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Abstract—Software-Defined Networking (SDN) approaches
were introduced as early as the mid-1990s, but just recently
became a well-established industry standard. Many network
architectures and systems adopted SDN, and vendors are
choosing SDN as an alternative to the fixed, predefined,
and inflexible protocol stack. SDN offers flexible, dynamic,
and programmable functionality of network systems, as well
as many other advantages such as centralized control, re-
duced complexity, better user experience, and a dramatic
decrease in network systems and equipment costs. However,
SDN characterization and capabilities, as well as workload
of the network traffic that the SDN-based systems handle,
determine the level of these advantages. Moreover, the enabled
flexibility of SDN-based systems comes with a performance
penalty. The design and capabilities of the underlying SDN
infrastructure influence the performance of common network
tasks, compared to a dedicated solution. In this paper we
analyze two issues: a) the impact of SDN on raw performance
(in terms of throughput and latency) under various workloads,
and b) whether there is an inherent performance penalty for
a complex, more functional, SDN infrastructure. Our results
indicate that SDN does have a performance penalty; however,
it is not necessarily related to the complexity level of the
underlying SDN infrastructure.

I. INTRODUCTION

Communication networks are growing in size and com-
plexity at an ever-increasing rate, with the conventional
infrastructure, network systems, and protocol stack, which
hardly provide adequate solutions to the contemporary
networking demands. This triggered the emergence of a
different approach to network systems architecture, called
Software-Defined Networking (SDN) [1]. SDN, has been
present for the last 20 years, [2]. Recently, OpenFlow [3]
succeeded in establishing itself as an SDN industry standard.
OpenFlow validated the SDN approach, and many network
architectures, network systems, and data centers adopted
SDN and turned it into a mainstream approach in network
design. We introduced another SDN technology that is
based on IETFs ForCES [4], called ProGFE (Programmable
Generic Forwarding-Element) [5]. ProGFE is essentially a
superset of OpenFlow in terms of capabilities and provides
a richer functionality than OpenFlow, although it is an
entirely different technology, and is based on an open IETF
standard that is targeted in Forwarding and Control Element
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Separation.

SDN offers many advantages, such as centralized and de-
centralized control of multiple cross-vendor network ele-
ments, mainly data plane platforms with a common API
abstraction layer for all SDN-enabled equipment. It also
reduces the complexity of network configuration and opera-
tion that is achieved by automation high level configuration
is translated into specific forwarding behavior of network
elements. SDN allows easy deployment of new protocols and
network-services as a result of high operation abstraction.
Increased control granularity in SDN allows a per flow
definition with a high granularity policy level. SDN infras-
tructure can adjust to the specific user application running
on it via the control plane, which greatly improves the user
experience.

Software Defined Networking, however, has its disad-
vantages: the added flexibility and functionality require
additional overhead on the equipment, and as a result there
are performance penalties in terms of processing speed and
throughput. This is not to say that the overall performance
is necessarily decreasing; many network services and tasks
that were executed by the end-nodes or by the control or
management layers of the network systems can be executed
by the SDN-enabled equipment in a simpler and quicker
way, thereby improving the overall performance of the
networking tasks.

Despite SDN’s continuing growth in popularity, there
have been relatively few studies that deal with performance
evaluation of SDN architectures. Tootoonchian et al. [6]
focused mainly on performance evaluation of the control
plane of SDN. Rotsos et al. [7] proposed a tool for evaluating
performance of one specific SDN architecture, i.e., several
OpenFlow implementations, and measured raw performance
of OpenFlow without comparison to other SDN solutions,
or to non-SDN network systems. Their work indicated
that performance is affected by the number and type of
actions applied to the data-frame, as well as the specific
implementation of the SDN. Another study of data plane
performance evaluation of OpenFlow soft switch was carried
out by Bianco et al. [8], using different frame sizes and
rules. Some of the results of this study were unintuitive, and
show that OpenFlow and a more complicated native (non-
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SDN) application of routing outperform a simpler native
switching application. The authors suspected that the cause
was due to inefficient implementation of the switching
application. Jarschel et al. [9] evaluated the forwarding
speed of OpenFlow, but focused mainly on the effects the
controller has on the forwarding plane. Most of the research
described above deals with evaluating a single architecture of
SDN, OpenFlow; no comparison to other SDN architectures
were conducted, while a comparison with native, non-SDN
implementations of the networking tasks wasn’t always
available.

In this paper we analyze two issues: a) how much, if at
all, SDN impacts raw performance (in terms of throughput,
latency, etc.), and b) whether the performance of the SDN
is a function of its complexity or functionality, i.e., whether
there is an inherent performance penalty for a complex
(more functional) SDN. We found that SDN does come at
the expense of performance; albeit, as outlined above, the
functionality it provides improves the overall performance of
the network in terms of efficiency, i.e., less equipment and
resources are required to perform complex networking tasks
and applications. However, we found that complexity and
functionality do not necessarily affect performance, which
depends more on the SDN model and its implementation.
Specifically, we found that ProGFE, which offers more
functionality and capabilities than OpenFlow, works more
efficiently in terms of latency, throughput, and jitter (packet
delay variation) than OpenFlow, and ProGFE also offers
better efficiency in terms of networking resources, e.g., it
performs OAM tasks directly without the need for additional
network elements.

II. OPENFLOW AND PROGFE ARCHITECTURES AND
DIFFERENCES

OpenFlow and ProGFE are SDN approaches based on
the concept of separating the control and forwarding planes.
In the following subsections, architectural highlights and
differences of both approaches are presented.

A. OpenFlow

OpenFlow [3] is an open SDN standard that consists of
two main entities, the OpenFlow switch, which implements
the forwarding plane, and the Controller, which implements
the control plane. These two communicate via a secure
channel that is implemented over a special protocol, also
named OpenFlow.

Each packet that arrives at the OpenFlow switch passes
through a series of Flow Tables (Figure 1), where one or
more of the packet fields are used as a lookup key. If a match
is found, an action is performed on the packet, and the packet
may be forwarded to another Flow Table, an egress port, or
dropped altogether. The Controller configures the operation
of the OpenFlow switch by updating its Flow Tables. A
Flow Table entry comprises a Rule and a set of actions and
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Figure 1. OpenFlow switch.

instructions. A lookup is performed on each arriving frame
according to the Rule parameter, and in case of a match
the appropriate actions are performed. Each action defines
which operation is to be done on the incoming frame, and
an instruction defines in what manner to apply the actions
(apply now, apply later, etc.).

In the case of an undefined frame that arrives at the switch,
it is encapsulated and forwarded to the controller, which
handles it according to some more complex logic. This might
also trigger an update of the Flow Tables, so that similar
frames would not have to go through the controller again.
Specific frame types that require more complex decisions,
which are not supported by the switch, e.g., OAM, can be
configured to always be sent to the controller.

B. ProGFE

Programmable Generic Forwarding Element (ProGFE) [5]
is a flexible and reconfigurable network platform, which
enables the deployment of various networking services,
network protocols, and architectures. This platform is con-
figured on the fly, via an XML-based API. ProGFEs opera-
tion is based on IETFs ForCES (Forwarding and Control
Element Separation) [4] definition of Logical Functional
Blocks (LFBs), where each LFB defines the way the ProGFE
operates.

Every processing operation in ProGFE is represented by
one or more LFB. These LFBs are connected in the form of
a directed graph, and the specific processing of each frame
is defined by the path it takes along this graph, depending
on the frames type. LFBs are represented in XML format,
which makes them easy to read, understand, and define.

The ProGFE contains two groups of modules (Figure
2): management and run-time modules. The management
modules interact with the Control Element (CE), receive
the LFB information, analyze the information, and create
internal data structures that define and control the way
the run-time modules process each frame. The three main
ProGFE modules are the Protocol Agent and the XML Han-
dler, which are management modules, and the Low Level
Rule Enforcer (LLRE), which is a run-time module. The
Protocol Agent communicates with the CE using a protocol
that governs the communications (e.g., HTTP, Ethernet).
The XML Handler parses XML information and translates



the LFB definition to relevant specific data structures that
reside in the ProGFE. The LLRE executes a meta-program
that is capable of executing pre-defined LFB types, which
implement the various LFBs and their parameters, as defined
by the CE and received from it. An Adaptation Layer is
used for abstracting the hardware implementation of the
LLRE to the management modules. Two additional modules
are included in the ProGFE to support additional services.
Specific incoming frames can be diverted to the ProGFE by
the Dispatcher, if programmed to do so by the LLRE. The
Dispatcher sends such frames to relevant Service Agents.
ProGFE has an existing Network Processor implementation
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Figure 2. ProGFE block diagram

[5] so that frame processing is achieved at wire speed, even
though each frame is analyzed and processed by a meta-
program. A general purpose PC version of the ProGFE
was also implemented in order to provide a tool to deploy
and test new network protocols, on a flexible, inexpensive,
easily configurable, and widely available platform. This
implementation is based on Linux, which makes the Linux
ProGFE hardware-independent, inexpensive, and scalable.
Linux ProGFE has an additional layer, the Network Driver,
which interacts with the LLRE and is responsible for con-
trolling the PCs NICs, i.e., sending and receiving frames.
This layer is part of the LLRE in the NP implementation.
Linux ProGFE was written in C++ in user-space, and is
available at [10].

C. SDN Differences

ProGFE and OpenFlow, although similar in their general
approach of control and forwarding planes separation, differ
in the complexity of the forwarding plane. ProGFE has a
rich functionality integrated into the forwarding plane, e.g., it
can perform learning and searching tasks, stateful operations,
and OAM functions, which OpenFlow shifts to the control
plane. Even more complex functionality can be added to
the ProGFE by additional Service Agents. Another major
difference between the two SDNs is that ProGFE provides a
higher level of abstraction, i.e., the use of LFBs and defin-
ing LFBs by XML, thus ProGFE enables description and
implementation of new networking functions and services
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in an easy and simple way. Another key advantage is that
the ProGFE is indifferent to the structure of the incoming
frames, as frame formats are defined by the CE; thus ProGFE
is not restricted to static definitions of frame format. This
enables ProGFE to support virtually any frame type and
any protocol, and execute Deep Packet Inspection (DPI)
applications.

III. PERFORMANCE ANALYSIS

Most of the conventional and SDN-based network systems
are based on dedicated and powerful platforms. For the
purpose of comparing the performance of conventional and
SDN-based network systems, and between the two SDN
architectures described above, we implemented network
systems on a simple PC platform, under the assumption that
differences between simple platform performances indicate
the differences in performance of dedicated network systems
platforms. We verified this assumption by testing the differ-
ences in performance using a powerful network-processor-
based-platform in addition to the simple PC platform.

A. Methodology

We compared the performance of various workloads (net-
working tasks) between SDN (OpenFlow and ProGFE),
running in the user space of Linux, and non-SDN (dedicated
application that executes the networking tasks directly, e.g.,
pure Linux forwarding) running in the user space (for
comparison), and in the kernel space (to explore the PC
potential).

We used the Linux ProGFE described in the previous
section, and the OpenFlow soft switch v1.0 stable version.
The following workloads were examined: IP routing, as a
rather simple Forwarding Element task, and VLAN tagging,
which represented a more complicated task for an FE.

In order to evaluate performance, we ignored the indirect
performance benefits that SDN enables (e.g., reduction in
number of network systems, fast implementation of new
technologies), and focused on “raw” performance metrics.
These metrics include throughput, latency, and jitter. To test
the throughput we used a standard tool - iperf to establish a
TCP/IP flow with various TCP window sizes, from 5 Kbytes
to 10 Mbytes. In order to evaluate the latency, synthetic
frames were generated with varying frame sizes, with an
additional timestamp that was used to calculate the latency.
The Packet Delay Variation (PDV), referred to as jitte, was
also examined.

High performance, network processor-based platforms
were also used to examine the performance difference
between two SDN-based bridge applications (plain and
complex bridge implementations) and a dedicated, native
bridge application. These platforms were based on EZChips
NP-2 Network Processor. Two scenarios were tested: a plain
configuration, programmed efficiently as an Ethernet bridge,



and a complex configuration of a bridge, configured ort more
than 40 different additional workloads.

B. Experimental testbed

The unit under test (UUT), on which the SDNs and the
dedicated systems were implemented, was based on an Intel
Core2Duo e6600 CPU, running at 2.4 GHz, 2 GB of DDR2
memory, and three Intel 82572EI Gigabit NICs.

For throughput testing we used a simple source and sink
testbed architecture, with two common PCs connected via
the UUT PC. The two PCs established a TCP/IP flow using
iperf, with the UUT performing the switching or routing
between them, depending on the defined workload.

A dedicated, embedded MPC8360 microcontroller was
used to generate and receive frames to and from the UUT,
and to measure the latency and the jitter, in microseconds.

C. Results

In this section we describe the differences in raw per-
formance of the PC-based implementations for the kernel-
space and the user-space implementations of the pure Linux
forwarding, the user-space Linux ProGFE, and the user-
space OpenFlow soft switch, and for the network processor
implementation between a basic bridge and the ProGFE.

1) SDN and native implementations of bridging on net-
work processor: Figure 3 compares the average latency
between a basic, native, Ethernet bridge that was imple-
mented by dedicated software on the network processor
(annotated bridge in the figures) and two implementations of
NP-based ProGFE bridge, one plain and the other complex
(as described above), using NP-2 network processor. The
comparison shows that the ProGFE has additional overhead
when configured with a more complex functionality, which
can reach up to 10 microseconds on average.

It should be emphasized that the throughput was not
affected by the bridge implementation, as the NP worked
at wire speed in both NP types (1 Gbps was tested). The
latency was affected by a factor of about 5 microseconds
for the plain implementation of the ProGFE bridging, and
an additional 5 microseconds, on average, for the complex
implementation of the ProGFE bridging, in both NP types.

2) Throughput- PC platform: Figures 4 and 7 compare
the throughput between the PC-based implementations of
the SDN and the pure Linux forwarding for the three
workloads described above (switching, routing, and VLAN).
Pure Linux forwarding was measured once as a kernel-space
implementation (annotated Linux kernel-space) and once as
a user-space implementation (annotated Linux user-space).
SDN implementations are annotated as Linux ProFGE and
OpenFlow v1.0, and the direct connection between the
source and the sink PCs, without the UUT, is annotated
Direct connection.

This comparison shows that although ProGFE is the
more complex SDN architecture, its performance in terms
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of throughput is higher than the less complex OpenFlow
SDN architecture, for most frame sizes. In addition, we
can observe the distinct advantage in performance that the
kernel-space implementation of the Linux forwarding has
over the user-space implementations of the tested SDNs.

These results show that complexity of the SDN archi-
tectures doesnt necessarily influence the performance of
the SDN implementation, but in each implementation, the
complexity of the workload does impact performance.

3) Latency - PC platform: Figures 5 and 8 show the
comparison of results of the processing times (as indicated
by the measured latency) in the routing and the VLAN
tagging workloads. As shown in Figures 5 and 8, ProGFE
has a slightly lower latency for the simple workload of
routing, and latency similar to that of OpenFlow for the
more complicated workload of VLAN tagging.

4) Jitter (Packet Delay Variation) PC platform: Figure
6 shows the jitter results for the routing and VLAN tagging
workloads. The user-space ProGFE results are almost as
good as a kernel-space Linux, while the results for Open-
Flow PDV are quite high for both workloads. In addition,
the results show that the complexity of the workload doesnt
affect jitter dramatically. The high level of jitter in OpenFlow
might explain the fact that although the latency values are
nearly the same as in the ProGFE, the throughput is lower.
The occasional high delay values result in TCP timeouts,
which in turn cause the TCP protocol to reduce its rate,
thus decreasing overall throughput.

5) Discussion: The scenarios we tested did not include
frequent involvement of the controller in both SDNs; despite
this the less complex SDN - OpenFlow — did not outperform
the ProGFE, and in most tests showed lower performance
results. One possible cause for this is an implementation
issue of OpenFlow v1.0 that causes very high jitter values,
which in turn cause throughput and latency penalties. In
scenarios where the Forwarding Element (FE) of a less com-
plex SDN has to consult the controller frequently, the overall
performance of that network should be worse, and in some
cases completely unusable, since most of the network traffic
will consist of FE to CE packets. Additionally, a network
that consists of more complex SDN FEs will be much more
scalable even for simple scenarios, as a centralized controller
can handle a limited amount of control traffic.

IV. SUMMARY AND CONCLUSIONS

In this paper we analyzed the performance of two SDN
architectures, OpenFlow and ProGFE, as a function of
their complexity, flexibility, and potential functionality and
capabilities. We saw that SDN flexibility does come at
the expense of raw performance, enhanced by additional
overhead for a more complex functionality. This conclusion
contradicts the results shown in [8], although the authors
suspected that their implementations were not appropri-
ate. We used three different workloads, switching, routing,
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and VLAN tagging, and saw that for all three workloads
ProGFE has better performance than OpenFlow in terms
of throughput for most frame sizes, and roughly the same
performance in terms of latency. We also saw that the
complexity of the workload affects the performance of SDN-
based systems in terms of throughput and latency, and this
is in agreement with the results of [7]. OpenFlow has a
much higher jitter than ProGFE (that is not affected by the
workload complexity), which results in lower throughput,
despite similar latency.

The results also show that a more complicated SDN,
which enables more flexibility, functionality, and capabil-
ities, does not necessarily mean performance degradation.
Performance reflects the specific implementation of the
SDN. Moreover, in workloads that require the intervention of
the control plane in the less complicated SDN, performance
differences will be greater, in favor of the more complicated
SDN.

REFERENCES

[1] G. Goth, “Software-Defined Networking Could Shake Up
More than Packets,” IEEE Internet Computing, vol. 15, no. 4,
pp. 6-9, 2011.

[2] D. L. Tennenhouse and D. J. Wetherall, “Towards an active
network architecture,” SIGCOMM Comput. Commun. Rev.,
vol. 26, no. 2, pp. 5-17, April 1996.

393

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar,
L. L. Peterson, J. Rexford, S. Shenker, and J. S. Turner,
“OpenFlow: enabling innovation in campus networks,” Com-
puter Communication Review, vol. 38, no. 2, pp. 69-74, 2008.

[4] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding

and Control Element Separation (ForCES) framework,” RFC

3746, 2004.

[5] R. Giladi and N. Yemini, “A programmable, generic forward-

ing element approach for dynamic network functionality,” in

Proc. PRESTO, 2009, pp. 19-24.

A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, “On controller performance in software-defined
networks,” in Proc. USENIX Hot-ICE, 2012.

[7] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore, “OFLOPS: An Open Framework for OpenFlow
Switch Evaluation,” in Proc. PAM, 2012, pp. 85-95.

[8] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow
Switching: Data Plane Performance,” in Proc. ICC, 2010, pp.
1-5.

M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll,
and P. Tran-Gia, “Modeling and performance evaluation of
an OpenFlow architecture,” in Proc. ITC, 2011, pp. 1-7.
[10] “Linux progfe.” [Online]. Available: "http://in.bgu.ac.il/engn/
cse/Pages/PRO-GFE.aspx”



