or 
degradation of connections. We showcase an implementation 
using the OpenFlow API and the FloodLight controller. 
[0126] The current capabilities of the FloodLight ?ow 
delay module can be emulated precisely enough using net 
work emulators. However, we note again the difference 
between emulating the communication and running it on an 
actual live network. We can also allow the tester even more 
control of the test scenarios. This includes the following 
extensions: systematic exploration of message orderings, net 
work-level test statistics gathering, performance estimation, 
and combining SDN control with network emumators. 
[0127] Systematic exploration of message orderings has 
been explored for fault injection in distributed services using 
FATE and DESTINI [4] and PreFail [5]. Performing such 
systematic exploration using a programmable SDN, however, 
does not require intrusive modi?cations to the application 
under test. Thus, we believe that developing further Open 
Flow modules will allow us to target additional testing goals. 
[0128] OpenF low collects network traf?c statistics on indi 
vidual switches, which are communicated to the controller. 
The tester can use this information in combination with the 
choice to set desired lifetime lengths of installed rules during 
debugging. 
[0129] We also foresee various use cases for a combination 
of programmable network control with network emulators. 
First, we can utilize this approach as an extension of distrib 
uted application testing for performance estimation. The 
tester can con?gure certain network characteristics captured 
by several instances of network emulators. The SDN-based 
test network can then dynamically change which traf?c to 
route through these con?gured sub-network emulators. A 
second use case is to allow network emulators better scalabil 
ity by distributing their workload onto multiple servers con 
nected through an actual network. The additional advantage 
of using SDNs is that we can design a new SDN module that 
monitors the performance of the distributed emulation. The 
SDN module thus acts as a load balancer for network emula 
tors by routing ?ows to underutilized emulation servers. 
[0130] The foregoing is to be understood as being in every 
respect illustrative and exemplary, but not restrictive, and the 
scope of the invention disclosed herein is not to be determined 
from the Detailed Description, but rather from the claims as 
interpreted according to the full breadth permitted by the 
patent laws. It is to be understood that the embodiments 
shown and described herein are only illustrative of the prin 
ciples of the present invention and that those skilled in the art 
may implement various modi?cations without departing 
from the scope and spirit of the invention. Those skilled in the 
art could implement various other feature combinations with 
out departing from the scope and spirit of the invention. 
What is claimed is: 
1. A network testing method implemented in a software 

de?ned network (SDN), the network testing method compris 
ing: 

providing a test scenario including one or more network 

events; 

Nov. 13, 2014 

injecting said one or more network events to the SDN using 
an SDN controller; and 

gathering network traf?c statistics. 
2. The network testing method as in claim 1, wherein said 

one or more network events include a network connection 
loss, network connection degradation, dropping a packet, or 
delaying a packet. 

3. The network testing method as in claim 1, wherein the 
injection is carried out dynamically. 

4. The network testing method as in claim 1, wherein the 
network traf?c statistics comprises how often an application 
tries to connect to a certain port on a destination host. 

5. The network testing method as in claim 1, wherein the 
SDN network comprises an OpenF low network and the SDN 
controller comprises an OpenFlow controller. 

6. The network testing method as in claim 1, wherein the 
injection is carried out through OpenF low application pro 
gramming interface (API). 

7. The network testing method as in claim 5, wherein 
injection is carried out using OpenF low controller Flood 
Light comprising a static ?ow pusher module. 

8. The network testing method as in claim 5, wherein the 
OpenFlow controller comprises a ?ow delay module, and 
said one or more network events include delaying a packet 
using the ?ow delay module. 

9. The network testing method as in claim 8, 
wherein the ?ow delay module accepts a con?guration ?le 

that contains information about an application to be 
tested, and 

wherein the information includes at least one of a media 
access control (MAC) address of a participating host or 
virtual machine (VM) and a port number, and informa 
tion is used to generate a rule update. 

10. The testing method as in claim 8, further comprising: 
con?guring the ?ow delay module by specifying a range of 

a delay to be applied to a matching packet; 
checking whether a packet is part of a ?ow under test; and 
if the packet is part of the ?ow under test, randomly choos 

ing a delay from within the range. 
11. A network testing apparatus used in a software-de?ned 

network (SDN), the network testing apparatus comprising: 
a testing system to provide a test scenario including one or 
more network events, to inject said one or more network 
events to the SDN using an SDN controller, and to gather 
network traf?c statistics. 

12. The network testing apparatus as in claim 11, wherein 
said one or more network events include a network connec 

tion loss, network connection degradation, dropping a packet, 
or delaying a packet. 

13. The network testing apparatus as in claim 11, wherein 
the injection is carried out dynamically. 

14. The network testing apparatus as in claim 11, wherein 
the network traf?c statistics comprises how often an applica 
tion tries to connect to a certain port on a destination host. 

15. The network testing apparatus as in claim 11, wherein 
the SDN network comprises an OpenFlow network and the 
SDN controller comprises an OpenFlow controller. 

* * * * * 


