b

b

OFBench: OpenFlow 3% #& 55 3L 7R3 4 7k

g

OFBench: Performance test suite on OpenFlow switches

R A ERAE
15 MR AR

PEREB 105 F 6 A

OFBench: OpenFlow = 4% 35 2 A8 B3 7 7%

OFBench: Performance test suite on OpenFlow switches

RO A ERAE Student : Chen-You Wang
EEHE KRB Advisor : Dr. Ying-Dar Lin

G S = 2 S A

o+ L

A Thesis
Submitted-to Institute of Network Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Computer Science
June 2016

Hsinchu, Taiwan, Republic of China

FERE 10546 A

OFBench: OpenFlow 3 4% 35 2 883 ¥ 7%

24 : TR H#HAHRK KBS

B 3 X f K 4808 A R

/e

OpenFlow 4% B € 4 35 W 345 A — AL - B 2 R 09 BAE R AR
EZ0E B o At R E BEB R I AR ERE & K OpenFlow X # 5
MAEFRAE o % P By R X35 42 & 4 action time ~ pipeline time + packet-in rate
packet-out rate * pipeline gain & timeoutaccuracy ; sth » & T 4R AAEL -
FA 3% st — B #1883 A 4. OFBench » 3% %, 4 controller-agent 22 4% » it $2
HBERIKIE B &9 RS T fE - B BREBS 0 ALRE R34 B4 timeout 8 FAF L& AR
R REMBEN A £20% - {242 Packet-in JA|RIE B ¥ - AF L X I B g H
PRBE R B HAR 2009k 2 R 7 S A table pipeline BIXIA B ¥ o
FEEE R 3 % 4 1Gbps 89R B TH A £ 40 — 60% 84 pipeline gain B £ F T
A e table L BEA 60 3k - MAFTHRBRZ T > RAAIAIMER LI B4
FNREEAE LA 3AIFTRIMITA - B — » Rk B 4 Apply-Action ZyAE 3%
AEERY = RHLBAREKRE Packet-in A28 - € FRETQRTFE
HEATEE RZ 0 R4 B LR idle-timeout B » A REAENRABEE
g4 flow entry 42 F 5| #1 -

MskE : #pe e £ 4% » OpenFlow » #LAE ~ X% ~ B

OFBench: Performance test suite on OpenFlow switches
Student: Chen-You Wang Advisor: Dr. Ying-Dar Lin
Department of Computer and Information Science

National Chiao Tung University

Abstract

Currently, there are many OpenFlow switch products available in the market.
The performance issues of OpenFlow protocol are drawing a lot of attentions. In
this work, we propose five test cases to evaluate six performance metrics: action
time, pipeline time, packet-in rate, packet-out rate, pipeline gain, and timeout ac-
curacy. The switch can be evaluated based on these metrics. And we also propose
the automatic test framework: OFBench, which is-a controller-agent architecture
allowing the development of test case based on high-level scripte language. The
evaluation results reveal a £20% skewness in idle-timeout accuracy in the hard-
ware switches. For the Packet<in rate, the hardware switches is capable of gener-
ating Packet-in frames in the rate ranging from 3000 to 7000 Packet-in per second.
The rate is 20 times faster than that generated by the software switches. As for the
test of the gain of table pipeline, the hardware switches reach 40 — 60% pipeline
gain under the 1Gbps traffic loading. And the switches only have around 60 usable
tables. Furthermore, we observed three issues for switch during the testing. Firstly,
the switches may not be well implemented on the design of Apply-Action instruc-
tions. Secondly, the switches suffer from random crashes with the high volume of
bursty Packet-in traffic. Lastly, the timer of idle-timeout is not reset properly when

the flow entry matched.

Keywords: SDN, OpenFlow, Performance, switch, testing

i

Wi

BEWXAH TR - B AERHHREENIZ - BIRIEHIR BB R
ECIEE c EBROFHR T HIRMERRARFSHLTERL EREP
REEFBEGES ACERT2ER M ETREABENES » LE S
RO B EHIR R RIS R X EAICE AR A S E 5 sboh - &
FRGH R R4 R P o (NBL) AR 4k 649 B IR B B - 4 B ABIEA] 72 A% 2k
R,

ERFORREET > CERHAAEHREABRETREGHARE - R
REZE ABRARAETOLET BBAER > ZORFILEHEAR
KB E T ERKRBMES —F KK -

RERHROEAN > R RMIRATRGMCABE FRAEZEINE
(b BREREE -

ERAE EBRPD
2016 6 A 3 H

111

Contents

IList of Figures

List of Tables

i

Introduction

Background

vi

R.1 OpenFlow o v

P.2 OpenFlow performance parameters v v v v i

R.3 Related Workl

B Problem Statement
.......................................

B.2 Problem Description] . . o) . coo o i e

Methodology

“.1 Mirror-in-processing e . L

“2 Calculated traffid

M3 Maskedentry|

Numerical Results

5.1 Implementation i

5.2 Experimentsetun

5.3 Experimental Resultd

6

Conclusions

References

v

10
10
12
14

16
16
16
17

23

25

List of Figures

Figure [I_: OpenFlow pipeline processing oo .. 4
Figure R _: OpenFlow performance testing example. 9
Figure B_: Mirror-first-then-action 12
Figure 4 : Mirror-first-then-pipelind 12
Figure 5 : Burst-until-loss 14
Figure b : Back-to-back-traffid 14
Figure [7_: Idle-timeout-derived-by-hard-timeouf 15
Figure 8 : OFBench architecturd 16
Figure D : Action Time oo v it 18
Figure [10: Packet-in and Packet-outrates, 20
Figure [11: Pipeline gain with different number of tables 21

List of Tables

Table [L_: OpenFlow instruction with executing priorityl 5
Table R : Related work comparisono oo i 7
Table B : Notation description o v v v v e 9
Table ¢ : Approach overview|ot 10
Table 5 : OS and hardware specifications for components 17
Table 6 : Hardware switch specifications o v v v v v i i 17
Table [7_: Buffer size with different frame size for 1Gbps traffid 20
Table 8 : TIMEOUt ACCUTACY + v v v o e e e e e e e e 22

Vi

Chapter 1 Introduction

Software Defined Networking (SDN) is an emerging network architecture. The major dif-
ference between SDN and the traditional network is the decoupling of the control and data plane.
Therefore, in the operation of SDN, the data plane needs to communicate with the control plane
through a specific communications protocol. This change brings the operations of the control
plane in the foreground as part of the data packet processing. OpenFlow is a major standard for
SDN which is managed by Open Network

Foundation (ONF) [[I]], is a communications protocol used to manipulate the data plane op-
erations by the controller. Therefore, another distinct difference between OpenFlow and the
traditional network is the stateful switching rather than the stateless counterpart.

As the packet arrives at the OpenFlow switch, selected tuples in the packet header fields are
compared with the rules in the flow table. If there is no match, the packet is treated as a new flow
and table-miss operation is triggered."Depending on the configuration, the packet can be either
simply dropped or an OpenFlow message is sent to the controller waiting for further action. The
controller may insert a new flow entry in the flow table with action for the matched packet. The
flow entry is the record of the data packet, which contains information such as packet headers,
counters, and instructions [2]. The process of the OpenFlow transaction can be categorized into
two parts, one is data-plane-trigger-control-plane (D2C), the other is control-plane-trigger-data-
plane (C2D). The whole process is abbreviated as D2C2D. As such, OpenFlow adds some extra
data structures and operations to the data plane. These changes make the OpenFlow data plane
(OFD) different from the traditional data plane (TD) .

Currently, there is no performance test standard exist for the OpenFlow switch. In the past,
the performance test only focus on the traditional TD part. However, we think the D2C2D
process should also be included along with the OFD as part of the testing suite for OpenFlow
switch. Cause the packet processing depends on the flow entry which including some actions.
The D2C2D process will affect the flow entry setup when the new type flow coming. Moreover,
the OFD process will affect the operation of flow entry in the OpenFlow switch for the existed
flows. Due to above mentioned, we think the OpenFlow performance testing must be included

TD, OFD, D2C, and C2D. The main reason is that the D2C2D process is the core of the operation

in both data plane and control plane in the OpenFlow switch. Moreover, the D2C2D process and
OFD affect the packet processing in OpenFlow switch. So we think the OpenFlow performance
testing must be included TD, OFD, D2C, and C2D.

In our survey, there are some open-source tools such as OFTest [3] and Ryu certification [4]
exist for the OpenFlow switch conformance test. These tools only determine whether the switch
fit the interoperability of OpenFlow protocol or not. As for commercial tools, there is no one
except the white paper proposed by Spirent for OpenFlow performance testing [5]. The white
paper only addresses some test cases and offers some concepts to evaluate the switch. There
are many research works of literature address the issues in this topic as well. However, most of
them focus on TD testing without addressing the others. The authors in OFLOPS [6] discuss
the test of OFD and C2D parts without covering all test matrices of these two parts.

In this thesis, we propose thirteen test cases based on the white paper [5] from Spirent . The
test cases, including items such as flow action, pipeline, Packet-in, Packet-out, and Flow-mod,
address the most critical parts of OFD, D2C; and C2D testing. Among these thirteen test cases,
there are seven test cases classified-as non-trivial. And we are going to focus on the development
of test tools for these six out of seven non-trivial test cases.

It is difficult to get the internal parameters from the device-under-test (DUT) for evaluation
in these non-trivial test cases due to black-box testing. For example, the action time is hard
to measure because the processes in OpenFlow consist of many steps. Normally, we can only
measure the end-to-end delay time without the exact breakdown of individual action time where
many variables involved. And the idle timeout of flow entry is hard to measure the accuracy by
traffic, cause the idle timeout will be reset when packet coming and matched. Therefore, we pro-
pose two methodologies to address these issues. The first one, named as mirror-in-processing,
is based on the Apply-Action instruction of OpenFlow to mirror packets in the process. The
system is capable of measuring the processing time of each stage in the DUT based on the mir-
rored packets. So we can inference some exact results. The second one, named as the masked
entry, is based on the priority, match fields and actions of flow entry to control the timer where
two flow entries can be synchronized for proper measurement.

We propose and design an automatic test framework based on controller-agent architecture.

The framework is capable of controlling remote agents to generate and analyze networking traf-
fic. The agents provide the analysis results to the controller for test cases.

The remainder of this work is organized as follows. We introduce the backgrounds of Open-
Flow with emphasis on the performance related issues and related works for testing in Chapter
2. The problem statement is provided in Chapter 3. In Chapter 4, we introduce the proposed
methodologies for the mirror-in-processing and the masked entry. We further discuss our imple-
mentation detail and experiment results in Chapter 5. Conclusions and future works are finally

presented in Chapter 6.

Chapter 2 Background

2.1 OpenFlow

OpenFlow, a communications protocol for SDN architecture, consists of communications
messages and mechanisms enabling packet processing for OpenFlow switches and controllers.
The packet processing mechanism is based on flow policy, which is a combination of match
fields and instruction sets. The flow policy is implemented as flow entry and stored in the flow
table. The whole process for packet processing is illustrated in Figure [I. As the packet arrives,
the switch tries to match the flow entries in the table of multiple stages. For each matching
process, an action set (with the default of empty) of the particular action is applied to the packet.
Once the packet is matched with the entry in the table, the action set will be updated and possibly
directed to other tables in a pipelined fashion. Finally, the action set will be executed at the end

of the pipeline process.

OpenFlow switch

Table Table Exe(_:ute Packet out
—» — — n action >
Action Action set
set set

Figure 1: OpenFlow pipeline processing

Packet in

The flow entry, which is the most important part of the process, consists of priority, coun-
ters, match fields, timeouts, cookies, and instructions. The priority affects the executing order
of flow entries. The timeouts contain timers of hard-timeout and idle-timeout values for flow
entry removal when expired. The match fields are a set of records consist of packet headers
ranging from layer one to four. And the instruction set contains operations to be executed for
the incoming packet which is matched with the match fields.

The available instructions and executing order are listed in Table [1.

Table 1: OpenFlow instruction with executing priority
Instruction Description Executing Priority

Meter Apply the specified metering to packet. | 6
Apply-Actions | Apply actions immediately to packets.
Clear-Actions Clear action set.

Write-Actions | Write actions to action set.
Write-Metadata | Write the masked metadata value.
Goto-Table Execute the table pipeline.

— DN W[| W

2.2 OpenFlow performance parameters

In the past, the performance testing focuses on the TD part which includes latency, loss,
buffer size, throughput, jitter. However, the most important factor of performance testing for
OpenFlow switch should be the interactions between the control plane and the data plane. And
considering the extra structures or mechanisms for OpenFlow, we summarize the OpenFlow
performance parameters with C2D, D2C, and:OFD parts.

In the C2D part, there are many messages;-which include the Flow-mod, configuration,
and state query of the switch, sent from the controller tothe switches. The switches report
messages of some events back to-the controller in the D2C part. These messages consist of
Packet-in, Flow-removed, status report,.and errors. Thetefore, these messages could be treated
as the important parameters for OpenFlow performance measurement. Moreover, in most of the
cases, the D2C2D process are often executed for the new type of flows. The process is consisting
message transactions of the Packet-in, Packet-out, and Flow-mod.

The rate of Packet-in message generated by OpenFlow switch is an important capability
indicator handling the new type of flows. If the rate is low, the OpenFlow switch will not be able
to handle a large number of new flows in a short period of time. As for the Packet-out message,
it is used to execute the actions for the Packet-in message in the D2C2D process for the first
packet of a new flow. The rate of Packet-out message, which is generated by the controller,
reflects the capability of packet processing for OpenFlow switch. Finally, the duration of how
long the flow entry remains active is set by the Flow-mod message sent to the switch. Therefore,
these three messages are the major parameters of OpenFlow performance measurement for the
C2D and the D2C parts.

In the OFD part, we summarize the performance parameters in two categories: the packet

processing and OpenFlow mechanism. The former consists of the table lookup, table pipeline,
and time of action set execution. The later contains the timeout of flow entry and the size of the

flow table.

2.3 Related Work

Currently, there are some testing solutions developed with the focus on TD. Bianco [[7] and
Emmerich [8] provide the measurement methodologies for the forwarding throughput and packet
latency of switch in underloaded and overloaded situations. Gelberger [9] proposes the cost mea-
surement which includes throughput, latency, and jitter for switching and routing on OpenFlow.
Jarschel [[10] propose the model based on forwarding speed and blocking probability to estimate
the packet sojourn time.

Recently, Spirent proposes a white paper [S] for OpenFlow switch performance testing. It
focuses on the general concepts of testing and provides suggestions for each test cases. More
specifically, the authors in OFLOPS [6] propose two major test cases for the latency measure-
ment of Flow-mod and the execution time of action set.

Although the latency can be evaluated by the Barrier messages, however, the measurement
result is not accurate where deviation may occur. There are two major reasons. The one is that
the Barrier messages need extra time to be processed between the controller and the switch.
The other is that the process of Barrier messages in OpenFlow switch may not be implemented
correctly. The methods proposed by OFLOPS [6] solve these issues by using the traffic to
measure the setup time of multi-flow entries. In advance, the authors in OFLOPS propose the
OFLOPS-Turbo [[11] which enhances the framework by 10 Gbps Ethernet platform to evaluate
the next-generation OpenFlow switch. However, the system does not address any methodologies
for switch testing in detail.

Due to the fact where latency of Flow-mod may be varied under different testing situations,
Handfield [[12] finds out the major impact factors which include the priority, current flow table
size, and the operation of Flow-mod. Bianco [[7] and Tanyingyong [13] estimate the effects of
table lookup for hash and linear flow. For the throughput, both of them [7][[13] find out the

hash flow have better performance. For the processing time, Bianco [[7] estimate it for hash and

linear flows with different table size. The results are constant and independent of the table size
for both types. The author of High-fidelity switch models [[14] proposed a model to emulate the
vendor hardware switches including the Flow-mod rate without stating the methodologies.

Obviously, as summarized in Table [, the existing works of literature fail to cover all of the
performance parameters needed to evaluate the OpenFlow switch under test. Therefore, in this
thesis, we propose how to measure all of the major performance parameters except the latency
of Flow-mod and the size of the flow table.

For the size of the flow table measurement, we can simply use a basic Flow-mod with an add
operation. For the measurement of Packet-in and Packet-out rate, we propose to evaluate them
by buffer size test case in the process. For the measurement of table pipeline, we propose two
test cases to obtain the time for evaluating the pipeline processing performance. The proposed
test case for the execution time measurement of the action set is more accurately than the method
proposed by OFLOPS [6]. Finally, we propese a method to verify the accuracy of idle and hard

timeout for the flow entry

Table 2: Related work comparison

Type | Parameter | Spirent [5] [OELOPS Bianco{[7] | Handfield | Ours
[6] [12]

D2C | Packet-in Concept N/A N/A N/A Buffer size
rate

C2D Packet-out | Concept N/A N/A N/A Buffer size
rate
Latency of | N/A Traffic val- | N/A Impact fac- | N/A
Flow-mod idation tors
Table Concept N/A Constant | N/A N/A
lookup

OFD | Table Concept N/A N/A N/A Time,
pipeline pipeline

gain

Execution | N/A End-to-end | N/A N/A Exactly ac-
time of ac- tion time
tion set
The time- Concept N/A N/A N/A Accuracy
out of flow
entry
The size of | Concept N/A N/A N/A Trivial
flow table

Chapter 3 Problem Statement

3.1 Notation

Table B shows the notations used in this work. Given the switch under test dut, the number
of tables for dut is denoted by N. The controller, the hosts, and the link capacities are denoted
by ¢, H and C' AP respectively. The performance parameters consist of three categories: they
are the C2D parameters C'D, the D2C parameters DC, and the OFD parameters Doper, fiow. And

the flow entries F' in dut and traffic 7'F'C' generated by H will affect each parameter.

3.2 Problem Description

The topology is created based on the given entities shown in Table . The flow entries and
traffic are determined based on the parameter of F' and the T'F'C' to evaluate C'D, DC, and
D opentiow- The objective of our work is to assure the accuracy of each measurement result of

CD, DC, and D ,per, f10- Due to theblack-box testing, the dut is not modifiable.

Example

Figure 2 shows the parameters of the test. The pipeline process contains the time and per-
formance of table pipeline (Tjupie—pipeiine>), and the time of action set execution 7} ipn-ser 1N
dut. The set of flow entries F' determines the operation of the entire pipeline. Each flow en-
try, denoted by flow; ;, has two timers of hard-timeout and idle-timeout. The accuracy of the
timeout, denoted by Acciimeout, €valuate whether each timer expired correctly or not. With the
combinations of F' and traffic 7'F'C' the dut is able to generate the Packet-in messages to c or to
process the Packet-out messages sent from c. The rate of Packet-in and Packet-out for a given
dut is determined by the parameters of P/ R and PO R. The buffer size of dut denoted by bu f.
If bu f is remaining, dut stores the T'F'C' into the buffer and raises the Packet-in operation with
an identity when the new flows arrival. And the ¢ generates the Packet-out operation with the

corresponding identity to dut, so dut could forward the new flows.

Table 3: Notation description

Category | Notation Description
c The controller
dut The switch under test
Entity N The number of tables for dut
H = {hy,|n > 2} The set of hosts.
CAP = {cap,, cap,|n > 2} | The set of link capacities. cap./cap, is link ca-
pacity between c/h,, and dut
C2D CD = POR The parameter for C2D. PO R means the
throughput of packet-out operation in dut
D2C DC = PIR The parameter for D2C. PI R means the
throughput of packet-in operation in dut
T oction-set The time of action set execution in dut
Tiaple-pipline The time of table pipeline in dut
OFD bu f The size of buffer in dut
AcCtimeout The accuracy of timeout in dut
P The gain of table pipeline in dut
D openfiow = { Laction-sets The set of parameters for OFD
Eable-ptpelinea bUf, Acctimeouta
P}
TB = {table;|0 > i < N'} The set of flow tables in dut
F = {flow; ;|0 > @< The set of flow entries. flow; ; mean the flow
Process | N,j > 0} entry in table;.
TFC = {pkt.|z > 0} The traffic which be sent from src to dst.
sreeH, dst€ H.
Thable_ lookup The time. of looking up the flow table in dut.
Topply action The time of executing Apply-Action in dut.
Tidte-timeouts Lhard-timeout The timeout value for idle/hard timeout flow
entry.
Tidie-expired> Thard-expired The arrival tiem of flow-removed message for
idle/hard timout flow entry at c.
Tde-duration L hard-duration The duration of flow-removed message for
idle/hard timeout flow entry.

dut

TFC

tableg

ﬂOWoJ

table,

flownj

Execute
Action
set

buf

table;
M

—

e

Tiable_pipeline

—_—

Tactioniset

Figure 2: OpenFlow performance testing example

Chapter 4 Methodology

The measurement of performance parameters for the proposed five test cases is listed in
Table . These cases are classified into three categories: Mirror-in-processing, Masked entry,

and Calculated traffic. And each case has a corresponding named method to its spirit.

Table 4: Approach overview

Category Test Case Method Output
Mirror-in-nrocessin Action set time Mirror-first-then-action T rction-set
p & Pipeline Time Mirror-first-then-pipeline Traple-pipeline
Buffer size Burst-until-loss buf, PIR, POR
Calculated traffic Pipeline performance | Back-to-back-traftic P
Masked entry Timeout accuracy Idle-timeout-derived-by- AcCimeout

hard-timeout

4.1 Mirror-in-processing

In the OpenFlow performance testing, it1s difficult to get the test values and results directly.
However, by leveraging on the mirror operation with Apply-Actions instruction within the pro-
cessing, we can duplicate the packets before some OpenFlow operations for measurement and

comparison.

Mirror-first-then-action

The purpose of this test case is to measure the execution time of action set in OpenFlow
switch. In OpenFlow protocol, there are many kinds of actions which include forwarding, packet
modification, and tagging operation. The packet modification may cause longer operation time
in some switches. Therefore, the processing latency of action is used for major performance
benchmark.

In the normal case, the time of action denoted by T},nser Can be calculated by measuring
the end-to-end latency. Since there are many variables affecting the testing result, we propose

the mirroring concept to get the start time of action set for better measurement accuracy. As

10

shown in [§, the pkt. is denoted as the mirrored packet. The value of o denotes the arrival time

of pkt, and (3 be the arrival time of pkt. . We derive the action set execution time as

Tactlon-set = ﬁ — Q. (1)

Mirror-first-then-pipeline

The purpose of this case is to measure the time of table pipeline in OpenFlow switch. The
mirroring methodology can be applied to this test case as well. This is because the instructions
of table pipeline are executed after Apply-Actions.

As illustrated in Figure §, we assume the pipeline stage consists of two tables: table, and
table;. And the flow entries are almost the same except the flow entry in tabley has GoTo
instruction. The time of 7 includes the time of table lookup and Apply-Actions operations
in tabley. The time of 75 includes the time of T}qpic—piperine, table lookup, and Apply-Actions
operations in table;. Due to the same match fields and actions of flow entry in tabley and table;,
the processing latencies, denoted by Tupie ookup 80 Lippiy action T€SPeCtively, are the same in
tabley and table,. By considering the Round-Trip Time (RTT), that we can derive the time of

table pipeline as follows.

Tiable-pipetine = To =11 + RTT /2 (2)
Where the T is
Ty = Tiapie tookup + Lapply action + RTT. (3)
And the T5 1s
T = Tapie-pipetion + Ttavie_tookup + Tapply action + RTT /2. 4)

The RTT can be derived by RTT = (pkt./cap,) * 2.

11

H] [table,] [table;]
T
|

pkt; [

|

Ttable, lookup

|

Tapply action T,

T T

: | |

| I

Ttable lookup l | |

| I pkt, I

| — l Ttable_lookup |

: Tmodity_action_set : . [I

T .

: — pipeline : | applyaction |

process |

|) pkt, . ‘J— . Ppkt, pipeline to |

| table_lookup table; I
|
|
|

Tapply_action

’ T
(|
| I
I
1

Figure 3: Mirror-first-then-action Figure 4: Mirror-first-then-pipeline

4.2 Calculated traffic

Burst-until-loss

The purpose of this test case is to measure the buffer size, the throughputs of Packet-in and
Packet-out. The main reason why we combine the measurement of these three parameters into
one case is that the Packet-in and Packet-out messages may depend on the size of the buffer in
dut.

As shown in Figure [§, the dut has the flow entry that matches the 7 F'C and sends the Packet-
in message to the controller c. The controller ¢ will keep all Packet-in messages and generate
the expected Packet-out messages after the traffic generating from host H is done. We assume
there is no packet loss occurred at ¢ and all Packet-in messages consume the entire buffer space
in the dut. When the condition m < n occur, there exists packet loss at the dut. Therefore, we

can derive the buffer size, denoted as bu f in the following formula.
buf = m x pkt (5)

The throughput of Packet-in can be derived by the following formula.

12

PIR = thenumber of Packet-in/T; (6)

And the throughput of Packet-out can be derived by the following formula.

POR = m/T; (7)

Back-to-back-traffic

The purpose of this test case is to measure the gain of table pipeline in dut. As illustrated in
Figure [, the latency of T FC covers total processing time for n+ 1 tables. In each table, packets
are matched with the flow entry and sent to the next table in a pipeline fashion. The pipeline
gain of pkt processing time at each table can be derived by the packet processing time and idle
times. We denote the processing time of pkt and the idle time as Tp,., Tpupsie respectively. And

we derive the pipeline gain from the following formula.
P = Tore/ (Touvpie +Tpne) (8)

Where the T, is the processing time of the packet at each table. Due to the difficulty
of measuring the 7, in black-box testing, we assume an-uniform processing times of pkt at
each table for the performance evaluation. Therefore, we approximate the 7, by using the

processing time of the first packet 7},,;; based on the following formula.

In equation E, the time of Ty,ppe + Tpie reflect the total time of pkt processing time and the
idle time for a single table. In our measurement, we known the total number of packets n+1 and
the total duration 7. Thus, asuuming there are n packets sent after the first packet, the average

time of Thypeie + Tpie can be derived by the following formula.
Tousbte + Tpit = (T — Tipie) /10 (10)

The T;,;; and T' are the processing time for the first packet, and the total processing time for
n+ 1 packets respectively. We denote the o, as the time of sending pkt, and the 3, as the arrival
time of pkt,. And the T;,; and the T be derived by the T;,;; = /1 —ayand T = (5,1 — oy

respectively.

13

|
|
|
K, T
Packet-out I it
pE— |

| Thubble + Tpkt
| !
[| f
........ T I L2
Figure 5: Burst-until-loss Figure 6: Back-to-back-traffic

4.3 Masked entry

Base on the definition of OpenFlow specification, the flow table can have multiple entries

with the same match fields of different priority.

Idle-timeout-derived-by-hard-timeout

The purpose of this case is to measure the accuracy of timeout for a given flow entry. The
timeout measurement includes hard-timeout and idle-timeout. For the measurement of hard-
timeout, we can evaluate the accuracy simply based on the packet injected into the DUT. But
for the measurement of idle-timeout, the deviation of the accuracy could be larger due to the
inter-arrival time of the traffic as the flow entry being matched.

To evaluate the accuracy of idle-timeout, we propose to use the masked entry to avoid the
reset of the timer for idle-timeout at the wrong time by the arriving packet. In Figure [7, there
are two flow entries added into the dut. The first one is the idle-timeout flow entry and the
second is the hard-timeout flow entry which is the masked entry with higher priority. Both of

the flow entries are matched with the 7'F'C' and the time of idle-timeout (7}ye.simeons) €quals the

14

time of hard-timeout (T}u d.simeons)- When the idle-timeout flow entry is added to the dut, the
timer for idle-timeout stays zero as the packets are forwarded based on the matched entry. After
the setting of the idle-timeout flow entry, the hard-timeout flow entry is added to the dut. At this
moment, the hard-timeout flow entry will take over the idle-timeout flow entry because of its
higher priority. And the timers for both of the flow entries will start counting from zero as they
are synchronized. Finally, there are 2 situations illustrated in Figure [7d and Figure 78. In Figure
74, the hard-timeout flow entry is expired early than idle-timeout flow entry. It means that there
exists the skewness for the timer of idle-timeout. In order to evaluate skewness , we increase the
Thara-imeous and set the hard-timeout flow entry again. The process stated above is repeated until
the idle-timeout flow entry is expired early as illustrated Figure [7t. According to the testing

processes, we can derive the accuracy of idle-timeout based on the following formula.
Accidle—timeout = ,I;'dle—duration - T;'dle—expired - T;'dle—timeout (1 1)

The Tidte-duration> 04 Tigje-forwara are alive and active times for idle-timeout flow respectively.

We denote the o, as the arrival time of pkt.. The Tjgeforwara can be derived from the following

formula.
T;'dle-forward = Qp = Q1 (12)
L)
| | | |
—
Etidle-timeout flow | et idle-timeout flow |
: P N I
(- ktr forward by | |
— t idle-timeout flow | — forward by
| — idle-timeout flow |
Tidle-forward :
.l | | Tidle-forward . I
| /’“n I |
-
- D.mm - !
| et hard-timeout flow
,,,,,, | |
| ~ TN |
l L?rlﬁri?ngim flow ! | Ti i
| | Thardduras | forward by I dle-duration
—
.) | hard-timeout flow
7 Pktns. hard-timeout - |
Thard-forward . g flow-removed | . o Thard-durati
¢ = - n+: idle-timeout |
: Thard-expired Thard-formarg | [[s pkt | flow-removed [
| | / Tidle-expired
forward by | | | hard-timeout Trardonpired
PKtmeg’ idle-timeout flow | | | flow-removed expl
1 1 1 1 1
a) Idle-timeout over hard-timeout b) Hard-timeout over idle-timeout

Figure 7: Idle-timeout-derived-by-hard-timeout

15

Chapter 5 Numerical Results

5.1 Implementation

We propose OFBench, an automatic testing framework integrated with Ryu controller 0 and
Ostinato traffic generator B, The architecture of OFBench, shown in Figure E, 1s a controller-
agent architecture. Controlled by the controller, each agent is capable of generating traffic, cap-
turing and parsing packets. The test cases of OFBench are written in scripts for basic OpenFlow

operations and test results analysis.

OpenFlow connection ¢ test case
RPC
dut
parsing
h agent
generator

Figure 8: OFBench architecture

5.2 Experiment setup

Five test cases are developed with test scripts for the OFBench framework. The available
configurations of the test cases consist of frame size, transmission rate, and some specific values.
The available frame sizes are 64, 128, 256, 512, and 1024 bytes, and the available transmission
rates are ranging from 64 Kbps to 1Gbps. In our experiment, we use UDP traffic for the testing

of all test cases. We conduct the experiments with three physical PCs. The operation systems

Ryu, version 4.0, https://osrg.github.io/ryu/
2Qstinato, version 0.7.1, http://ostinato.org/

16

and specifications of those PCs are shown in Table .

Table 5: OS and hardware specifications for components

Component | Core | Clock rate | OS Kernel
Controller | 4 3.3GHz Ubuntu 14.04 | 4.2.0-27
Host 4 3.2GHz Ubuntu 14.04 | 4.2.0-27
Switch 2 3.1GHz Ubuntu 14.04 | 3.13.0-24

We use the above environment to test four DUTs. The DUTS details are shown in Table {.

Table 6: Hardware switch specifications

Switch CPU Core | Clock rate | Memory | Buffer | OS version
Pica8 P-3290 | MPC8541 1 1 GHz 512MB [4MB | v2.6.1
Pica8 P-3297 | P2020 2 1.33 GHz | 2GB 4MB | v2.6.1

Edge-corE ARM Cortex A9 | 2 1 GHz 2GB N/A v2.6.4
AS4610-30T

Centec V350 | e500v2 1 533MHz | 2 GB N/A v3.1(11), l.alpha

5.3 Experimental Results

In this section, we present ours five performance metrics: action time, pipeline time, packet-
in rate, packet-out rate, pipeline gain, and timeout accuracy. These metrics try to distinguish the
switches implementation for features.

Each metrics are evaluated based on the proposed five test cases. And the statistic results

are collected with five rounds of testing.

Action Time

We try to find out the relationship of action time with different combinations of actions. The
tested actions are based on a set of packet modifications ranging from layer two to four. The test
case is conducted based on six different actions of packet modification. The results of action
time are shown in Figure . The six modifications of packet are ordered by source IP address,

destination IP address, source Ethernet address, destination Ethernet address, UDP source port

17

and UDP destination port respectively. For each testing scenario, we generate traffic at the rate
of 1,000 packet-per-second (pps) with a total of 10,000 packets.

Based on the results shown in Figure [, the result for hardware switch Centec V350 is non-
available due to the mirror and action does not execute properly. For the result, The software
switch has the lower action time which ranging from 2 to 3 microseconds. However, the action
times for hardware switches have at least 100 microseconds. If the implementation of action is
pure hardware based, the action time possible be nano seconds. But these results and the CPU
specification are in direct proportion. According to the specifications, the Open vSwitch has the
highest clock rate, Pica8 P-3297 followed, Pica8 P-3290 and Edge-corE AS4610 final. Thus,
we think the implementation of action is software based on switches.

Otherwise, the variation of action time is small due to the different number of modifications.
Thus, we conduct this test case on white box environment. We use the kernel trace tool (ftrace)
to record the execution time of set_ip addr function for Open vSwitch. The result of white box
measurement approximates 0.6 microseconds. And the first modification action has the highest

time cost. This result explains the reason for the small variation.

350
300

250

10 ‘ ‘ ‘ ‘ ‘ |
1 2 3 4 5 6

number of actions

action time (us)
["]
(9] (=]
o o

o

wu
o

B Open vSwitch Pica8 P-3290 M Pica8 P-3297 M Edge-corE AS4610

Figure 9: Action Time

18

Pipeline Time

For our pipeline time test case, the results are unavailable for Pica8 switches due to the
Apply-Action is not working properly. The hardware switches can not mirror packets between
the pipeline process. Thus, we only have the result for Open vSwitch with different frame
sizes ranging from 64 to 1024 bytes. The pipeline time measured is in the range of 1.1 to 2

microseconds with the positive correlation of frame size.

Buffer Size and Packet-in/out

For the buffer size test case, we try to measure the Packet-in rate, Packet-out rate, and buftfer
size within one test. Therefore, we fix the transmission rate of 1Gbps with different frame sizes
for the measurement of Packet-in rate. The results of Packet-in and Packet-out rate are shown
in Figure [L0. The results be collected at the beginning of the testing are discarded. This is
mainly because the traffic generator-takes five to-ten seconds for stabilizing the testing traffic.
According to our results, the rate of Packet-in for Open vSwitch is approximately 20 times lower
than that of the hardware switchesunder test. It indicates the software switch has poor handling
capability with the small frame size for Packet-in operation.

For the Packet-out rate, the Pica8 switches have poor handling capability with the small
frame sizes, especially the 64 bytes. However, the measurement results for Open vSwitch are
different. It is working well on the Packet-out operation with the frame size of 64 bytes. And
the throughputs of Packet-out for Open vSwitch are better than those observed in other switches
under test.

The measurement results of buffer size for switches under test are shown in Table [J. There
are some error messages generated from the DUTs during the testing. The errors, identified as
buffer unknown for Packet-out messages lead to the failure of Packet-out operation. The test
results indicating packet loss occurred at the DUTs. Finally, we mark the buffer size of the
DUT is not available (N/A) when the number of errors is greater than the number of Packet-out
messages sent from the controller.

In Table 7, only the buffer sizes tested with frame size of 64-byte are shown. For other

frame size, the buffer sizes of the switches are not available. We suspect the anomaly behavior

19

of DUTs is due to the CVE-2016-2074 [|15] issues for the Open vSwitch implementation.

25000

20000

15000

10000

5000

packet per second (packet-in, packet-out)

Al |‘ e
Open vSwitch Pica8 P-3290 Pica8 P-3297 Edge-corE AS4610 Centec V350
W64 bytes 128 bytes M256bytes M512 bytes 1024 bytes
Figure 10: Packet-in and Packet-out rates
Table 7: Buffer size with-different frame size for 1Gbps traffic
Frame size(bytes) | Open vSwitch '|.Pica8 P-3290 | Pica8 P-3297 | Edge-corE Centec V350
AS4610
64 13504 8256 16192 32768 342464
128 N/A N/A N/A N/A N/A
256 N/A N/A N/A N/A N/A
512 N/A N/A N/A N/A N/A
1024 N/A N/A N/A N/A N/A

Pipeline Gain

For the gain of table pipeline, the test case is conducted to go through from 20 to 254 tables.

with transmission rates 1024 Mbps and the duration is 10 seconds. Considering the warm up

for traffic generator, we use the masked entry to filter out the traffic from 0 to 5 seconds. The

results are shown in Figure [L1], the software switch have poor performance on multiple table

pipeline. For hardware switches, the number of tables is inversely proportional to pipeline gain.

This indicates the hardware switches have the larger idle time when multiple tables pipelining.

Otherwise, all switches have the black-hole situation on 70 tables which indicates the number

20

of available tables for switch just only 60 tables. And the results for Centec V350 switch is not

available due to the switch only have a single table.

80%
70%
60%

50%
40%
30%
20%
10%
- - - H
20 30 40 50 60 70

Pipeline gain (%)

0%

number of tables

M QOpen vSwitch Picag P-3290 M Pjca8 P-3297 M Edge-corE AS4610

Figure 11: Pipeline gain with different number of tables

Timeout Accuracy

In the testing of timeout accuracy, we set the idle-timeout to five seconds and vary the hard-
timeout from three to seven seconds. The traffic is generated at the rate of 10K pps with 64 bytes
frame size. The results are shown in Table . The deviation of idle-timeout for hardware switch
is around £20%. In our test case, we make the switch to swap idle-timeout and hard-timeout
flow entries This operation may cause the switch can not properly handle the idle-timeout prop-
erly, and result in the larger deviation. Eventually, the Pica8 switches may not reset the timer

for idle-time properly when the idle-timeout flow entry matched.

21

Table 8: Timeout accuracy

Switch Accidle-timeout Acchard-timeout
Open vSwitch 2% 0%
Pica8 P-3290 -16.24% 4.7%
Pica8 P-3297 24.64% 3.3%
Edge-corE AS4610 10% 0%
Centec V350 17.64% 1.66%

22

Chapter 6 Conclusions

In this work, we focus on the test of OpenFlow switch performance based on the following
categories: control-plane-trigger-data-plane, data-plane-trigger-control-plane, and OpenFlow
data plane. We propose five test cases to evaluate six performance metrics: action time, pipeline
time, packet-in rate, packet-out rate, pipeline gain, and timeout accuracy. These six items can

be used to evaluate and reflect the switch performance.

Larger idle timeout deviation for hardware switches

In the results of timeout accuracy, the hardware switches have around +20% deviation for

idle timeout. This may cause the error for applications based on the idle-timeout.

Better new flow handling capability for hardware switches

In the testing results, the hardware switches are capable of generating Packet-in rate in the
ranging from 3000 to 7000 Packet-in-per second. This rate is approximately 20 times higher

than that of the software switches.

Well pipeline implementation for hardware switches

For the measurement of pipeline gain, The hardware switches reach 40 — 60% pipeline gain
under handling the 1Gbps traffic. There has a large gap between hardware and software switches.
And the number of available tables have the large deviation. All the switch under test, these
switches only have around 60 usable tables, but these switches said they have 254 tables in the

feature report.

Issues for switch implementation

We observed issues and problems during the testing for the OpenFlow switched. Firstly, the
switches may not be well implemented on the design of Apply-Action instructions. Secondly,
the switches crashed with the high volume of burst Packet-in traffic. Moreover, the timer of

idle-timeout is not reset properly when the flow entry matched.

23

Future work

For our experiment, performance factor affected by the loading of the switched is excluded.
This may cause some variance for our testing results presented. We plan to apply this factor and
discuss some advanced issues to our experiment in the near future. Furthermore, the calculation
of the queuing time will be integrated in the pipeline time. In the measurement of pipeline time,
we plan to use the finished time at the first table instead of the sending time of the packet. Thus,

the measurement of pipeline performance should be more accurate.

24

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Open Network Foundation. https://www.opennetworking.org/about/onf- overview.
“OpenFlow Switch Specification,” vol. 3, pp. 1-164, 2013.

OFTest. http://www.projectfloodlight.org/oftest/.

Ryu certification. https://osrg.github.io/ryu/certification.html.

Spirent, “OpenFlow Performance Testing,” 2015.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “OFLOPS: An open frame-
work for OpenFlow switch evaluation,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 7192 LNCS, pp. 85-95, 2012.

A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow switching: Data plane per-

formance,” IEEE International Conference on Communications, 2010.

P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance characteristics of vir-
tual switching,” 2014 IEEE 3rd International Conference on Cloud Networking, CloudNet
2014, pp. 120-125, 2014.

A. Gelberger, N. Yemini, and R. Giladi, “Performance analysis of Software-Defined Net-
working (SDN),” in Proceedings - IEEE Computer Society s Annual International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunications Sys-

tems, MASCOTS, pp. 389-393, 2013.

M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia, “Modeling and
performance evaluation of an OpenFlow architecture,” 2011 23rd International Teletraffic

Congress (ITC), pp. 1-7, 2011.

C. Rotsos, G. Antichi, M. Bruyere, P. Owezarski, and A. W. Moore, “OFLOPS-Turbo:
Testing the next-generation OpenFlow switch,” IEEE International Conference on Com-

munications, pp. 5571-5576, 2015.

25

[12] R. B. Handfield and K. Mccormack, “What You Need to Know About SDN Flow Tables,”

Supply Chain Management Review, no. September, pp. 29-36, 2015.

[13] V. Tanyingyong, M. Hidell, and P. Sjodin, “Improving PC-based OpenFlow switching
performance,” Architectures for Networking and Communications Systems (ANCS), 2010

ACM/IEEE Symposium on, pp. 8-9, 2010.

[14] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity switch models for software-
defined network emulation,” Proceedings of the second ACM SIGCOMM workshop on

Hot topics in software defined networking - HotSDN 13, p. 43, 2013.

[15] CVE-2016-2074: MPLS buffer overflow vulnerabilities in Open vSwitch.

http://openvswitch.org/pipermail/announce/2016-March/000082.html.

26

	List of Figures
	List of Tables
	Introduction
	Background
	OpenFlow
	OpenFlow performance parameters
	Related Work

	Problem Statement
	Notation
	Problem Description

	Methodology
	Mirror-in-processing
	Calculated traffic
	Masked entry

	Numerical Results
	Implementation
	Experiment setup
	Experimental Results

	Conclusions
	References

