US 20150138993A1

a9 United States

a2y Patent Application Publication (0 Pub. No.: US 2015/0138993 A1

Forster et al. 43) Pub. Date: May 21, 2015
(54) SYSTEMS AND METHODS FOR TESTING (52) US.CL
NETWORKS WITH A CONTROLLER CPC ...covvveees HO4L 41/12 (2013.01); HO4L 41/24
(2013.01)
(71) Applicant: Big Switch Networks, Inc., Mountain
View, CA (US)
67 ABSTRACT
(72) Inventors: R.Kyle Forster, San Francisco, CA
(US)% Shudon%vlhou, Fremont,]CA] A controller may control switches such as physical and soft-
(CUAS)j lgopfrt .PSherwoog, Pa oAlxto, ware switches in a network. The controller may generate
CA U S), ason Farraga, ~unnyvale, virtual switches from groups of end hosts in forming a virtual
US) network topology. The controller may receive one or more
(73) Assignee: Big Switch Networks, Inc., Mountain netyvork policy rgles that govern petwork traffic through the
; switches. For a given network policy rule, the controller may
View, CA (US) . WO -
perform a test in determining whether the network satisfies
(21) Appl. No.: 14/085,538 the network policy rule. The test may be performed based on
o a testing rule identifying test parameters and expected test
(22) Filed: Nov. 20,2013 results. The controller may perform tests in determining
Publication Classification whether the network satisfies the testing rule and the corre-
sponding network policy rule. The tests may be performed via
(51) Int.Cl simulation at the controller or by injecting a tagged test packet
HO4L 12/24 (2006.01) into the network.
11z
¢
EXPECTED
TEST esvt i .
3 N Tep F0LT 807, NO
e Evn, (orVE o EVZ Tee T .

ZI\;T o: ¢ W OETIOoN S CE'é'/\
"\‘ruweﬁsﬁp gu:'rc.HEs/)
I Treetpees NeTwork PAIL
\ RULES, €'\'C..)

I 4

D
174

Patent Application Publication = May 21, 2015 Sheet 1 of 16 US 2015/0138993 A1

/10

COMPUTING
EQUIPMENT 18
/ 12
J
‘ NETWORK
Coggg%ém CONFIGURATION
20" RULES
™
16 r'i 4
34 34
N PACKET FORWARDING SYSTEM f24
: L UNIT26 :
: CONTRO Uﬁ/ rza rso
FLOW
PACKET TABLE CONTROLLER
PROCESSING| | (OR OTHER CLIENTS
SOFTWARE PACKET
FORWARDING ¢ oo
DECISION
ENGINE)
32
\ CIRCUITRY

FT6. \

Patent Application Publication = May 21, 2015 Sheet 2 of 16 US 2015/0138993 A1

CONTROLLER SERVER
18
CONTROL SOFTWARE %4
58
I 56 [
L
CONTROL J| NETWORK
PROTOCOL | PROTOCOL
STACK < STACK
_~066
CONTROLLER CLIENT
30
CONTROL SOFTWARE 64
l ” ’r‘GO
» .,
CONTROL | NETWORK
PROTOCOL | PROTOCOL
STACK ' STACK

FT16, 1

Patent Application Publication = May 21, 2015 Sheet 3 of 16 US 2015/0138993 A1

Voo

HEADER ACTION STATISTICS
76
68k>\- % AN TN e, T N N
68_> NN AN N
TN TN P
(. AN > J\ J
70 72 74

US 2015/0138993 A1

May 21,2015 Sheet 4 of 16

Patent Application Publication

Y r9oxd
do¥a 08 ¥ * * * ¥ *
.v
1404 oo ¥ ¥ v'eTLTLL * ¥ ¥ ¥
OL aNAs
o€
1¥0d ¥* ¥ * ¥ 8v-11:00 * *
0L aN3S
(syaavaH
RE 1¥Od od | ssmaav |ss3Maav| Ss3WAQY | SS3WAAY | LHOd
NOLLOV INOILYWMHOANIf dOL dol di di LEINYEHIE | 1ENEEHLE | LNdNI
13M0Vd |NOILYNILSEA | 30MNOS | NOLYNLLSAA | 30UN0S | NOLLYNILSAA | H0MN0S [TYOISAHd
TYNOLLIaay

Patent Application Publication = May 21, 2015 Sheet 5 of 16 US 2015/0138993 A1

RECEIVE PACKET ™78
Y
COMPARE PACKET TO
FLOW TABLE ENTRIES
(E.G., FIELD BY FIELD, ~~—350
INCLUDING FULL FIELD
WILDCARDS AND PARTIAL
FIELD WILDCARDS)
MATCH NO MATCH
Y Y
TAKE APPROPRIATE SEND PACKET
ACTION FOR MATCHING A
, TO CONTROLLER
STATISTICS
82 84

Patent Application Publication = May 21, 2015 Sheet 6 of 16 US 2015/0138993 A1

Patent Application Publication = May 21, 2015 Sheet 7 of 16 US 2015/0138993 A1

Patent Application Publication = May 21, 2015 Sheet 8 of 16 US 2015/0138993 A1

K
L/(ps
D vov) ({ PRITOCOL
- 16 :
[oscchL Pore T %ﬁfimgma/ Por1 ACTCON
VP2 or MACER |) 9O ‘ Deof W
us W) .
ﬁCCFQ& (‘MR()L/ (/I'S"(
F10, 4
(//‘ 472
DESAEON SOORCE TP
‘/V\I:‘f mac PO _
nooegsg POORESS AcTE 0N
S
CCo | GBI | MAcei go DeoF
Flo. 9 1
TN MENG oo En 1T OV TeP AcrreoN
for ,9;;\3“/ ADDORESS p oA —
l F\' \ Ma CEH BV | prof

“16. 10

Patent Application Publication = May 21, 2015 Sheet 9 of 16 US 2015/0138993 A1

BLDCK NE Tworic RACFIC BETEEN VIRTOML
g
gwua—k\q VASS AND USWTZ

NE (Dol ToLr X RULE

Patent Application Publication = May 21,2015 Sheet100f16 US 2015/0138993 A1

|62

/\!

(

Patent Application Publication = May 21,2015 Sheet110f16 US 2015/0138993 A1

7
(517
EXPECTED
TEST Resvt
Lo B (onWET T EB T o Tep FeT 807 NO

LI¥T oF ¢ NOETIoN S Ce,e./‘

’meﬂs&p swucﬂ\;s/)
| Trreesers NeTwoRK POI |
| RS, ETC.) .

-
D
l‘r

17

Patent Application Publication = May 21,2015 Sheet120f16 US 2015/0138993 A1

(Y2
[" %O

CAIFTE URATTON)

(/Krrcw ve NETworie

~\p

,‘—'—__

LENFEATE LOOT (AL NE redopie ToPa 06N

F EU{\/\ N(/[wolet (LV\)'F7 ()L//i/\Tlc)i\)

\\/ \¥6
S
jDEf\YTT r \(URDT RLN(T B TAaPOLULY (E»()l/
J o PUYSTCAL T 2POOGY) |
.
L 9%
S
RTCETUE SEV OF Teyts i
- |ae
\ C
ww\:;frim?f 1S BASED o TRE
LOGTC AL AN /OR paxsTeal NET Vool
TeOo6X |

Patent Application Publication = May 21,2015 Sheet130f16 US 2015/0138993 A1

e a0

GEVERATE et
Te s PRRAMNETERS
LSS TR ke

prCleET RASEY o (/‘M’L
I

L |

PACLE 7TV | A8

,,w—-ww-—,_...—--—w
mermeare

ppcce T TO <eF AN

CEND
PESSAGT. 5
L
| o= Lostenc Y6
STiATE PRCEET TRAEROL
MF TV\JO\/Z\Q T’DPG/O(;\((/)P\KUF —I’DFMC\’\(CN@
. CLEERED
NETWORK FOLZE RULES Tt peE TR
puetvL csmuLkTroN

Srasnrri e

01:(‘.((\)NDF(ZL\(’CUQ PRTIS FeoM \Uret .
’l:(p ANO UNDERLNENV B Ve Tworle ToPoLbk
A - o
; 7ot ']:N\\DLTN\FMT\:LVQ THE Toen(eeicep P

TABUE EVTRIES)

[

e COM;P:(::’M §.LZV\\)(A°<T'CD\) growT$ To EXe ECTEVY \/\ 2 5O

peents (o LEMERMTE REDDE T

W”Wn«mww

ALY

T
WERKTE Lo/
(%, b b

L

N ki
MW

Patent Application Publication = May 21,2015 Sheet140f16 US 2015/0138993 A1

- A%
e mae TP

MODRE L PODRESS poeA -
- ' 1A
‘ - l mhcet | VL REr| g0 Ox

NE Teoovee PRCICET

Fre . LG
206
TA(omiNG ¢
Gt 14 204
PORT (
[l [b rees | e

Ph Cle® T TN MESSAGEZ

FL6. 17

Patent Application Publication = May 21,2015 Sheet150f16 US 2015/0138993 A1

210
v
HEADER ¥IE DS DA (A
\ TA G
217
FT G, \ &
214

e [y sios | o |

2\b

19

-
ond}
G~

Patent Application Publication = May 21,2015 Sheet16 of16 US 2015/0138993 A1

| 70
L ‘e
GENERKTE. TEST PrccE RO TEST ’
AR AME TERS)
. \\’ ~el ‘4)
r‘;";(;‘ THE TEST jmx—g T A_l e
I — \% ——

o
SR UC gAE’IdeS o M2
Ips((zs:s:ougg T RRCECVENY We TPeCEDTEST PAE
N :

e TAEOED Tewt PPCEET
W 1o pReEve VT TR -
BZDMD““ RERE wonb ITS TESTTWV A TN gnn oy
F MMX' 228
ToESEFY ENWeX ety ASSCENTED A TH
oF E
oRCE EUD~\r\-U\"(OF THE ThbsED el PICEET
SO : r230

TELT PACKET AT TINE

| ToseC ThBOED
TRV cTicH

wt : =
e LIRS RTESY b ervep FRow T _
STJ*W‘“‘*“ AS THOGED (ECr PRCEET TRAERSES

TwE NF TWoRK

r'2->2.

—

134
1o Freec(eD RECATS

\ Compree TEST pEcuS
\/(O LRNEEATE eepoe

e

FT6. 20

US 2015/0138993 Al

SYSTEMS AND METHODS FOR TESTING
NETWORKS WITH A CONTROLLER

BACKGROUND

[0001] This relates to communication networks, and more
particularly, to communications networks having network
switches that are controlled by a controller.

[0002] Packet-based networks such as the internet and local
data networks that are connected to the internet include net-
work switches. Network switches are used in forwarding
packets from packet sources to packet destinations. The pack-
ets may be sometimes referred to as frames.

[0003] It can be difficult or impossible to control the
switches of one vendor using the equipment of another ven-
dor. This is because the switch equipment of one vendor may
use a different operating system and set of control procedures
than the switch equipment of another vendor. To address the
challenges associated with controlling different types of
switch platforms, cross-platform protocols have been devel-
oped. These protocols allow centralized control of otherwise
incompatible switches.

[0004] Cross-platform controller clients can be included on
the switches in a network. The controller clients are able to
communicate with a corresponding controller server over
network paths. Because the controller clients can be imple-
mented on a variety of switch hardware, it is possible for a
single controller to control switch equipment that might oth-
erwise be incompatible.

[0005] It can be challenging for a controller to efficiently
control a network of switches. For example, the network
topology may be modified by a network administrator or due
to device failure. In this scenario, the network modifications
may potentially result in invalid configurations at the control-
ler. It would therefore be desirable to provide the controller
with improved capabilities.

SUMMARY

[0006] A controller may control switches such as physical
and software switches in a network. The controller may gen-
erate virtual switches from groups of end hosts. Each virtual
switch may have virtual ports that are assigned to respective
end hosts. The controller may generate a virtual network
topology from the virtual switches.

[0007] The controller may receive one or more network
policy rules that govern network traffic through the switches.
Network policy rules may be defined for respective virtual
ports such that the network policy rules govern network traffic
that flows through the virtual ports. For a given network
policy rule, the controller may perform a test in determining
whether the network satisfies the network policy rule. The test
may be performed based on a testing rule received by the
controller (e.g., from a user). The testing rule may identify
test parameters and expected test results. The controller may
generate a test packet based on the test parameters of the
testing rule. For example, the test packet may include source
and destination end host information or other header fields
determined from the test parameters.

[0008] The controller may simulate packet traversal of the
test packet through a virtual path of the virtual network topol-
ogy. The controller may identify network policy rules that are
triggered during simulation. The controller may determine a
set of switches that form an underlying path of the virtual
path. The controller may generate flow table entries imple-

May 21, 2015

menting the underlying path without providing the flow table
entries to the set of switches (e.g., so that normal forwarding
operations of the network are not altered during testing).
Based on simulation results such as the triggered network
policy rules or the switches that are traversed by the test
packet, the controller may determine whether the network
satisfies the network policy rule.

[0009] If desired, the controller may tag a test packet and
inject the tagged test packet into the network. The test packet
may be tagged by inserting identification information into
header fields or by encapsulating the test packet. The control-
ler may provide flow table entries to the switches that direct
the switches to send information on the tagged test packet to
the controller. The information may identify which switch
ports the tagged test packet was received at. The flow table
entries may prevent the switches from forwarding the tagged
test packet to a destination end host of the tagged test packet,
which helps to ensure that normal operation of the end hosts
is not disrupted by controller testing of network policy rules.
Based on the information from the switches, the controller
may determine whether the network satisfies the expected
results of the testing rule and a corresponding network policy
rule.

[0010] Further features of the present invention, its nature
and various advantages will be more apparent from the
accompanying drawings and the following detailed descrip-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a diagram of an illustrative network that
includes a controller and a packet forwarding system in accor-
dance with an embodiment of the present invention.

[0012] FIG. 2 is a diagram of a controller server and con-
troller client that may communicate over a network connec-
tion in accordance with an embodiment of the present inven-
tion.

[0013] FIG. 3is adiagram of an illustrative flow table of the
type that may be used by a packet processing system in
accordance with an embodiment of the present invention.
[0014] FIG. 4is adiagram of an illustrative flow table of the
type that may be used by a packet processing system showing
three illustrative types of packet forwarding that may be per-
formed based on the flow table entries of the flow table in
accordance with an embodiment of the present invention.
[0015] FIG. 5isa flow chart of illustrative steps involved in
processing packets in a packet processing system in accor-
dance with an embodiment of the present invention.

[0016] FIG. 6 is an illustrative network including switches
that may be controlled by a controller in accordance with an
embodiment of the present invention.

[0017] FIG. 7 is an illustrative virtual network that may be
generated by a controller from an underlying network in
accordance with an embodiment of the present invention.
[0018] FIG. 8 is an illustrative access control list that may
be implemented by a controller in accordance with an
embodiment of the present invention.

[0019] FIG. 9is a first illustrative flow table entry that may
be generated by a controller in implementing a network
policy rule in accordance with an embodiment of the present
invention.

[0020] FIG. 10 is a second illustrative flow table entry that
may be generated by a controller in implementing a network
policy rule in accordance with an embodiment of the present
invention.

US 2015/0138993 Al

[0021] FIG. 11 is an illustrative network policy rule that
may be implemented by a controller in accordance with an
embodiment of the present invention.

[0022] FIG. 12 is a diagram of a scenario in which a virtual
network may be modified by a controller in accordance with
an embodiment of the present invention.

[0023] FIG. 13 is an illustrative testing rule that may be
used by a controller in testing network policy rules in accor-
dance with an embodiment of the present invention.

[0024] FIG. 14 is a flow chart of illustrative steps that may
be performed by a controller in testing network policy rules in
accordance with an embodiment of the present invention.
[0025] FIG. 15 is a flow chart of illustrative steps that may
be performed by a controller in simulating a test packet to test
a network policy rule in accordance with an embodiment of
the present invention.

[0026] FIG. 16 is an illustrative network packet that may
generated as a test packet by a controller in accordance with
an embodiment of the present invention.

[0027] FIG.17 is anillustrative Packet In message that may
be generated by a controller in accordance with an embodi-
ment of the present invention.

[0028] FIG. 18 is an illustrative tagged network packet that
may generated by inserting identification information into
header fields of a network packet in accordance with an
embodiment of the present invention.

[0029] FIG. 19 is an illustrative tagged network packet that
may generated by encapsulating a network packet in accor-
dance with an embodiment of the present invention.

[0030] FIG. 20 is a flow chart of illustrative steps that may
be performed by a controller in testing a network policy rule
by injecting a tagged test packet into a network in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION

[0031] Networks such as the internet and the local and
regional networks that are coupled to the internet rely on
packet-based switches. These switches, which are sometimes
referred to herein as network switches, packet processing
systems, or packet forwarding systems can forward packets
based on address information. As examples, the switches may
include routers, firewalls, load balancers, or other packet
forwarding systems. In this way, data packets that are trans-
mitted by a packet source may be delivered to a packet des-
tination. In network terms, packet sources and destinations
are sometimes referred to as end hosts. Examples of end hosts
are personal computers, servers, and other computing equip-
ment such as portable electronic devices that access the net-
work using wired or wireless technologies.

[0032] Network switches range in capability from rela-
tively small Ethernet switches and wireless access points to
large rack-based systems that include multiple line cards,
redundant power supplies, and supervisor capabilities. It is
not uncommon for networks to include equipment from mul-
tiple vendors. Network switches from different vendors can
be interconnected to form a packet forwarding network, but
can be difficult to manage in a centralized fashion due to
incompatibilities between their operating systems and con-
trol protocols.

[0033] These potential incompatibilities can be overcome
by incorporating a common cross-platform control module
(sometimes referred to herein as a controller client) into each
network switch. A centralized cross-platform controller
server may interact with each of the control clients over

May 21, 2015

respective network links. The use of a cross-platform control-
ler server and corresponding controller clients allows poten-
tially disparate network switch equipment to be centrally
managed.

[0034] With one illustrative configuration, which is some-
times described herein as an example, centralized control is
provided by one or more controller servers such as controller
server 18 of FIG. 1. Controller server 18 may be implemented
on a stand-alone computer, on a cluster of computers, on a set
of computers that are distributed among multiple locations,
on hardware that is embedded within a network switch, or on
other suitable computing equipment 12. Controller server 18
can run as a single process on a single computer or can be
distributed over several hosts for redundancy. The use of a
distributed arrangement may help provide network 10 with
resiliency against unexpected network partitions (e.g., a situ-
ation in which a network link between two campuses is dis-
rupted).

[0035] In distributed controller arrangements, controller
nodes can exchange information using an intra-controller
protocol. For example, if a new end host connects to network
hardware (e.g., a switch) that is only connected to a first
controller node, that first controller node may use the intra-
controller protocol to inform other controller nodes of the
presence of the new end host. If desired, a switch or other
network component may be connected to multiple controller
nodes. Arrangements in which a single controller server is
used to control a network of associated switches are some-
times described herein as an example.

[0036] Controller server 18 of FIG. 1 may gather informa-
tion about the topology of network 10. For example, control-
ler server 18 may send Link Layer Discovery Protocol
(LLDP) probe packets through the network to discover the
topology of network 10. Controller server 18 may use infor-
mation on network topology and information on the capabili-
ties of network equipment to determine appropriate paths for
packets flowing through the network. Once appropriate paths
have been identified, controller server 18 may send corre-
sponding settings data to the hardware in network 10 to
ensure that packets flow through the network as desired.
Network configuration operations such as these may be per-
formed during system setup operations, continuously in the
background, or in response to the appearance of newly trans-
mitted data packets (i.e., packets for which a preexisting path
has not been established).

[0037] Controller server 18 may be used to implement net-
work configuration rules 20. Rules 20 may specify which
services are available to various network entities. As an
example, rules 20 may specify which users (or type of users)
in network 10 may access a particular server. Rules 20 may,
for example, be maintained in a database at computing equip-
ment 12.

[0038] Controller server 18 and controller clients 30 at
respective network switches 14 may use network protocol
stacks to communicate over network links 16.

[0039] Each switch (e.g., each packet forwarding system)
14 may have input-output ports 34 (sometimes referred to as
network switch interfaces). Cables may be used to connect
pieces of equipment to ports 34. For example, end hosts such
as personal computers, web servers, and other computing
equipment may be plugged into ports 34. Ports 34 may also be
used to connect one of switches 14 to other switches 14.
[0040] Packet processing circuitry 32 may be used in for-
warding packets from one of ports 34 to another of ports 34

US 2015/0138993 Al

and may be used in performing other suitable actions on
incoming packets. Packet processing circuit 32 may be imple-
mented using one or more integrated circuits such as dedi-
cated high-speed switch circuits and may serve as a hardware
data path. If desired, packet processing software 26 that is
running on control unit 24 may be used in implementing a
software data path.

[0041] Control unit 24 may include processing and
memory circuits (e.g., one or more microprocessors, memory
chips, and other control circuitry) for storing and running
control software. For example, control unit 24 may store and
run software such as packet processing software 26, may
store flow table 28, and may be used to support the operation
of controller clients 30.

[0042] Controller clients 30 and controller server 18 may
be compliant with a network switch protocol such as the
OpenFlow protocol (see, e.g., OpenFlow Switch Specifica-
tion version 1.0.0). One or more clients among controller
clients 30 may also be compliant with other protocols (e.g.,
the Simple Network Management Protocol). Using the Open-
Flow protocol or other suitable protocols, controller server 18
may provide controller clients 30 with data that determines
how switch 14 is to process incoming packets from input-
output ports 34.

[0043] With one suitable arrangement, flow table data from
controller server 18 may be stored in a flow table such as flow
table 28. The entries of flow table 28 may be used in config-
uring switch 14 (e.g., the functions of packet processing cir-
cuitry 32 and/or packet processing software 26). In a typical
scenario, flow table 28 serves as cache storage for flow table
entries and a corresponding version of these flow table entries
is embedded within the settings maintained by the circuitry of
packet processing circuitry 32. This is, however, merely illus-
trative. Flow table 28 may serve as the exclusive storage for
flow table entries in switch 14 or may be omitted in favor of
flow table storage resources within packet processing cir-
cuitry 32. In general, flow table entries may be stored using
any suitable data structures (e.g., one or more tables, lists,
etc.). For clarity, the data of flow table 28 (whether main-
tained in a database in control unit 24 or embedded within the
configuration of packet processing circuitry 32) is referred to
herein as forming flow table entries (e.g., rows in flow table
28).

[0044] The example of flow tables 28 storing data that
determines how switch 14 is to process incoming packets are
merely illustrative. If desired, any packet forwarding decision
engine may be used in place of or in addition to flow tables 28
to assist packet forwarding system 14 to make decisions about
how to forward network packets. As an example, packet for-
warding decision engines may direct packet forwarding sys-
tem 14 to forward network packets to predetermined ports
based on attributes of the network packets (e.g., based on
network protocol headers).

[0045] Any desired switch may be provided with controller
clients that communicate with and are controlled by a con-
troller server. For example, switch 14 may be implemented
using a general purpose processing platform that runs control
software and that omits packet processing circuitry 32. As
another example, switch 14 may be implemented using con-
trol circuitry that is coupled to one or more high-speed
switching integrated circuits (“switch ICs”). As yet another
example, switch 14 may be implemented as a line card in a
rack-based system having multiple line cards each with its
own packet processing circuitry. The controller server may, if

May 21, 2015

desired, be implemented on one or more line cards in the
rack-based system, in another rack-based system, or on other
computing equipment that is coupled to the network.

[0046] As shown in FIG. 2, controller server 18 and con-
troller client 30 may communicate over network path 66
using network protocol stacks such as network protocol stack
58 and network protocol stack 60. Stacks 58 and 60 may be,
for example Linux TCP/IP stacks or the TCP/IP stack in the
VxWorks operating system (as examples). Path 66 may be,
for example, a path that supports a network connection
between switch 14 and external equipment (e.g., network
path 16 of FIG. 1) or may be a backbone path in a rack-based
system. Arrangements in which path 66 is a network path
such as path 16 are sometimes described herein as an
example.

[0047] Control protocol stack 56 serves as an interface
between network protocol stack 58 and control software 54.
Control protocol stack 62 serves as an interface between
network protocol stack 60 and control software 64. During
operation, when controller server 18 is communicating with
controller client 30, control protocol stacks 56 generate and
parse control protocol messages (e.g., control messages to
activate a port or to install a particular flow table entry into
flow table 28). By using arrangements of the type shown in
FIG. 2, anetwork connection is formed over the link between
controller server 18 and controller client 30. Controller server
18 and controller client 30 can communicate using a Trans-
mission Control Protocol (TCP) or User Datagram Protocol
(UDP) over Internet Protocol (IP) network connection.
Examples of control protocols that may be used when com-
municating between controller server 18 and controller cli-
ents 30 over the network connection include SNMP and
OpenFlow protocol stack version 1.0.0 (as examples).
[0048] Flow table 28 contains flow table entries (e.g., rows
in the table) that have multiple fields (sometimes referred to
as header fields). The fields in a packet that has been received
by switch 14 can be compared to the fields in the flow table.
Each flow table entry may have associated actions. When
there is a match between the fields in a packet and the fields in
a flow table entry, the corresponding action for that flow table
entry may be taken.

[0049] An illustrative flow table is shown in FIG. 3. As
shown in FIG. 3, table 28 may have flow table entries (rows)
68. Each flow table entry may be associated with header 70,
action 72, and statistics 74. Headers 70 may each include
multiple header fields 76. The action in each flow table entry
indicates what action switch 14 is to perform on the packet
when a match is detected between the fields in the packet and
the corresponding fields in the header of that flow table entry.
Switch 14 may maintain statistical data (counter values) in the
statistics portion of flow table 28 that can be queried by
controller server 18 when it is desired to obtain information
on the performance of switch 14.

[0050] The header fields in header 70 (and the correspond-
ing fields in each incoming packet) may include the following
fields: ingress port (i.e., the identity of the physical port in
switch 14 through which the packet is being received), Eth-
ernet source address, Ethernet destination address, Ethernet
type, virtual local area network (VLLAN) identification (some-
times referred to as a VLAN tag), VLAN priority, IP source
address, IP destination address, IP protocol, IP ToS (type of
service) bits, Transport source port/Internet Control Message
Protocol (ICMP) Type (sometimes referred to as source TCP
port), and Transport destination port/ICMP Code (sometimes

US 2015/0138993 Al

referred to as destination TCP port). Other fields may be used
if desired. For example, a network protocol field and a pro-
tocol port field may be used.

[0051] Each flow table entry (flow entry) is associated with
zero or more actions that dictate how the switch handles
matching packets. If no forward actions are present, the
packet is preferably dropped. The actions that may be taken
by switch 14 when a match is detected between packet fields
and the header fields in a flow table entry may include the
following actions: forward (e.g., ALL to send the packet out
on all interfaces, not including the incoming interface, CON-
TROLLER to encapsulate and send the packet to the control-
ler server, LOCAL to send the packet to the local networking
stack of the switch, TABLE to perform actions in flow table
28, IN_PORT to send the packet out of the input port, NOR-
MAL to process the packet with a default forwarding path that
is supported by the switch using, for example, traditional
level 2, VL AN, and level 3 processing, and FLOOD to flood
the packet along the minimum forwarding tree, not including
the incoming interface). Additional actions that may be taken
by switch 14 include: an enqueue action to forward a packet
through a queue attached to a port and a drop action (e.g., to
drop a packet that matches a flow table entry with no specified
action). Modify-field actions may also be supported by switch
14. Examples of modify-field actions that may be taken
include: Set VLAN ID, Set VLAN priority, Strip VLAN
header, Modify VLAN tag, Modify Ethernet source MAC
(Media Access Control) address, Modify Ethernet destination
MAC address, Modify IPv4 source address, Modify IPv4 ToS
bits, Modify transport destination port.

[0052] FIG. 4 is an illustrative flow table having three flow
table entries. The entries include fields with wildcards (e.g.,
“*” symbols). When a wildcard is present in a particular field,
all incoming packets will be considered to form a “match”
with respect to the field, regardless of the particular value of
the field in the incoming packet. Additional fields may match
additional packet information (e.g., packet header informa-
tion of network packets).

[0053] The entry of the first row of the FIG. 4 table directs
the switch in which the flow table entry is operating to per-
form Ethernet switching. In particular, incoming packets with
matching Ethernet destination addresses are forwarded to
port 3.

[0054] The entry of the second row of table of FIG. 4
illustrates how a switch may be configured to perform internet
routing (i.e., packets are forwarded based on their destination
IP address).

[0055] The third row of'the table of FIG. 4 contains an entry
that illustrates how a switch may be configured to perform
firewalling. When a packet is received that has a destination
IP port value of 80, that packet is dropped (i.e., the switch is
configured to serve as a firewall that blocks port 80 traffic).

[0056] Flow table entries of the type shown in FIG. 4 may
be loaded into a switch 14 by controller server 18 during
system setup operations or may be provided to a switch 14
from controller server 18 in real time in response to receipt
and processing of packets at controller server 18 from
switches such as switch 14. In a network with numerous
switches 14, each switch can be provided with appropriate
flow table entries to form a path through the network.

[0057] Illustrative steps that may be performed by switch
14 in processing packets that are received on input-output

May 21, 2015

ports 34 are shown in FIG. 5. At step 78, switch 14 receives a
packet on one of its ports (e.g., one of input-output ports 34 of
FIG. 1).

[0058] At step 80, switch 14 compares the fields of the
received packet to the fields of the flow table entries in the
flow table 28 of that switch to determine whether there is a
match. Some fields in a flow table entry may contain complete
values (e.g., complete addresses). Other fields may contain
wildcards (i.e., fields marked with the “don’t care” wildcard
character of “*””). Yet other fields may have partially complete
entries (e.g., a partial address that is partially wildcarded).
Some fields may use ranges (e.g., by restricting a TCP port
number to a value between 1 and 4096) and in effect use the
range to implement a type of partial wildcarding. In making
field-by-field comparisons between the received packet and
the flow table entries, switch 14 can take into account whether
or not each field in the flow table entry contains a complete
value without any wildcarding, a partial value with wildcard-
ing, or a wildcard character (i.e., a completely wildcarded
field).

[0059] Ifit is determined during the operations of step 80
that there is no match between the fields of the packet and the
corresponding fields of the flow table entries, switch 14 may
send the packet to controller server 18 over link 16 (step 84).
[0060] If it is determined during the operations of step 80
that there is a match between the packet and a flow table entry,
switch 14 may perform the action that is associated with that
flow table entry and may update the counter value in the
statistics field of that flow table entry (step 82). Processing
may then loop back to step 78, so that another packet may be
processed by switch 14, as indicated by line 86.

[0061] FIG. 6 is a diagram of an illustrative network 100 in
which switches may be controlled by a controller 18. Con-
troller 18 may be a controller server or a distributed controller
implemented across multiple computing equipment. As
shown in FIG. 6, network 100 may include switches SW1,
SW2, and SW3. The switches may be physical switches that
are implemented with dedicated switching circuitry or may
be software switches. Examples of software switches include
hypervisor switches implemented using software on discrete
computing equipment (e.g., on a server in a rack-based sys-
tem). Such software switches are coupled to the rest of the
network by cables plugged into dedicated physical ports of
the computing equipment on which the software switch is
implemented (e.g., each software switch is constrained and
tied to the physical ports of a given server on which the
software switch is implemented).

[0062] Controller 18 may be coupled to the switches of
network 100 via control paths 66. Controller 18 may control
the switches using control paths 66 (e.g., by providing flow
table entries such as flow table entries 68 of FIG. 3).

[0063] Network 100 may include end hosts such as end
hosts EH1, EH2, and EH3 that are coupled to the switches of
network 100. In the example of FIG. 6, end hosts EH1 and
EH3 are coupled to ports P1 and P2 of switch SW1, whereas
end host EH2 is coupled to port P2 of switch SW3. Ports of
switches may be coupled to ports of other switches. For
example, port P3 of switch SW1 may be coupled to port P1 of
switch SW2 and port P2 of switch SW2 may be coupled to
port P1 of switch SW3. Packets received from a first end host
at a switch port may be forwarded to a second end host by
switches that are coupled between the end hosts.

[0064] It can be challenging for a user such as a network
administrator to configure network 100 for desired opera-

US 2015/0138993 Al

tions. For example, it can be desirable to isolate or otherwise
limit communications between groups of end hosts. As
another example, it can be inefficient for a network administer
to manually configure network policy (e.g., routing rules,
access control lists, etc.) for each switch and each end host of
the network. Controller 18 may be configured to implement a
logical network topology of virtual routers and virtual
switches over the underlying network topology (e.g., a physi-
cal network topology). The logical network topology may
provide benefits such as improved network configuration effi-
ciency, flexibility, and capabilities. FIG. 7 is an illustrative
example in which controller 18 is configured to implement a
virtual network topology 120 from underlying network 100
of FIG. 6.

[0065] Virtual network topology 120 may be any desired
topology within the physical constraints of underlying net-
work 100 (e.g., each virtual path has at least one if not more
corresponding paths in the underlying network). The under-
lying paths may include physical switches and/or software-
based switches.

[0066] As shown in FIG. 7, virtual network topology 120
may include virtual switches such as VSW1 and VSW2 and
virtual routers such as VR 1. Virtual switches are formed from
groups of end hosts of the network and may be defined by any
desired network attributes of the end hosts. If desired, a vir-
tual switch may be assigned end hosts that are coupled to
different underlying physical or software switches. Virtual
switch VSW1 may be assigned end hosts EH1 and EH2,
whereas virtual switch VSW2 may be may be assigned end
host EH3. Virtual switches may have virtual ports that are
coupled to end hosts and other elements in the virtual network
topology. For example, virtual switch VSW1 may have vir-
tual ports VP1, VP2, and VP3 that are coupled to end host
EH1, end host EH2, and virtual router VR 1. Similarly, virtual
switch VSW2 may have virtual ports VP1 and VP2 that are
coupled to end host EH3 and virtual router VR 1, respectively.
[0067] Examples of network attributes that may be used in
characterizing an end host include the physical or hypervisor
switch port to which the end host is coupled, a hardware
address of the end host (e.g., a MAC address), a protocol
address of the end host (e.g., an IP address), a virtual local
area network (VLAN) tag, and/or other network attributes of
the end host. For example, controller 18 may identify end host
EH1 as attached to port P1 of switch SW1, may identify end
host EH2 by MAC address, and may identify end host EH3 by
IP address. As another example, in the scenario in which
switch SW3 is a hypervisor switch, end host EH2 may be
identified by a logical hypervisor port to which end host EH2
is coupled. These examples are merely illustrative. Any
desired network attribute such as used in network packet
header fields or any desired combination of network attributes
may be used in assigning end hosts to virtual switches and any
desired number of distributed virtual switches may be gener-
ated from the underlying network of physical and hypervisor
switches.

[0068] Virtual switches may be grouped to form one or
more virtual routers. In the example of FIG. 7, virtual
switches VSW1 and VSW2 are grouped to form virtual router
VRI1. In other words, the groups of end hosts of virtual
switches VSW1 and VSW2 are assigned to virtual router
VR1. Each virtual switch serves to implement a respective
broadcast domain in which broadcast network packets are
forwarded to all end hosts of the virtual switch. The broadcast
network packets may be network packets having header fields

May 21, 2015

identifying the network packets as broadcast network packets
that are destined for all end hosts of an associated broadcast
domain. For example, broadcast network packets received by
virtual switch VSW1 from end host EH2 may be forwarded
by virtual switch VSW1 to each other end host that is assigned
to virtual switch VSW1 (i.e., to end host EH1).

[0069] Virtual routers perform network routing functions
and provide isolation for the different broadcast domains of
the virtual switches. For example, virtual router VR1 may
prevent broadcast packets from being forwarded by virtual
switch VSW1 to virtual switch VSW2 (and vice versa). The
broadcast domains may be defined in terms of IP address
ranges such that each interface of a given virtual router is
assigned a different respective IP address range. For example,
a first IP address range may be assigned to interface IF1 and
virtual switch VSW1, whereas a second IP address range may
be assigned to interface IF2 and virtual switch VSW2. In the
example of FIG. 7, in contrast to virtual routers, virtual
switches do not perform any network routing functions based
on IP domains. However, if desired, virtual routers may be
omitted and virtual switches may perform forwarding and
routing functions.

[0070] Network routing functions that may be performed
by a virtual router include modifying headers of network
packets received at interfaces of the virtual router. The virtual
router may decrement a time-to-live IP header field of the
network packet. The virtual router may modify Ethernet
headers such as source and destination MAC address fields to
correspond with a desired broadcast domain. For example,
each interface of the virtual router may be assigned a respec-
tive Ethernet address. In this scenario, the virtual router may
rewrite the source MAC address fields to match the egress
(outgoing) interface of the virtual router. The virtual router
may rewrite the destination MAC address field to match a
next-hop address.

[0071] Controller 18 may be used to apply and enforce
network policy rules at logical ports of the virtual network
(e.g., virtual ports of distributed virtual switches or interfaces
of distributed virtual routers). Network policy rules may
include network routing rules that help determine network
paths between end hosts and may include access control lists
that allow or block selected network traffic. The network
policy rules may be provided by a user. FIG. 8 is a diagram of
an illustrative access control list that may be implemented by
controller 18.

[0072] AsshowninFIG. 8, access control list 132 identifies
network attributes such as logical port, end host information,
and protocol port. In general, any desired network attribute
such as one or more logical ports, physical ports and/or packet
header fields may be included in access control list 132. The
packet header fields may include header fields that identify
one or more end hosts (e.g., a source or a destination end
host). For example, access control list 132 may include end
host identification fields such as source MAC address, source
IP address, destination MAC address, and/or destination IP
address. If desired, an end host may be identified via an alias
(e.g., astring of characters) that may be mapped to an end host
using a database.

[0073] Controller 18 may generate flow table entries that
implement the network policy rule defined by access control
list 132. In the example of FIG. 8, access control list 132
identifies logical port VP2 of virtual port VSW1, the MAC
address of end host EH1 (MACEH1), and protocol port 80.
Protocol port 80 may be a Transmission Control Protocol

US 2015/0138993 Al

(TCP) port. Controller 18 may process access control list 132
to determine that network packets received at logical port
VP2 of virtual switch VSW1 having source MAC address
MACEHI and TCP protocol port 80 should be dropped (i.e.,
packets matching the network attributes identified in control
list 132 should be dropped). Use of logical ports such as VP2
of virtual switch VSW1 may provide flexibility to a network
administrator in configuring the network, as virtual network
topology 120 may have any desired arrangement of virtual
switches and assignment of end hosts to the virtual switches.
Controller 18 may subsequently generate and provide flow
table entries to the underlying physical and/or hypervisor
switches of underlying network 100 that implement access
control list 132.

[0074] FIG.9is anillustrative flow table entry that control-
ler 18 may generate in implementing access control list 132.
As shown in FIG. 9, flow table entry 142 may include the
MAC address of end host EH1 in a source MAC address field,
the MAC address of end host EH2 in a destination MAC
address field, and port 80 in a TCP port field. Flow table entry
142 may include additional matching fields that are wild-
carded (not shown) so that flow table entry 142 matches all
packets having source MAC address MACEH1, destination
MAC address MACEH2, and TCP port 80.

[0075] Flow table entry 142 may be provided to one or
more physical or hypervisor switches in implementing access
control list 132. For example, flow table entry 142 may be
provided to switch SW3. In this scenario, any network pack-
ets received by switch SW3 from end host EH1 (i.e., having
MAC address MACEH1) and destined for end host EH2 (i.e.,
having MAC address MACEH2) with TCP port 80 may be
dropped as determined from the action field of flow table
entry 142. Switch SW3 may be a suitable recipient of flow
table entry 142, because access control list 132 is defined at
logical port VP2 of VSW2 to which end host EH3 is assigned
and end host EH3 is attached to port P2 of switch SW3 of the
underlying network. However, as virtual switch VSW2 is a
distributed virtual switch, controller 18 may select any
desired underlying switches for implementing access control
list 132 via flow table entries. For example, controller 18 may
generate and provide flow table entry 144 of FIG. 10 to switch
SW1.

[0076] As shown in FIG. 10, flow table entry 144 matches
network packets destined for end host EH2 (e.g., having
destination MAC address MACEH2), TCP port 80, and
received at port P1 (of switch SW1). Flow table entry 144 may
be suitable for providing to switch SW1, because end host
EH1 is attached to port P1 of switch SW1 and therefore
packets from end host EH1 are processed by switch SW1.
Flow table entry 144 may direct switch SW1 to drop network
packets that are received from end host EH1 (via port P1) and
are destined for end host EH2 on TCP port 80. Each of flow
table entries 144 and 142, although provided to different
switches of underlying network 100, may effectively imple-
ment network policy rule 132 in preventing end host EH1
from communicating with end host EH2 on TCP port 80. If
desired, multiple flow table entries may be provided to dif-
ferent switches in implementing a network policy rule. For
example, controller 18 may provide flow table entries to any
desired combination of switches SW1, SW2, and SW3 in
implementing access control list 132.

[0077] FIG. 11 is an illustrative diagram of a network
policy rule that may be implemented by controller 18. As
shown in FIG. 11, network policy rule 152 defines that net-

May 21, 2015

work traffic between virtual switches VSW1 and VSW2
should be blocked. Network policy rule 152 may be defined as
a routing rule for virtual router VR1. Controller 18 may
process network policy rule 152 to generate flow table entries
for switches of underlying network 100 that block network
traffic between virtual switches VSW1 and VSW2. For
example, flow table entries that match network packets with
source end host information identifying end hosts of virtual
switch VSW1 and destination end host information identify-
ing end hosts of virtual switch VSW2 may be provided to one
or more switches of underlying network 100. In this scenario,
the flow table entries may direct the switches to drop network
packets that match the flow table entries.

[0078] Virtual network topologies may be redefined as
desired, which provides flexibility in network configuration
and network policy enforcement. As shown in the example of
FIG. 12, virtual network topology 162 may be generated by
reassigning end host EH2 of virtual network topology 120 of
FIG. 7 to virtual switch VSW2. Reassignment of end hosts
may be performed without modifying underlying network
100 (e.g., end host EH2 may remain attached to port P2 of
switch SW3). In virtual network topology 162, end host EH2
is assigned to virtual port VP3 of virtual switch VSW2.

[0079] It can be challenging to maintain appropriate net-
work policy rules for a virtual network topology that is modi-
fied over time. Consider the scenario in which access control
list 132 of FIG. 8 and network policy rule 152 of FIG. 11 are
implemented by controller 18 for virtual network topology
120 of FIG. 7 using flow table entry 141 of FIG. 9. In this
scenario, if virtual network topology 120 is modified into
topology 162 of FIG. 12 via reassignment of end host EH2,
access control list 132 is no longer valid (e.g., because access
control list 132 is defined for virtual port VP2 of virtual switch
VSWI1 which is no longer assigned any end hosts). As end
host EH2 is now connected to virtual switch VSW2, network
packets sent from end host EH1 to end host EH2 on TCP port
80 are still blocked, because network policy rule 152 blocks
all network traffic between virtual switches VSW1 and
VSW2. It can therefore be challenging to identify that access
control list 132 is invalid, because the desired network opera-
tions of access control list 132 are implemented by network
policy rule 152.

[0080] As controller 18 may implement hundreds, thou-
sands, or more network policy rules, network modifications
over time can invalidate a substantially number of network
policies. Controller 18 may perform test operations that may
help to identify invalid network policy rules, network modi-
fications, or otherwise test the functions of a network. Con-
troller testing operations may be defined by a user such as a
network administrator using test rules. FIG. 13 is a diagram of
an illustrative test rule 172 that may be provided to controller
18. Test rule 172 may be used in performing test operations
and therefore may sometimes be referred to as a testing rule.

[0081] Test rule 172 may include test parameters and
expected results for a test to be performed. In the example of
FIG. 13, the test parameters identify that the controller is to
test whether end host EH1 can connect to end host EH2 on
TCP port 80. As an example, the test parameters may define
end host EH1 as a source end host, end host EH2 as a desti-
nation end host, and TCP port 80. The expected results may be
yes or no (e.g., true/pass or false/fail). If desired, the expected
results may include an optional list of conditions 174.
Optional list of conditions 174 may include a list of traversed

US 2015/0138993 Al

switches, triggered network policy rules, or other information
produced in performing tests based on test rule 172.

[0082] FIG. 14 is a flow chart 180 of illustrative steps that
may be performed by a controller in performing tests defined
by test rules such as rule 172 of FIG. 13.

[0083] During step 182, the controller may receive a net-
work configuration. For example, the network configuration
may be user-defined and may include assignments of end
hosts to virtual switches and assignments of virtual switches
to virtual routers.

[0084] During step 184, the controller may generate a logi-
cal network topology from the network configuration. For
example, virtual network topology 120 of FIG. 7, virtual
network topology 162 of FIG. 12, or any desired virtual
network topology may be generated as defined by the network
configuration.

[0085] During step 186, the controller may identify the
underlying topology of the generated logical network topol-
ogy. The controller may communicate with physical and
hypervisor switches over control paths in determining the
network topology that underlies the virtual network topology
(e.g., identifying connections between switches in the under-
lying network topology).

[0086] During step 188, the controller may receive a set of
test rules. In general, the set of test rules may be user-defined
and each test rule may, if desired, determine a test for testing
the validity of one or more respective network policies. For
example, the controller may receive test rule 172 of FIG. 13
that tests the validity of access control list 132 of FIG. 8.
[0087] During step 190, the controller may perform tests
for each of the test rules. The tests may be performed based on
the logical and/or physical network topology. Tests may be
performed via simulation at the controller or via injection of
a test packet into the network.

[0088] The order of steps 182-190 in the example of FIG.
14 is merely illustrative. If desired, these steps may be per-
formed in any desired order to perform tests on a network. For
example, user-defined tests may be received during network
configuration or at any time during normal network opera-
tions. If desired, the controller may perform the steps of flow
chart 180 periodically (e.g., every 5 milliseconds, every 100
milliseconds, every 10 seconds, etc.).

[0089] FIG. 15 is an illustrative flow chart 190 of steps that
may be performed by a controller to perform a test of a test
rule via simulation. The steps of flow chart 190 may, for
example, be performed during step 190 of FIG. 14.

[0090] During step 192, the controller may generate a test
packet based on the test parameters of the test rule. For
example, for testing rule 172 of FIG. 13, the controller may
generate a test packet that imitates a packet sent by end host
EH1 to end host EH2 using TCP port 80. In this scenario,
source packet header fields may be populated with the infor-
mation of source end host EH1 (e.g., the MAC and/or IP
address of end host EH1), whereas destination packet header
fields may be populated with the information of destination
end host EH2. Additional test parameters such as TCP port 80
may be stored in corresponding header fields (e.g., a TCP port
header field) of the test packet.

[0091] During step 194, the controller may send the packet
to itself, which imitates a switch that forwards the packet to
the controller. The controller may send the packet as a Packet
In message that includes additional information that would
have been included by the switch (e.g., identifying a switch
port at which the packet was received from an end host). This

May 21, 2015

exampleis merely illustrative. In general, during step 194, the
controller may initialize testing of the generated test packet
by simulating network operations in processing a typical
network packet (e.g., by stimulating or otherwise triggering
processing of the generated test packet).

[0092] During step 196, the controller may simulate packet
traversal of the logical network topology (e.g., a logical net-
work topology such as topology 120 of FIG. 7 that was
previously generated by the controller during step 184 of FIG.
14). In simulating the packet traversal, the controller may
identify virtual paths through the virtual network topology
between the source end host and the destination end host of
the network packet. The controller may identify network
policy rules that are triggered or otherwise match the identi-
fied virtual paths.

[0093] During step 198, the controller may use the identi-
fied virtual path in identifying a path through the underlying
network of physical and/or hypervisor switches. For example,
the controller may determine a path from the source end host
to the destination end host through the underlying network.
The physical and/or hypervisor switches in the identified path
through the underlying network may normally (e.g., during
non-testing controller operations) be provided with flow table
entries that direct the switches to generate the identified path
(e.g., by forwarding or dropping packets to satisfy the net-
work policy rules identified during step 196). However, the
controller generates the flow table entries during step 196
without providing the flow table entries to the switches. In
other words, the identified path is not implemented.

[0094] During step 200, the controller may compare the
simulation results from steps 196 and 198 to expected results.
Consider the scenario in which test rule 172 of FIG. 13 is
performed by the controller. In this scenario, the controller
may generate a test packet from end host EH1 to end host EH2
that uses TCP port 80 (step 192). The controller may subse-
quently initiate simulation of the test packet (step 194). The
controller may simulate traversal of the test packet through
logical network topology 120 of FIG. 7 to identify a path from
end host EH1 to end host EH2 through virtual switch VSW1.
The controller may identify that access control list 132
defines that the test packet should be dropped at virtual port
VP2 of virtual switch VSW1 (step 196). The controller may
identify a path through switches SW1, SW2, and SW3 of
underlying network 100 of FIG. 6 and generate flow table
entries such as flow table entries 142 or 144 of FIGS. 9 and 10
without providing the generated flow table entries to the
switches (step 198). During step 200, the controller may
determine that the simulated result (e.g., that the test packet
would have been dropped per access control list 132) matches
the expected result of test rule 172 (i.e., that end host EH1
should not be able to connect to end host EH2 on TCP port
80).

[0095] Consider an alternate scenario in which virtual net-
work topology 120 of FIG. 7 is modified to become virtual
network topology 162 of FIG. 12 while access control list 132
of FIG. 8 and network policy rule 152 of FIG. 11 are enforced
by controller 18. In this scenario steps 192-198 may be per-
formed similarly as in the previous scenario, however the
simulation results may identify that only network policy rule
152 was triggered during step 196. The generated report may
be used to help identify that access control list 132 is no
longer valid (i.e., because the test packets do not trigger
access control list 132). Access control list 132 may be sub-

US 2015/0138993 Al

sequently removed to help improve controller performance
by reducing the number of network policy rules.

[0096] FIG. 16 is an illustrative diagram of a network
packet that may be sent from a source end host to a destination
end host. As shown in FIG. 16, network packet 202 may
include header fields 204 and data to be conveyed from the
source end host to the destination end host over the network.
The header fields may include layer 3 (L3) header fields such
as a source internet protocol (IP) address, a destination IP
address, a TTL field, etc. The header fields may include layer
2 (L2) header fields such as a source Ethernet address, a
destination Ethernet address, and a virtual local area network
(ULAN) identifier. In the example of FIG. 16, network packet
202 includes the MAC address of end host EH1 (MACEH1)
as a source MAC address, the MAC address of end host EH2
(MACEH2) as a destination MAC address, and TCP port 80.
Network packet 202 may be a packet sent from source end
host EH1 to destination end host EH2. Similarly, network
packet 202 may be a test packet generated by a controller to
simulate a packet sent from end host EH1 to end host EH2
(e.g., during step 192 of FIG. 15).

[0097] FIG. 17 is anillustrative Packet In message 206 that
may be received by a controller from switches or from itself.
Packet In message 206 may include a network packet as well
as additional information from the switch that sent the Packet
Inmessage. In the example of FIG. 17, Packet In message 206
includes network packet 202 of FIG. 16 and identifies incom-
ing switch port P1 of switch SW1 as the switch port at which
network packet 202 was received. In this scenario, Packet In
message 206 may be provided to controller 18 by switch SW1
of FIG. 6 in response to receiving network packet 202 from
end host EH1 at switch port P1. Similarly, controller 18 may
generate Packet In message 206 in performing network policy
rule tests (e.g., during step 194 of FIG. 15).

[0098] In some scenarios, it can be challenging for a con-
troller to fully simulate a test packet traversing a network.
Consider the scenario in which switch SW2 of FIG. 6 is a
non-client switch that is not controlled by controller 18 (e.g.,
switch SW2 does not include a controller client, is not
coupled to controller 18 by a control path 66, and therefore
does not communicate with controller 18 over a control path).
In this scenario, switch SW2 operates independently of con-
troller 18 and simulation of the operations of switch SW2 by
controller 18 may potentially be inaccurate and lead to incor-
rect test results. In scenarios such as when portions of a
network operate independently of the controller, the control-
ler may perform network policy rule testing by directly inject-
ing a test packet into the network and observing how the
switches forward the test packet. To track a test packet that is
injected into a network, the controller may tag the test packet
with identification information.

[0099] FIG. 18 is an illustrative tagged test packet 210 that
may be injected by a controller into a network. As shown in
FIG. 18, tag 212 may be inserted into the header fields of a
network packet to produce tagged network packet 210. Tag
212 may be formed of any desired number of bits and may be
inserted into unused portions of the header fields of the origi-
nal network packet. For example, tag 212 may be stored in
unused portions of a VL AN header field, an IP header field, a
VLAN header field, or any desired packet header field.
[0100] If desired, a test network packet may be encapsu-
lated to form encapsulated packet 214 as shown in FIG. 19.
For example, a network packet may be encapsulated using
tunneling protocols such as Multi-Protocol Label Switching

May 21, 2015

(MPLYS), Virtual Extensible LAN (VXLAN), MAC-in-MAC,
Generic Routing Encapsulation (GRE), or any desired proto-
col for encapsulating network packets. Encapsulating the net-
work packet may include appending tag 216 to the original
network packet (e.g., in a new, additional header field),
thereby producing a tagged network packet.

[0101] FIG. 20 is a flow chart 220 of illustrative steps that
may be performed by a controller to perform network policy
rule testing by injecting a tagged network packet into a net-
work.

[0102] During step 222, the controller may generate a test
packet based on test parameters of a testing rule (e.g., similar
to step 192 of FIG. 15).

[0103] During step 224, the controller may tag the test
packet with identification information. For example, the con-
troller may generate tagged network packet 210 or tagged
network packet 214 from the test packet.

[0104] During step 226, the controller may instruct the
switches of the network to provide information in response to
receiving the tagged test packet while preventing the tagged
test packet from reaching its destination end host. For
example, the controller may instruct the switches to forward
a copy of the network packet as a Packet In message to the
controller in addition to forwarding the network packet nor-
mally to the destination end host. The controller may control
the switches to prevent the tagged test packet from reaching
its destination end host by controlling the switch to which the
destination end host is attached (e.g., by directing that switch
not to forward the tagged test packet to the destination end
host). As an example, the controller may provide the switches
with flow table entries that match the tagged network packet
and direct the switches to forward information relating to the
tagged network packet to the controller (e.g., as a Packet In
message). In this scenario, the flow table entries may include
the tag in a corresponding packet header matching field so as
to match the tagged network packet that also includes the tag
in the corresponding packet header field.

[0105] During step 228, the controller may identify an entry
switch associated with the source end host of the tagged test
packet (e.g., the entry switch that is attached to the source end
host or the client switch that is closest in the network topology
to the source end host).

[0106] During step 230, the controller may inject the tagged
test packet at the entry switch. For example, the controller
may send a message to the entry switch that includes the
tagged test packet and instructions to process and forward the
tagged test packet (e.g., to process the tagged test packet
based on flow table entries previously provided by the con-
troller).

[0107] As the switches in the network forward the tagged
network packet, the switches may forward information on the
tagged network packet to the controller (e.g., in accordance
with instructions provided by the controller during step 226).
The controller may receive and store the information on the
tagged network packet from the switches as test results. The
controller may process the information received from the
switches to produce test results. For example, the controller
may process the information to identify the path through the
switches that is traversed by the tagged network packet.
[0108] During step 234, the controller may compare the test
results to the expected results of the test rule (e.g., test rule
172 of FIG. 13. The controller may produce a report identi-
fying whether the test results match the expected results. If
desired, the controller may include information such as iden-

US 2015/0138993 Al

tifying the path traversed by the network packet through the
network (e.g., a path through physical and/or hypervisor
switches).

[0109] The foregoing is merely illustrative of the principles
of this invention and various modifications can be made by
those skilled in the art without departing from the scope and
spirit of the invention.

What is claimed is:

1. A method of using a controller that controls switches in
a network having end hosts that are coupled to the switches,
the method comprising:

receiving a given network policy rule; and

performing a test in determining whether the network sat-

isfies the given network policy rule.
2. The method defined in claim 1 further comprising:
generating virtual switches from groups of end hosts,
wherein each virtual switch has virtual ports assigned to
respective end hosts and wherein the given network
policy rule is defined for a given virtual port; and

generating a virtual network topology from the virtual
switches, wherein performing the test in determining
whether the network satisfies the given network policy
rule comprises performing the test based on the gener-
ated virtual network topology.

3. The method defined in claim 2 further comprising:

receiving a testing rule that identifies test parameters and

expected test results.

4. The method defined in claim 3 wherein performing the
test in determining whether the network satisfies the given
network policy rule based on the generated virtual network
topology comprises:

generating a test packet based on the test parameters of the

received testing rule.

5. The method defined in claim 4 wherein performing the
test in determining whether the network satisfies the given
network policy rule based on the generated virtual network
topology further comprises:

simulating packet traversal of the test packet through a

virtual path of the virtual network topology.

6. The method defined in claim 5 wherein the controller
implements a plurality of network policy rules that include
the given network policy rule, the method further comprising:

identifying network policy rules that are triggered during

simulation of the packet traversal of the virtual network
topology.

7. The method defined in claim 6 wherein performing the
test in determining whether the network satisfies the given
network policy rule based on the generated virtual network
topology further comprises:

determining a set of switches that form an underlying path

of the virtual path.

8. The method defined in claim 7 wherein performing the
test in determining whether the network satisfies the given
network policy rule based on the generated virtual network
topology further comprises:

generating flow table entries that implement the underlying

path of the virtual path without providing the flow table
entries to the set of switches.

9. The method defined in claim 8 wherein performing the
test in determining whether the network satisfies the given
network policy rule based on the generated virtual network
topology further comprises:

May 21, 2015

comparing results of the simulated packet traversal with
the expected results to determine whether the network
satisfies the given network policy rule.

10. The method defined in claim 9 wherein the expected
results of the testing rule include a list of network policy rules
that are expected to be triggered and wherein comparing the
results of the simulated packet traversal with the expected
results to determine whether the network satisfies the given
network policy rule comprises:

comparing the list of network policy rules to the triggered

network policy rules.

11. The method defined in claim 4 wherein performing the
test in determining whether the network satisfies the given
network policy rule based on the generated virtual network
topology further comprises:

generating a tagged test packet from the test packet;

injecting the tagged test packet into the network; and

based on the expected results of the testing rule and on
information received from the switches on the tagged
test packet, determining whether the network satisfies
the given network policy rule.
12. The method defined in claim 11 wherein performing
the test in determining whether the network satisfies the given
network policy rule based on the generated virtual network
topology further comprises:
providing flow table entries to the switches that direct the
switches to send information on the tagged test packet to
the controller, wherein the flow table entries prevent the
switches from forwarding the tagged test packet to a
destination end host of the tagged test packet; and

based on the information from the switches and the
expected results of the testing rule, determining whether
the network satisfies the given network policy rule.

13. A method of using a controller that controls switches in
a network having end hosts that are coupled to the switches,
the method comprising:

maintaining network topology information for the net-

work;

receiving a user-defined testing rule;

based on the user-defined testing rule, generating a test

packet; and

determining whether the network satisfies the user-defined

testing rule by processing the test packet based on the
network topology information.

14. The method defined in claim 13 further comprising:

forming virtual switches from groups of end hosts, wherein

the network topology information includes network
topology information for the switches and virtual net-
work topology information for the virtual switches.

15. The method defined in claim 14 wherein the user-
defined testing rule includes expected results and test param-
eters identifying a source end host and a destination end host,
wherein the test packet identifies the source end host and the
destination end host of the user-defined testing rule, and
wherein processing the test packet comprises:

simulating traversal of the network packet from the source

end host to the destination end host through the network
based on the network topology information.

16. The method defined in claim 15 wherein determining
whether the network satisfies the user-defined testing rule
comprises:

determining whether the simulated traversal of the network

packet matches the expected results of the user-defined
testing rule.

US 2015/0138993 Al May 21, 2015
10

17. A method of using a controller that controls switches in
a network, the method comprising:

receiving a user-defined testing rule;

based on the user-defined testing rule, generating a tagged

test packet; and

injecting the tagged test packet into the network.

18. The method defined in claim 17 wherein generating the
tagged test packet comprises:

generating a test packet; and

inserting identification information into header fields of the

test packet to produce the tagged test packet.

19. The method defined in claim 17 wherein generating the
tagged test packet comprises:

generating a test packet; and

encapsulating the test packet using identification informa-

tion to produce the tagged test packet.

20. The method defined in claim 17 further comprising:

controlling the switches to provide information on the test

packet in response to receiving the tagged test packet;
and

identifying a path traversed by the tagged test packet based

on the information provided by the switches.

21. The method defined in claim 20 wherein the user-
defined testing rule includes expected results, the method
further comprising:

based on the identified path, determining whether the net-

work satisfies the expected results of the user-defined
testing rule.

