
國立交通大學

網路工程研究所

碩 士 論 文

OFBench: OpenFlow交換器效能測試方法

OFBench: Performance test suite on OpenFlow switches

研 究 生：王辰佑

指導教授：林盈達 教授

中 華 民 國 105 年 6 月

OFBench: OpenFlow交換器效能測試方法

OFBench: Performance test suite on OpenFlow switches

研 究 生：王辰佑 Student：Chen-You Wang

指導教授：林盈達 Advisor：Dr. Ying-Dar Lin

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2016

Hsinchu, Taiwan, Republic of China

中華民國 105年 6月

OFBench: OpenFlow交換器效能測試方法

學生：王辰佑 指導教授：林盈達

國立交通大學網路工程研究所

㗓要

OpenFlow 交換器已在現今網路佔有一定地位，隨之帶來的效能議題

也倍受矚目。為此，我們提出五項測試方法供驗證各家 OpenFlow交換器

效能評估，當中的測試指標包含 action time、pipeline time、packet-in rate、

packet-out rate、pipeline gain及 timeout accuracy；此外，為了簡化測試流程，

我們設計一自動化測試系統 OFBench，該系統為 controller-agent架構，並提

供測試項目的開發功能。實驗顯示，硬體交換器在 timeout的實作上較為不

足，其實際誤差約為 ±20%，但在 Packet-in測試項目中，硬體交換器相對

於軟體交換器約有 20倍的效能差異，另外，在 table pipeline測試項目中，

硬體交換器在 1Gbps的流量下擁有約 40 − 60%的 pipeline gain且其實際可

使用的 table數量僅有 60多張。而在實驗過程中，我們額外發現交換器在部

分功能實作上有 3項非預期的行為，其一，交換器在 Apply-Action功能並沒

有實作完全；其二，交換器在處理大量 Packet-in流量時，會導致斷線需重

新進行連線；最後，交換器在處理 idle-timeout時，會有未正確將該值重置，

導致 flow entry提早到期。

關擰Ⳓ：軟體定義網路、OpenFlow、效能、交換器、測試

i

OFBench: Performance test suite on OpenFlow switches

Student: Chen-You Wang Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

Currently, there are many OpenFlow switch products available in the market.

The performance issues of OpenFlow protocol are drawing a lot of attentions. In

this work, we propose five test cases to evaluate six performance metrics: action

time, pipeline time, packet-in rate, packet-out rate, pipeline gain, and timeout ac-

curacy. The switch can be evaluated based on these metrics. And we also propose

the automatic test framework: OFBench, which is a controller-agent architecture

allowing the development of test case based on high-level scripte language. The

evaluation results reveal a ±20% skewness in idle-timeout accuracy in the hard-

ware switches. For the Packet-in rate, the hardware switches is capable of gener-

ating Packet-in frames in the rate ranging from 3000 to 7000 Packet-in per second.

The rate is 20 times faster than that generated by the software switches. As for the

test of the gain of table pipeline, the hardware switches reach 40 − 60% pipeline

gain under the 1Gbps traffic loading. And the switches only have around 60 usable

tables. Furthermore, we observed three issues for switch during the testing. Firstly,

the switches may not be well implemented on the design of Apply-Action instruc-

tions. Secondly, the switches suffer from random crashes with the high volume of

bursty Packet-in traffic. Lastly, the timer of idle-timeout is not reset properly when

the flow entry matched.

Keywords: SDN, OpenFlow, Performance, switch, testing

ii

將謝

這篇論文能夠完成，首先要感謝林盈達教授、賴源正教授及賴裕昆教授

的費心指導。在每次的討論中，教授們總是不辭辛勞的給予意見，讓我從中

能釐清思考的盲點，自己也從中學習到如何進行嚴僅有邏輯的思考，也萬分

感謝林盈達教授及賴裕昆教授在修定論文上所花費的時間及心思；此外，還

要感謝交大網路測試中心（NBL）所提供的資源及協助，使我能順利完成我

的研究。

在兩年的研究生涯中，也要感謝所有高速網路實驗室的所有成員，不論

是在學業、生活或研究所給予的支持、鼓勵及建議，透過大家此彼教學相

長，使得自己在這段時間頗有一番收獲。

最後感謝我的家人，感謝你們長久下來的關心及照顧，讓我能專注於學

業上，並完成學業。

王辰佑 謹致於

2016年 6月 3日

iii

Contents

List of Figures v

List of Tables vi

1 Introduction 1

2 Background 4

2.1 OpenFlow . 4

2.2 OpenFlow performance parameters . 5

2.3 Related Work . 6

3 Problem Statement 8

3.1 Notation . 8

3.2 Problem Description . 8

4 Methodology 10

4.1 Mirror-in-processing . 10

4.2 Calculated traffic . 12

4.3 Masked entry . 14

5 Numerical Results 16

5.1 Implementation . 16

5.2 Experiment setup . 16

5.3 Experimental Results . 17

6 Conclusions 23

References 25

iv

List of Figures

Figure 1 : OpenFlow pipeline processing . 4

Figure 2 : OpenFlow performance testing example 9

Figure 3 : Mirror-first-then-action . 12

Figure 4 : Mirror-first-then-pipeline . 12

Figure 5 : Burst-until-loss . 14

Figure 6 : Back-to-back-traffic . 14

Figure 7 : Idle-timeout-derived-by-hard-timeout . 15

Figure 8 : OFBench architecture . 16

Figure 9 : Action Time . 18

Figure 10: Packet-in and Packet-out rates . 20

Figure 11: Pipeline gain with different number of tables 21

v

List of Tables

Table 1 : OpenFlow instruction with executing priority 5

Table 2 : Related work comparison . 7

Table 3 : Notation description . 9

Table 4 : Approach overview . 10

Table 5 : OS and hardware specifications for components 17

Table 6 : Hardware switch specifications . 17

Table 7 : Buffer size with different frame size for 1Gbps traffic 20

Table 8 : Timeout accuracy . 22

vi

Chapter 1 Introduction
Software Defined Networking (SDN) is an emerging network architecture. The major dif-

ference between SDN and the traditional network is the decoupling of the control and data plane.

Therefore, in the operation of SDN, the data plane needs to communicate with the control plane

through a specific communications protocol. This change brings the operations of the control

plane in the foreground as part of the data packet processing. OpenFlow is a major standard for

SDN which is managed by Open Network

Foundation (ONF) [1], is a communications protocol used to manipulate the data plane op-

erations by the controller. Therefore, another distinct difference between OpenFlow and the

traditional network is the stateful switching rather than the stateless counterpart.

As the packet arrives at the OpenFlow switch, selected tuples in the packet header fields are

compared with the rules in the flow table. If there is no match, the packet is treated as a new flow

and table-miss operation is triggered. Depending on the configuration, the packet can be either

simply dropped or an OpenFlow message is sent to the controller waiting for further action. The

controller may insert a new flow entry in the flow table with action for the matched packet. The

flow entry is the record of the data packet, which contains information such as packet headers,

counters, and instructions [2]. The process of the OpenFlow transaction can be categorized into

two parts, one is data-plane-trigger-control-plane (D2C), the other is control-plane-trigger-data-

plane (C2D). The whole process is abbreviated as D2C2D. As such, OpenFlow adds some extra

data structures and operations to the data plane. These changes make the OpenFlow data plane

(OFD) different from the traditional data plane (TD) .

Currently, there is no performance test standard exist for the OpenFlow switch. In the past,

the performance test only focus on the traditional TD part. However, we think the D2C2D

process should also be included along with the OFD as part of the testing suite for OpenFlow

switch. Cause the packet processing depends on the flow entry which including some actions.

The D2C2D process will affect the flow entry setup when the new type flow coming. Moreover,

the OFD process will affect the operation of flow entry in the OpenFlow switch for the existed

flows. Due to above mentioned, we think the OpenFlow performance testing must be included

TD, OFD, D2C, and C2D. Themain reason is that the D2C2D process is the core of the operation

1

in both data plane and control plane in the OpenFlow switch. Moreover, the D2C2D process and

OFD affect the packet processing in OpenFlow switch. So we think the OpenFlow performance

testing must be included TD, OFD, D2C, and C2D.

In our survey, there are some open-source tools such as OFTest [3] and Ryu certification [4]

exist for the OpenFlow switch conformance test. These tools only determine whether the switch

fit the interoperability of OpenFlow protocol or not. As for commercial tools, there is no one

except the white paper proposed by Spirent for OpenFlow performance testing [5]. The white

paper only addresses some test cases and offers some concepts to evaluate the switch. There

are many research works of literature address the issues in this topic as well. However, most of

them focus on TD testing without addressing the others. The authors in OFLOPS [6] discuss

the test of OFD and C2D parts without covering all test matrices of these two parts.

In this thesis, we propose thirteen test cases based on the white paper [5] from Spirent . The

test cases, including items such as flow action, pipeline, Packet-in, Packet-out, and Flow-mod,

address the most critical parts of OFD, D2C, and C2D testing. Among these thirteen test cases,

there are seven test cases classified as non-trivial. And we are going to focus on the development

of test tools for these six out of seven non-trivial test cases.

It is difficult to get the internal parameters from the device-under-test (DUT) for evaluation

in these non-trivial test cases due to black-box testing. For example, the action time is hard

to measure because the processes in OpenFlow consist of many steps. Normally, we can only

measure the end-to-end delay time without the exact breakdown of individual action time where

many variables involved. And the idle timeout of flow entry is hard to measure the accuracy by

traffic, cause the idle timeout will be reset when packet coming andmatched. Therefore, we pro-

pose two methodologies to address these issues. The first one, named as mirror-in-processing,

is based on the Apply-Action instruction of OpenFlow to mirror packets in the process. The

system is capable of measuring the processing time of each stage in the DUT based on the mir-

rored packets. So we can inference some exact results. The second one, named as the masked

entry, is based on the priority, match fields and actions of flow entry to control the timer where

two flow entries can be synchronized for proper measurement.

We propose and design an automatic test framework based on controller-agent architecture.

2

The framework is capable of controlling remote agents to generate and analyze networking traf-

fic. The agents provide the analysis results to the controller for test cases.

The remainder of this work is organized as follows. We introduce the backgrounds of Open-

Flow with emphasis on the performance related issues and related works for testing in Chapter

2. The problem statement is provided in Chapter 3. In Chapter 4, we introduce the proposed

methodologies for the mirror-in-processing and the masked entry. We further discuss our imple-

mentation detail and experiment results in Chapter 5. Conclusions and future works are finally

presented in Chapter 6.

3

Chapter 2 Background

2.1 OpenFlow

OpenFlow, a communications protocol for SDN architecture, consists of communications

messages and mechanisms enabling packet processing for OpenFlow switches and controllers.

The packet processing mechanism is based on flow policy, which is a combination of match

fields and instruction sets. The flow policy is implemented as flow entry and stored in the flow

table. The whole process for packet processing is illustrated in Figure 1. As the packet arrives,

the switch tries to match the flow entries in the table of multiple stages. For each matching

process, an action set (with the default of empty) of the particular action is applied to the packet.

Once the packet is matched with the entry in the table, the action set will be updated and possibly

directed to other tables in a pipelined fashion. Finally, the action set will be executed at the end

of the pipeline process.

Figure 1: OpenFlow pipeline processing

The flow entry, which is the most important part of the process, consists of priority, coun-

ters, match fields, timeouts, cookies, and instructions. The priority affects the executing order

of flow entries. The timeouts contain timers of hard-timeout and idle-timeout values for flow

entry removal when expired. The match fields are a set of records consist of packet headers

ranging from layer one to four. And the instruction set contains operations to be executed for

the incoming packet which is matched with the match fields.

The available instructions and executing order are listed in Table 1.

4

Table 1: OpenFlow instruction with executing priority
Instruction Description Executing Priority
Meter Apply the specified metering to packet. 6
Apply-Actions Apply actions immediately to packets. 5
Clear-Actions Clear action set. 4
Write-Actions Write actions to action set. 3
Write-Metadata Write the masked metadata value. 2
Goto-Table Execute the table pipeline. 1

2.2 OpenFlow performance parameters

In the past, the performance testing focuses on the TD part which includes latency, loss,

buffer size, throughput, jitter. However, the most important factor of performance testing for

OpenFlow switch should be the interactions between the control plane and the data plane. And

considering the extra structures or mechanisms for OpenFlow, we summarize the OpenFlow

performance parameters with C2D, D2C, and OFD parts.

In the C2D part, there are many messages, which include the Flow-mod, configuration,

and state query of the switch, sent from the controller to the switches. The switches report

messages of some events back to the controller in the D2C part. These messages consist of

Packet-in, Flow-removed, status report, and errors. Therefore, these messages could be treated

as the important parameters for OpenFlow performance measurement. Moreover, in most of the

cases, the D2C2D process are often executed for the new type of flows. The process is consisting

message transactions of the Packet-in, Packet-out, and Flow-mod.

The rate of Packet-in message generated by OpenFlow switch is an important capability

indicator handling the new type of flows. If the rate is low, the OpenFlow switch will not be able

to handle a large number of new flows in a short period of time. As for the Packet-out message,

it is used to execute the actions for the Packet-in message in the D2C2D process for the first

packet of a new flow. The rate of Packet-out message, which is generated by the controller,

reflects the capability of packet processing for OpenFlow switch. Finally, the duration of how

long the flow entry remains active is set by the Flow-mod message sent to the switch. Therefore,

these three messages are the major parameters of OpenFlow performance measurement for the

C2D and the D2C parts.

In the OFD part, we summarize the performance parameters in two categories: the packet

5

processing and OpenFlow mechanism. The former consists of the table lookup, table pipeline,

and time of action set execution. The later contains the timeout of flow entry and the size of the

flow table.

2.3 Related Work

Currently, there are some testing solutions developed with the focus on TD. Bianco [7] and

Emmerich [8] provide themeasurementmethodologies for the forwarding throughput and packet

latency of switch in underloaded and overloaded situations. Gelberger [9] proposes the cost mea-

surement which includes throughput, latency, and jitter for switching and routing on OpenFlow.

Jarschel [10] propose the model based on forwarding speed and blocking probability to estimate

the packet sojourn time.

Recently, Spirent proposes a white paper [5] for OpenFlow switch performance testing. It

focuses on the general concepts of testing and provides suggestions for each test cases. More

specifically, the authors in OFLOPS [6] propose two major test cases for the latency measure-

ment of Flow-mod and the execution time of action set.

Although the latency can be evaluated by the Barrier messages, however, the measurement

result is not accurate where deviation may occur. There are two major reasons. The one is that

the Barrier messages need extra time to be processed between the controller and the switch.

The other is that the process of Barrier messages in OpenFlow switch may not be implemented

correctly. The methods proposed by OFLOPS [6] solve these issues by using the traffic to

measure the setup time of multi-flow entries. In advance, the authors in OFLOPS propose the

OFLOPS-Turbo [11] which enhances the framework by 10 Gbps Ethernet platform to evaluate

the next-generationOpenFlow switch. However, the system does not address anymethodologies

for switch testing in detail.

Due to the fact where latency of Flow-mod may be varied under different testing situations,

Handfield [12] finds out the major impact factors which include the priority, current flow table

size, and the operation of Flow-mod. Bianco [7] and Tanyingyong [13] estimate the effects of

table lookup for hash and linear flow. For the throughput, both of them [7][13] find out the

hash flow have better performance. For the processing time, Bianco [7] estimate it for hash and

6

linear flows with different table size. The results are constant and independent of the table size

for both types. The author of High-fidelity switch models [14] proposed a model to emulate the

vendor hardware switches including the Flow-mod rate without stating the methodologies.

Obviously, as summarized in Table 2, the existing works of literature fail to cover all of the

performance parameters needed to evaluate the OpenFlow switch under test. Therefore, in this

thesis, we propose how to measure all of the major performance parameters except the latency

of Flow-mod and the size of the flow table.

For the size of the flow table measurement, we can simply use a basic Flow-mod with an add

operation. For the measurement of Packet-in and Packet-out rate, we propose to evaluate them

by buffer size test case in the process. For the measurement of table pipeline, we propose two

test cases to obtain the time for evaluating the pipeline processing performance. The proposed

test case for the execution timemeasurement of the action set is more accurately than the method

proposed by OFLOPS [6]. Finally, we propose a method to verify the accuracy of idle and hard

timeout for the flow entry

Table 2: Related work comparison
Type Parameter Spirent [5] OFLOPS

[6]
Bianco [7] Handfield

[12]
Ours

D2C Packet-in
rate

Concept N/A N/A N/A Buffer size

C2D Packet-out
rate

Concept N/A N/A N/A Buffer size

Latency of
Flow-mod

N/A Traffic val-
idation

N/A Impact fac-
tors

N/A

OFD

Table
lookup

Concept N/A Constant N/A N/A

Table
pipeline

Concept N/A N/A N/A Time,
pipeline
gain

Execution
time of ac-
tion set

N/A End-to-end N/A N/A Exactly ac-
tion time

The time-
out of flow
entry

Concept N/A N/A N/A Accuracy

The size of
flow table

Concept N/A N/A N/A Trivial

7

Chapter 3 Problem Statement

3.1 Notation

Table 3 shows the notations used in this work. Given the switch under test dut, the number

of tables for dut is denoted by N . The controller, the hosts, and the link capacities are denoted

by c, H and CAP respectively. The performance parameters consist of three categories: they

are the C2D parameters CD, the D2C parametersDC, and the OFD parametersDopenflow. And

the flow entries F in dut and traffic TFC generated by H will affect each parameter.

3.2 Problem Description

The topology is created based on the given entities shown in Table 3. The flow entries and

traffic are determined based on the parameter of F and the TFC to evaluate CD, DC, and

Dopenflow. The objective of our work is to assure the accuracy of each measurement result of

CD, DC, and Dopenflow. Due to the black-box testing, the dut is not modifiable.

Example

Figure 2 shows the parameters of the test. The pipeline process contains the time and per-

formance of table pipeline (Ttable−pipeline, P), and the time of action set execution Taction−set in

dut. The set of flow entries F determines the operation of the entire pipeline. Each flow en-

try, denoted by flowi,j , has two timers of hard-timeout and idle-timeout. The accuracy of the

timeout, denoted by Acctimeout, evaluate whether each timer expired correctly or not. With the

combinations of F and traffic TFC the dut is able to generate the Packet-in messages to c or to

process the Packet-out messages sent from c. The rate of Packet-in and Packet-out for a given

dut is determined by the parameters of PIR and POR. The buffer size of dut denoted by buf .

If buf is remaining, dut stores the TFC into the buffer and raises the Packet-in operation with

an identity when the new flows arrival. And the c generates the Packet-out operation with the

corresponding identity to dut, so dut could forward the new flows.

8

Table 3: Notation description
Category Notation Description

Entity

c The controller
dut The switch under test
N The number of tables for dut
H = {hn|n ≥ 2} The set of hosts.
CAP = {capc, capn|n ≥ 2} The set of link capacities. capc/capn is link ca-

pacity between c/hn and dut
C2D CD = POR The parameter for C2D. POR means the

throughput of packet-out operation in dut
D2C DC = PIR The parameter for D2C. PIR means the

throughput of packet-in operation in dut

OFD

Taction-set The time of action set execution in dut
Ttable-pipline The time of table pipeline in dut
buf The size of buffer in dut
Acctimeout The accuracy of timeout in dut
P The gain of table pipeline in dut
Dopenflow = {Taction-set,
Ttable-pipeline, buf, Acctimeout,
P}

The set of parameters for OFD

Process

TB = {tablei|0 ≥ i < N} The set of flow tables in dut
F = {flowi,j|0 ≥ i <
N, j > 0}

The set of flow entries. flowi,j mean the flow
entry in tablei.

TFC = {pktz|z > 0} The traffic which be sent from src to dst.
src ∈ H, dst ∈ H .

Ttable_lookup The time of looking up the flow table in dut.
Tapply_action The time of executing Apply-Action in dut.
Tidle-timeout, Thard-timeout The timeout value for idle/hard timeout flow

entry.
Tidle-expired, Thard-expired The arrival tiem of flow-removed message for

idle/hard timout flow entry at c.
Tidle-duration, Thard-duration The duration of flow-removed message for

idle/hard timeout flow entry.

Figure 2: OpenFlow performance testing example

9

Chapter 4 Methodology
The measurement of performance parameters for the proposed five test cases is listed in

Table 4. These cases are classified into three categories: Mirror-in-processing, Masked entry,

and Calculated traffic. And each case has a corresponding named method to its spirit.

Table 4: Approach overview
Category Test Case Method Output

Mirror-in-processing Action set time Mirror-first-then-action Taction-set
Pipeline Time Mirror-first-then-pipeline Ttable-pipeline

Calculated traffic Buffer size Burst-until-loss buf, PIR, POR
Pipeline performance Back-to-back-traffic P

Masked entry Timeout accuracy Idle-timeout-derived-by-
hard-timeout

Acctimeout

4.1 Mirror-in-processing

In the OpenFlow performance testing, it is difficult to get the test values and results directly.

However, by leveraging on the mirror operation with Apply-Actions instruction within the pro-

cessing, we can duplicate the packets before some OpenFlow operations for measurement and

comparison.

Mirror-first-then-action

The purpose of this test case is to measure the execution time of action set in OpenFlow

switch. In OpenFlow protocol, there aremany kinds of actions which include forwarding, packet

modification, and tagging operation. The packet modification may cause longer operation time

in some switches. Therefore, the processing latency of action is used for major performance

benchmark.

In the normal case, the time of action denoted by Taction-set can be calculated by measuring

the end-to-end latency. Since there are many variables affecting the testing result, we propose

the mirroring concept to get the start time of action set for better measurement accuracy. As

10

shown in 3, the pktz is denoted as the mirrored packet. The value of α denotes the arrival time

of pktz and β be the arrival time of pktz‘. We derive the action set execution time as

Taction-set = β − α. (1)

Mirror-first-then-pipeline

The purpose of this case is to measure the time of table pipeline in OpenFlow switch. The

mirroring methodology can be applied to this test case as well. This is because the instructions

of table pipeline are executed after Apply-Actions.

As illustrated in Figure 4, we assume the pipeline stage consists of two tables: table0 and

table1. And the flow entries are almost the same except the flow entry in table0 has GoTo

instruction. The time of T1 includes the time of table lookup and Apply-Actions operations

in table0. The time of T2 includes the time of Ttable−pipeline, table lookup, and Apply-Actions

operations in table1. Due to the same match fields and actions of flow entry in table0 and table1,

the processing latencies, denoted by Ttable_lookup and Tapply_action respectively, are the same in

table0 and table1. By considering the Round-Trip Time (RTT), that we can derive the time of

table pipeline as follows.

Ttable-pipeline = T2 − T1 +RTT/2 (2)

Where the T1 is

T1 = Ttable_lookup + Tapply_action +RTT. (3)

And the T2 is

T2 = Ttable-pipelien + Ttable_lookup + Tapply_action +RTT/2. (4)

The RTT can be derived by RTT = (pktz/capn) ∗ 2.

11

Figure 3: Mirror-first-then-action Figure 4: Mirror-first-then-pipeline

4.2 Calculated traffic

Burst-until-loss

The purpose of this test case is to measure the buffer size, the throughputs of Packet-in and

Packet-out. The main reason why we combine the measurement of these three parameters into

one case is that the Packet-in and Packet-out messages may depend on the size of the buffer in

dut.

As shown in Figure 5, the dut has the flow entry that matches the TFC and sends the Packet-

in message to the controller c. The controller c will keep all Packet-in messages and generate

the expected Packet-out messages after the traffic generating from host H is done. We assume

there is no packet loss occurred at c and all Packet-in messages consume the entire buffer space

in the dut. When the condition m < n occur, there exists packet loss at the dut. Therefore, we

can derive the buffer size, denoted as buf in the following formula.

buf = m ∗ pkt (5)

The throughput of Packet-in can be derived by the following formula.

12

PIR = the number of Packet-in/T1 (6)

And the throughput of Packet-out can be derived by the following formula.

POR = m/T2 (7)

Back-to-back-traffic

The purpose of this test case is to measure the gain of table pipeline in dut. As illustrated in

Figure 6, the latency of TFC covers total processing time for n+1 tables. In each table, packets

are matched with the flow entry and sent to the next table in a pipeline fashion. The pipeline

gain of pkt processing time at each table can be derived by the packet processing time and idle

times. We denote the processing time of pkt and the idle time as Tpkt, Tbubble respectively. And

we derive the pipeline gain from the following formula.

P = Tpkt/(Tbubble + Tpkt) (8)

Where the Tpkt is the processing time of the packet at each table. Due to the difficulty

of measuring the Tpkt in black-box testing, we assume an uniform processing times of pkt at

each table for the performance evaluation. Therefore, we approximate the Tpkt by using the

processing time of the first packet Tinit based on the following formula.

Tpkt ≈ Tinit/(n+ 1) (9)

In equation 8, the time of Tbubble + Tpkt reflect the total time of pkt processing time and the

idle time for a single table. In our measurement, we known the total number of packets n+1 and

the total duration T . Thus, asuuming there are n packets sent after the first packet, the average

time of Tbubble + Tpkt can be derived by the following formula.

Tbubble + Tpkt ≈ (T − Tinit)/n (10)

The Tinit and T are the processing time for the first packet, and the total processing time for

n+1 packets respectively. We denote the αz as the time of sending pktz and the βz as the arrival

time of pktz. And the Tinit and the T be derived by the Tinit = β1 − α1 and T = βn+1 − α1

respectively.

13

Figure 5: Burst-until-loss Figure 6: Back-to-back-traffic

4.3 Masked entry

Base on the definition of OpenFlow specification, the flow table can have multiple entries

with the same match fields of different priority.

Idle-timeout-derived-by-hard-timeout

The purpose of this case is to measure the accuracy of timeout for a given flow entry. The

timeout measurement includes hard-timeout and idle-timeout. For the measurement of hard-

timeout, we can evaluate the accuracy simply based on the packet injected into the DUT. But

for the measurement of idle-timeout, the deviation of the accuracy could be larger due to the

inter-arrival time of the traffic as the flow entry being matched.

To evaluate the accuracy of idle-timeout, we propose to use the masked entry to avoid the

reset of the timer for idle-timeout at the wrong time by the arriving packet. In Figure 7, there

are two flow entries added into the dut. The first one is the idle-timeout flow entry and the

second is the hard-timeout flow entry which is the masked entry with higher priority. Both of

the flow entries are matched with the TFC and the time of idle-timeout (Tidle-timeout) equals the

14

time of hard-timeout (Thard-timeout). When the idle-timeout flow entry is added to the dut, the

timer for idle-timeout stays zero as the packets are forwarded based on the matched entry. After

the setting of the idle-timeout flow entry, the hard-timeout flow entry is added to the dut. At this

moment, the hard-timeout flow entry will take over the idle-timeout flow entry because of its

higher priority. And the timers for both of the flow entries will start counting from zero as they

are synchronized. Finally, there are 2 situations illustrated in Figure 7a and Figure 7b. In Figure

7a, the hard-timeout flow entry is expired early than idle-timeout flow entry. It means that there

exists the skewness for the timer of idle-timeout. In order to evaluate skewness , we increase the

Thard-timeout and set the hard-timeout flow entry again. The process stated above is repeated until

the idle-timeout flow entry is expired early as illustrated Figure 7b. According to the testing

processes, we can derive the accuracy of idle-timeout based on the following formula.

Accidle-timeout = Tidle-duration − Tidle-expired − Tidle-timeout (11)

The Tidle-duration, and Tidle-forward are alive and active times for idle-timeout flow respectively.

We denote the αz as the arrival time of pktz. The Tidle-forward can be derived from the following

formula.

Tidle-forward = αn − α1 (12)

a) Idle-timeout over hard-timeout b) Hard-timeout over idle-timeout

Figure 7: Idle-timeout-derived-by-hard-timeout

15

Chapter 5 Numerical Results

5.1 Implementation

We propose OFBench, an automatic testing framework integrated with Ryu controller 1 and

Ostinato traffic generator 2. The architecture of OFBench, shown in Figure 8, is a controller-

agent architecture. Controlled by the controller, each agent is capable of generating traffic, cap-

turing and parsing packets. The test cases of OFBench are written in scripts for basic OpenFlow

operations and test results analysis.

Figure 8: OFBench architecture

5.2 Experiment setup

Five test cases are developed with test scripts for the OFBench framework. The available

configurations of the test cases consist of frame size, transmission rate, and some specific values.

The available frame sizes are 64, 128, 256, 512, and 1024 bytes, and the available transmission

rates are ranging from 64 Kbps to 1Gbps. In our experiment, we use UDP traffic for the testing

of all test cases. We conduct the experiments with three physical PCs. The operation systems
1Ryu, version 4.0, https://osrg.github.io/ryu/
2Ostinato, version 0.7.1, http://ostinato.org/

16

and specifications of those PCs are shown in Table 5.

Table 5: OS and hardware specifications for components
Component Core Clock rate OS Kernel
Controller 4 3.3GHz Ubuntu 14.04 4.2.0-27
Host 4 3.2GHz Ubuntu 14.04 4.2.0-27
Switch 2 3.1GHz Ubuntu 14.04 3.13.0-24

We use the above environment to test four DUTs. The DUTs details are shown in Table 6.

Table 6: Hardware switch specifications
Switch CPU Core Clock rate Memory Buffer OS version
Pica8 P-3290 MPC8541 1 1 GHz 512 MB 4 MB v2.6.1
Pica8 P-3297 P2020 2 1.33 GHz 2 GB 4 MB v2.6.1
Edge-corE
AS4610-30T

ARM Cortex A9 2 1 GHz 2 GB N/A v2.6.4

Centec V350 e500v2 1 533 MHz 2 GB N/A v3.1(11), 1.alpha

5.3 Experimental Results

In this section, we present ours five performance metrics: action time, pipeline time, packet-

in rate, packet-out rate, pipeline gain, and timeout accuracy. These metrics try to distinguish the

switches implementation for features.

Each metrics are evaluated based on the proposed five test cases. And the statistic results

are collected with five rounds of testing.

Action Time

We try to find out the relationship of action time with different combinations of actions. The

tested actions are based on a set of packet modifications ranging from layer two to four. The test

case is conducted based on six different actions of packet modification. The results of action

time are shown in Figure 9. The six modifications of packet are ordered by source IP address,

destination IP address, source Ethernet address, destination Ethernet address, UDP source port

17

and UDP destination port respectively. For each testing scenario, we generate traffic at the rate

of 1,000 packet-per-second (pps) with a total of 10,000 packets.

Based on the results shown in Figure 9, the result for hardware switch Centec V350 is non-

available due to the mirror and action does not execute properly. For the result, The software

switch has the lower action time which ranging from 2 to 3 microseconds. However, the action

times for hardware switches have at least 100 microseconds. If the implementation of action is

pure hardware based, the action time possible be nano seconds. But these results and the CPU

specification are in direct proportion. According to the specifications, the Open vSwitch has the

highest clock rate, Pica8 P-3297 followed, Pica8 P-3290 and Edge-corE AS4610 final. Thus,

we think the implementation of action is software based on switches.

Otherwise, the variation of action time is small due to the different number of modifications.

Thus, we conduct this test case on white box environment. We use the kernel trace tool (ftrace)

to record the execution time of set_ip_addr function for Open vSwitch. The result of white box

measurement approximates 0.6 microseconds. And the first modification action has the highest

time cost. This result explains the reason for the small variation.

Figure 9: Action Time

18

Pipeline Time

For our pipeline time test case, the results are unavailable for Pica8 switches due to the

Apply-Action is not working properly. The hardware switches can not mirror packets between

the pipeline process. Thus, we only have the result for Open vSwitch with different frame

sizes ranging from 64 to 1024 bytes. The pipeline time measured is in the range of 1.1 to 2

microseconds with the positive correlation of frame size.

Buffer Size and Packet-in/out

For the buffer size test case, we try to measure the Packet-in rate, Packet-out rate, and buffer

size within one test. Therefore, we fix the transmission rate of 1Gbps with different frame sizes

for the measurement of Packet-in rate. The results of Packet-in and Packet-out rate are shown

in Figure 10. The results be collected at the beginning of the testing are discarded. This is

mainly because the traffic generator takes five to ten seconds for stabilizing the testing traffic.

According to our results, the rate of Packet-in for Open vSwitch is approximately 20 times lower

than that of the hardware switches under test. It indicates the software switch has poor handling

capability with the small frame size for Packet-in operation.

For the Packet-out rate, the Pica8 switches have poor handling capability with the small

frame sizes, especially the 64 bytes. However, the measurement results for Open vSwitch are

different. It is working well on the Packet-out operation with the frame size of 64 bytes. And

the throughputs of Packet-out for Open vSwitch are better than those observed in other switches

under test.

The measurement results of buffer size for switches under test are shown in Table 7. There

are some error messages generated from the DUTs during the testing. The errors, identified as

buffer unknown for Packet-out messages lead to the failure of Packet-out operation. The test

results indicating packet loss occurred at the DUTs. Finally, we mark the buffer size of the

DUT is not available (N/A) when the number of errors is greater than the number of Packet-out

messages sent from the controller.

In Table 7, only the buffer sizes tested with frame size of 64-byte are shown. For other

frame size, the buffer sizes of the switches are not available. We suspect the anomaly behavior

19

of DUTs is due to the CVE-2016-2074 [15] issues for the Open vSwitch implementation.

Figure 10: Packet-in and Packet-out rates

Table 7: Buffer size with different frame size for 1Gbps traffic
Frame size(bytes) Open vSwitch Pica8 P-3290 Pica8 P-3297 Edge-corE

AS4610
Centec V350

64 13504 8256 16192 32768 342464
128 N/A N/A N/A N/A N/A
256 N/A N/A N/A N/A N/A
512 N/A N/A N/A N/A N/A
1024 N/A N/A N/A N/A N/A

Pipeline Gain

For the gain of table pipeline, the test case is conducted to go through from 20 to 254 tables.

with transmission rates 1024 Mbps and the duration is 10 seconds. Considering the warm up

for traffic generator, we use the masked entry to filter out the traffic from 0 to 5 seconds. The

results are shown in Figure 11, the software switch have poor performance on multiple table

pipeline. For hardware switches, the number of tables is inversely proportional to pipeline gain.

This indicates the hardware switches have the larger idle time when multiple tables pipelining.

Otherwise, all switches have the black-hole situation on 70 tables which indicates the number

20

of available tables for switch just only 60 tables. And the results for Centec V350 switch is not

available due to the switch only have a single table.

Figure 11: Pipeline gain with different number of tables

Timeout Accuracy

In the testing of timeout accuracy, we set the idle-timeout to five seconds and vary the hard-

timeout from three to seven seconds. The traffic is generated at the rate of 10K pps with 64 bytes

frame size. The results are shown in Table 8. The deviation of idle-timeout for hardware switch

is around ±20%. In our test case, we make the switch to swap idle-timeout and hard-timeout

flow entries This operation may cause the switch can not properly handle the idle-timeout prop-

erly, and result in the larger deviation. Eventually, the Pica8 switches may not reset the timer

for idle-time properly when the idle-timeout flow entry matched.

21

Table 8: Timeout accuracy
Switch Accidle-timeout Acchard-timeout
Open vSwitch 2% 0%
Pica8 P-3290 -16.24% 4.7%
Pica8 P-3297 24.64% 3.3%
Edge-corE AS4610 10% 0%
Centec V350 17.64% 1.66%

22

Chapter 6 Conclusions
In this work, we focus on the test of OpenFlow switch performance based on the following

categories: control-plane-trigger-data-plane, data-plane-trigger-control-plane, and OpenFlow

data plane. We propose five test cases to evaluate six performance metrics: action time, pipeline

time, packet-in rate, packet-out rate, pipeline gain, and timeout accuracy. These six items can

be used to evaluate and reflect the switch performance.

Larger idle timeout deviation for hardware switches

In the results of timeout accuracy, the hardware switches have around ±20% deviation for

idle timeout. This may cause the error for applications based on the idle-timeout.

Better new flow handling capability for hardware switches

In the testing results, the hardware switches are capable of generating Packet-in rate in the

ranging from 3000 to 7000 Packet-in per second. This rate is approximately 20 times higher

than that of the software switches.

Well pipeline implementation for hardware switches

For the measurement of pipeline gain, The hardware switches reach 40− 60% pipeline gain

under handling the 1Gbps traffic. There has a large gap between hardware and software switches.

And the number of available tables have the large deviation. All the switch under test, these

switches only have around 60 usable tables, but these switches said they have 254 tables in the

feature report.

Issues for switch implementation

We observed issues and problems during the testing for the OpenFlow switched. Firstly, the

switches may not be well implemented on the design of Apply-Action instructions. Secondly,

the switches crashed with the high volume of burst Packet-in traffic. Moreover, the timer of

idle-timeout is not reset properly when the flow entry matched.

23

Future work

For our experiment, performance factor affected by the loading of the switched is excluded.

This may cause some variance for our testing results presented. We plan to apply this factor and

discuss some advanced issues to our experiment in the near future. Furthermore, the calculation

of the queuing time will be integrated in the pipeline time. In the measurement of pipeline time,

we plan to use the finished time at the first table instead of the sending time of the packet. Thus,

the measurement of pipeline performance should be more accurate.

24

References
[1] Open Network Foundation. https://www.opennetworking.org/about/onf- overview.

[2] “OpenFlow Switch Specification,” vol. 3, pp. 1–164, 2013.

[3] OFTest. http://www.projectfloodlight.org/oftest/.

[4] Ryu certification. https://osrg.github.io/ryu/certification.html.

[5] Spirent, “OpenFlow Performance Testing,” 2015.

[6] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A.W.Moore, “OFLOPS: An open frame-

work for OpenFlow switch evaluation,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 7192 LNCS, pp. 85–95, 2012.

[7] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow switching: Data plane per-

formance,” IEEE International Conference on Communications, 2010.

[8] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance characteristics of vir-

tual switching,” 2014 IEEE 3rd International Conference on Cloud Networking, CloudNet

2014, pp. 120–125, 2014.

[9] A. Gelberger, N. Yemini, and R. Giladi, “Performance analysis of Software-Defined Net-

working (SDN),” in Proceedings - IEEE Computer Society’s Annual International Sympo-

sium on Modeling, Analysis, and Simulation of Computer and Telecommunications Sys-

tems, MASCOTS, pp. 389–393, 2013.

[10] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia, “Modeling and

performance evaluation of an OpenFlow architecture,” 2011 23rd International Teletraffic

Congress (ITC), pp. 1–7, 2011.

[11] C. Rotsos, G. Antichi, M. Bruyere, P. Owezarski, and A. W. Moore, “OFLOPS-Turbo:

Testing the next-generation OpenFlow switch,” IEEE International Conference on Com-

munications, pp. 5571–5576, 2015.

25

[12] R. B. Handfield and K. Mccormack, “What You Need to Know About SDN Flow Tables,”

Supply Chain Management Review, no. September, pp. 29–36, 2015.

[13] V. Tanyingyong, M. Hidell, and P. Sjödin, “Improving PC-based OpenFlow switching

performance,” Architectures for Networking and Communications Systems (ANCS), 2010

ACM/IEEE Symposium on, pp. 8–9, 2010.

[14] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity switch models for software-

defined network emulation,” Proceedings of the second ACM SIGCOMM workshop on

Hot topics in software defined networking - HotSDN ’13, p. 43, 2013.

[15] CVE-2016-2074: MPLS buffer overflow vulnerabilities in Open vSwitch.

http://openvswitch.org/pipermail/announce/2016-March/000082.html.

26

	List of Figures
	List of Tables
	Introduction
	Background
	OpenFlow
	OpenFlow performance parameters
	Related Work

	Problem Statement
	Notation
	Problem Description

	Methodology
	Mirror-in-processing
	Calculated traffic
	Masked entry

	Numerical Results
	Implementation
	Experiment setup
	Experimental Results

	Conclusions
	References

