US 20140337674A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0337674 Al

Ivancic et al.

43) Pub. Date: Nov. 13, 2014

(54)

(71)

(72)

(73)

@
(22)

(60)

NETWORK TESTING

Applicant: NEC Laboratories America, Inc.,
Princeton, NJ (US)

Inventors: Franjo Ivancie, Princeton, NJ (US);
Cristian Lumezanu, East Windsor, NJ
(US); Gogul Balakrishnan, Princeton,
NJ (US); Willard Dennis,
Lawrenceville, NJ (US); Aarti Gupta,
Princeton, NJ (US)

Assignee: NEC Laboratories America, Inc.,
Princeton, NJ (US)

Appl. No.: 14/270,445
Filed: May 6, 2014

Related U.S. Application Data

Provisional application No. 61/821,796, filed on May
10, 2013.

Programmable
SDN Controller

Publication Classification

(51) Int.CL
HO4L 12/26 (2006.01)
(52) US.CL
CPC oo HO4L 43/50 (2013.01)
1613 G 714/43
(57) ABSTRACT

A network testing method implemented in a software-defined
network (SDN) is disclosed. The network testing method
comprising providing a test scenario including one or more
network events, injecting said one or more network events to
the SDN using an SDN controller, and gathering network
traffic statistics. A network testing apparatus used in a soft-
ware-defined network (SDN) also is disclosed. The network
testing apparatus comprising a testing system to provide a test
scenario including one or more network events, to inject said
one or more network events to the SDN using an SDN con-
troller, and to gather network traffic statistics. Other methods,
apparatuses, and systems also are disclosed.

Patent Application Publication Nov. 13,2014 Sheet 1 0of 6 US 2014/0337674 A1

Programmalide
SON Contralier

ViV

Patent Application Publication Nov. 13,2014 Sheet 2 of 6 US 2014/0337674 A1

swite R0 000 Laalidbie 3207,
“parny How—-mod—117, Tprierity™ LS, Tdst—port™U2E8ET,
Tsroe-mac 52154 0GbadR 8, Tprotocel™ e
“ether—type” 20487, Tactions™ Uoutput=controls™ huep:

Flof-testbad: 808G/ wn/evaticf loventrypusher/ison
¥3

¥

FIG. 2

Patent Application Publication Nov. 13,2014 Sheet 3 of 6 US 2014/0337674 A1

curt X DELETE —d "{Mame™flow—mod—11"} htep:
. L ame B
S iof-testbed: BO80 /vy staticilovwentrypusher/ json

FIG. 3

Patent Application Publication Nov. 13,2014 Sheet 4 of 6 US 2014/0337674 A1

FIG. 4

Patent Application Publication Nov. 13,2014 Sheet 5 of 6 US 2014/0337674 A1

throws K{m ;’xf”’i’”v”m{}ié{}?‘ in%wm;: eﬁ{”v‘@p?m? {__

}oafss * { mehequals{stat"y L& argslength b 33
: ﬁ:?’bbgi;

= 2k esdsta path, watchy

printhtat{stath

,{if inal String path, Watcher watcher)

e
Kfa erbxeeption, in tﬂrrasg,*m%i:ffe;mm {

e

R:zzpiyi%&acﬁef r = oL submitRenquest] .
i { f)‘e%Er*r{ 3l l} i

if‘fe\,wri zeeption. Code NONODE inmtValuae{}} {
wery pansdh

3
i
LS

hrowe KeeperBExnaption oreats{ .}

at) {

-z-

irm fﬁH@, String mw; et rxid{ 11

FIG. 5

Patent Application Publication Nov. 13,2014 Sheet 6 of 6 US 2014/0337674 A1

Programmable
50N Controfler

US 2014/0337674 Al

NETWORK TESTING

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 61/821,796, entitled “SDTN: Soft-
ware-Defined Testing Network,” filed on May 10, 2013, the
contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to network testing and,
more particularly, to network testing of a software-defined
network (SDN).

[0003] The recent emergence of cloud computing—the use
ot hardware or software computing resources over a network
such as the internet—has led to new opportunities for large-
scale systems such as Big Data applications. End users of
cloud-based applications often entrust the user’s data to
remote services by software and infrastructure providers. For
example, in the Software as a Service (SaaS) business model,
the end user typically accesses the on-demand provided soft-
ware through a thin client via a web browser, while the user’s
data is stored at the application-service provider. According
to a recent estimate, SaaS sales reached $10 billion in 2010,
and are projected to double by 2015. The rapid growth of this
business model is partially explained by the ease of deploy-
ment of applications, resiliency of a deployed system through
fault tolerance, performance, scalability and elasticity.
[0004] However, testing cloud/distributed applications
faces major new challenges: Cloud applications are an intri-
cate combination of complex and dynamically changing
components such as virtual machines (VMs), servers and
services that communicate through a potentially wide-area,
unreliable and uncontrollable network connection such as the
internet. Systematic testing of interactions between complex
components is non-trivial.

[0005] We consider the problem of testing a distributed
cloud application for resilience and performance against net-
work congestion and network connection loss. Rather than
mimicking real-world network traffic through arbitrary back-
ground traffic, or wide-area network emulators such as Dum-
mynet, netem, NISTNet or WANem, we propose to utilize the
framework of software-defined networking (SDN) for this
task.

[0006] SDN is often considered as an essential building
block in virtualizing networks. Here, we propose to use SDN's
to help test distributed applications in a controlled, but real
test environment, by controlling and forcing hard-to-capture
network degradations in the wild. We stress that the main
difference between this approach and the well-studied use of
network emulators is that all data traffic actually flows
through a real software-defined network such as an Open-
Flow network, rather than through simulations or emulations
of modeled communication links.

[0007] Related art on large-scale distributed cloud applica-
tion testing has focused on two distinct testing goals: Testing
for resilience and robustness to failures, and testing for per-
formance. One approach is to use stress testing, which has
been used for both goals. In stress testing, the application is
put in a test environment under a heavy load situation and
performance and robustness are inspected. For this, one needs
to somehow create network traffic and conditions with heavy
loads.

[0008] In the realm of performance testing, network emu-
lators have been used to allow testing of network performance
in a potentially stressed environment without having to actu-

Nov. 13,2014

ally stress the network. This requires a model of the network
that can be used for network emulations.

[0009] In the realm of resiliency and robustness testing,
fault injection-based techniques are frequently used to test
distributed applications. These faults are generally injected
by forcing certain events (such as prematurely terminating
instances of a running distributed service as in chaos monkey
testing).

[0010] We observe the effects of network failures on the
distributed applications without having to actually stress a
real network. Furthermore, for effectiveness of testing and
improved tester productivity, we want to avoid modifying the
applications being tested. Instead, we propose to use SDNs to
help test distributed applications in a controlled, but real test
environment, by controlling and forcing hard-to-capture net-
work degradations in the wild. We stress that the main differ-
ence between this approach and the well-studied use of net-
work emulators is that all data traffic actually flows through a
real software-defined network such as an OpenFlow network,
rather than through simulations or emulations of modeled
communication links.

[0011] The key idea of our approach is to utilize the pro-
grammability of the SDN controller to provide an easy-to-
control network virtualization layer that cloud system testers
can use to test their cloud applications, for resilience to net-
work failures such as network traffic spikes, congestion, con-
nection loss, etc. In our approach, the SDN controller exer-
cises control over all installed network traffic rules on the
switches to purposefully inject such network failures and to
monitor network-level events. We posit that this approach
could be extended to perform performance testing of distrib-
uted applications, by building upon some of the advance
features of modern network emulators.

[0012] Ourmain goalis to allow effective testing of modern
distributed cloud services that rely on network communica-
tion. Many robustness issues of such distributed services are
likely due to communication issues that are simply hard to test
in the current standard test environments, which generally
consist of a test server hosting many VMs. From an applica-
tion testers’ perspective, we offer to lift the network virtual-
ization capability of software-defined networking to her, so
that she can easily focus on her task of testing interesting
scenarios rather than on modeling the actual network condi-
tions precisely.

[0013] Finally, we note that we propose the use of Open-
Flow for distributed cloud application testing in an OpenFlow
test network environment. However, this does not mean that
the final deployed distributed application requires an Open-
Flow-enabled network. Note that we use the OpenFlow-en-
abled network just as a way for a tester to control the network
in an efficient manner with respect to the testing priorities and
policies. In other words, the final deployed application may or
may not use an OpenFlow-enabled network.

[0014] Cost of testing is lowered since a testbed is built
using open-source components only, or it can be used ina live
SDN already in use, by creating a separate virtual slice for
testing.

[0015] Complexity and effort of setting up a test environ-
ment are also reduced, since it does not require defining
low-level network characteristics/conditions as needed by
network emulators. This also improves tester productivity.

US 2014/0337674 Al

REFERENCES

[0016] [1] M. Canini, D. Venzano, P. Peresini, D. Kostic’,
and J. Rexford. Automating the testing of OpenFlow appli-
cations. In NSDI. USENIX, 2012.

[0017] [2] M. Carbone and L. Rizzo. Dummynet revisited.
Computer Communication Review, 40(2):12-20, 2010.
[0018] [3] N. Foster, R. Harrison, M. J. Freedman, C. Mon-
santo, J. Rexford, A. Story, and D. Walker. Frenetic: A

network programming language. In IFIP. ACM, 2011.

[0019] [4] H. S. Gunawi, P. Joshi, P. Alvaro, I. Yun, J. M.
Hellerstein, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dus-
seau. FATE and DESTINTI: A framework for cloud recov-
ery. In NSDI, 2011.

[0020] [5] P.Joshi, H. S. Gunawi, and K. Sen. PREFAIL: A
programmable tool for multiple-failure injection. In OOP-
SLA, pages 171-188. ACM, 2011.

[0021] [6] M. Kuz’niar, P. Peresini, M. Canini, D. Venzano,
and D. Kostic’. A SOFT way for OpenFlow switch interop-
erability testing. In CONEXT, 2012.

[0022] [7] R. Liibke, R. Lungwitz, D. Schuster, and A.
Schill. Emulation of complex network infrastructures for
large-scale testing of distributed systems. In WWW/Inter-
net. IADIS, 2012.

[0023] [8] P.D. Marinescu and G. Candea. Efficient testing
of recovery code using fault injection. ACM Trans. Com-
put. Syst., 29(4):11, 2011.

[0024] [9] N. McKeown, T. Anderson, H. Balakrishnan, G.
Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling innovation in campus networks. SIG-
COMM Comp. Comm. Review, 38(2), 2008.

[0025] [10] C. Monsanto, N. Foster, R. Harrison, and D.
Walker. A Compiler and Run-time System for Network
Programs. In POPL. ACM, 2012.

[0026] [11] M. Nambiar and H. K. Kalita. Design of a new
algorithm for WAN disconnection emulation and imple-
menting it in WANem. In ICWET, pages 376-381. ACM,
2011.

[0027] [12] L. Nussbaum and O. Richard. A comparative
study of network link emulators. In SpringSim. SCS/ACM,
2009.

[0028] [13] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood,
and A. Moore. OFLOPS: An open framework for Open-
Flow switch evaluation. In PAM, 2012.

[0029] [14] B. White, J. Lepreau, L. Stoller, R. Ricci, S.
Guruprasad, M. Newbold, M. Hibler, C. Barb, and A.
Joglekar. An integrated experimental environment for dis-
tributed systems and networks. In OSDI, 2002.

[0030] [15]A. Wundsam, D. Levin, S. Seetharaman, and A.
Feldmann. OFRewind: Enabling record and replay
troubleshooting for networks. In ATC, 2011.

BRIEF SUMMARY OF THE INVENTION

[0031] An objective of the present invention is to lower the
cost of testing a network. The present invention also reduces
complexity and effort of setting up a test environment.
[0032] An aspect of the present invention includes a net-
work testing method implemented in a software-defined net-
work (SDN). The network testing method comprises provid-
ing a test scenario including one or more network events,
injecting said one or more network events to the SDN using an
SDN controller; and gathering network traffic statistics.
[0033] Another aspect of the present invention includes a
network testing apparatus used in a software-defined network

Nov. 13,2014

(SDN). The network testing apparatus comprises a testing
system to provide a test scenario including one or more net-
work events, to inject said one or more network events to the
SDN using an SDN controller, and to gather network traffic
statistics.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] FIG. 1 depicts a Conceptual test view.

[0035] FIG. 2 depicts a static flow rule for ZooKeeper test-
ing.

[0036] FIG. 3 depicts a command to remove ZooKeeper
testing rule.

[0037] FIG. 4 depicts network topology of the testbed.
[0038] FIG. 5 depicts a NULL pointer bug in ZooKeeper.
[0039] FIG. 6 depicts combining OpenFlow-based testing

with network emulators.

DETAILED DESCRIPTION

[0040] We are interested in finding issues in distributed
cloud applications and services with respect to network com-
munication degradations such as failures or congestions. We
assume that the service is distributed on a number of virtual
machines (VMs). The tester uses a software-defined network
to control network events and communication links between
the distributed application running on several VMs. We use a
programmable controller. In the following picture we show a
conceptual view of the test network consisting of a program-
mable software-defined networking controller, two switches
S, and S,, and several VMs denoting the distributed applica-
tion.

[0041] The tester provides a high-level test scenario
description, which includes relevant events in the distributed
application and relevant events in the controlled network. For
example, the tester has a particular work load that is used for
testing, and also specifies what type of network events should
occur at various stages of the execution of the distributed
application. These network events relate to network connec-
tion loss or network connection degradations. The test system
dynamically injects these network events using an SDN con-
troller such as through the OpenFlow application program-
ming interface (API).

[0042] The advantage of using a full network for testing is
that it allows us to test the actual application in a realistic
network environment rather than just in an emulated environ-
ment. Furthermore, the executed tests can run in a dynami-
cally changing network environment rather than a static emu-
lation setting.

[0043] It may also be possible to use some of the advanced
capabilities provided by network emulators in an SDN-based
test network. One such use case would be to configure certain
network characteristics captured within several instances of
network emulators, and have the SDN-based test network
dynamically change which traffic to route through these con-
figured sub-network emulators. For example, as shown in the
next picture, we may consider having three paths between
switches S, and S,. The three paths would have different
network characteristics which could be pre-configured with
specialized network emulator VMs, or could be dynamically
adaptable.

[0044] There are different use cases for such a combination
of programmable network control with network emulators.
First, we can utilize this approach as an extension of distrib-

US 2014/0337674 Al

uted application testing. This would let the tester check for the
application robustness and performance given certain emu-
lated network conditions.

[0045] A second use case is to allow network emulators
better scalability by distributing their workload onto multiple
servers connected through an actual network. Network emu-
lators still face performance bottlenecks in estimation of net-
work effects in high data rate emulations. By distributing the
emulation to various servers, the emulation performance can
be increased. The additional advantage of using this in the
context of SDNs is that we can design a programmable SDN
module that monitors the performance of the distributed emu-
lation. Furthermore, the SDN module can act as a load bal-
ancer for network emulators by adapting flows to underuti-
lized emulation servers.

[0046] Wealso observethat OpenFlow allows network traf-
fic statistics generation on individual switches, which are
communicated to the OpenFlow controller. This information,
in conjunction with the fact that the controller can choose
desired lifetime lengths of installed rules, can be utilized by
the tester for debugging purposes as well. For example, the
tester can gather network-level statistics about how often a
distributed application tried to connect to a certain port on
different destination hosts.

[0047] Further System Details

[0048] Distributed cloud applications are an intricate com-
bination of complex and dynamically changing components,
that communicate through an unreliable and uncontrollable
network connection. Thus, testing such applications and ser-
vices in a systematic fashion is non-trivial. We show how to
use software-defined networks (SDNs) to effectively test dis-
tributed applications for resilience to network issues such as
communication delays. We rely on the programmability
aspect of SDNs to virtualize the network to the tester. We
present a promising initial implementation of these ideas
using OpenFlow API.

[0049]

[0050] Cloud computing—the on-demand use of remote
hardware or software computing resources over a network—
has emerged as the de facto way of deploying new applica-
tions and services at scale. Applications and data reside on the
cloud provider infrastructure and are accessed by users over
the Internet using a web browser or thin client. According to
a recent estimate, the sales of Software as a Service (SaaS),
one of the most popular cloud-service models, reached $10
billion in 2010, and are projected to double by 2015.

[0051] Effective diagnosis of abnormal behavior is essen-
tial for maintaining availability and controlling costs of
cloud-based applications. Operational problems can have
severe financial or availability implications. A recent study
showed that every minute of outage costs US-based providers
on average $5,600 (see http:/tinyurl.com/cc23gb7). Anec-
dotal evidence suggests that the April 2011 AWS service
outage cost Amazon around $2 million in revenue loss (see
http://tinyurl.com/brvt5ox).

[0052] However, testing cloud applications and services is
challenging. First, such applications contain complex and
dynamic components with unpredictable interactions
between them. In addition, these components are distributed
across VMs and servers in the cloud and communicate among
them and with the users through an unreliable network. For
example, the aforementioned Amazon outage appears to have
been caused by a networking event that triggerd repeated

1 Introduction

Nov. 13,2014

backups of the same data (see http://tinyurl.com/43tooca).
Ideally, any service should be resilient to any networking
event.

[0053] Second, for accuracy and completeness, testing dis-
tributed cloud applications should cover a wide range of
realistic testing scenarios. Testing applications under their
natural environment, i.e., the unreliable and best-effort Inter-
net, is ideal but difficult because it is impossible to control
network conditions to generate various testing scenarios. As a
result, researchers have resorted to network emulators and
simulators. Such tools enable fine-grained control over net-
work behavior and properties (e.g., delay, loss, packet reor-
dering, etc.) but focus on accurate network protocol emula-
tions rather than testing distributed applications. In addition,
setting up a realistic emulation is not trivial because it
requires abstractions and approximations of the real network
and because it may not scale under certain scenarios (e.g.,
high data rates) [12].

[0054] We propose to use the framework of software-de-
fined networks (SDN) to test distributed cloud applications
for resilience against communications issues, such as net-
work congestion and loss. We do not specifically address
hardware fault-tolerance. However, given that many applica-
tions are distributed, hardware failures affecting some hosts
often result in communication delays or failures for other
hosts. SDNs allow operators and administrators to manage
the network from a centralized server and provides both the
control and the coverage necessary to perform cloud testing.
Similarly to network emulators, testers have control over
network properties (by installing forwarding rules that direct,
drop, or delay traffic), but unlike emulators, the testing occurs
in a real network and does not require generating network
traffic and simulating its properties and behavior.

[0055] Software-defined networking enables us to build a
testing network that is completely under control of the tester.
The tester uses the centralized controller to configure the
network with forwarding rules based on high-level testing
goals, to inject network failures, and to monitor network-level
statistics. For example, to test an application for reliability
against partial connection loss, the controller can temporarily
remove the rules that forward traffic towards the application
nodes.

[0056] We build our testing network using OpenFlow [9],
the most popular SDN protocol. OpenFlow is enabled in
hardware switches offered by many vendors, including Cisco,
IBM, Juniper, and NEC, and in software switches such as the
Open vSwitch (see openvswitch.org). Furthermore, there are
a number of open-source OpenFlow controllers available,
including NOX, PDX (see http://www.noxrepo.org), and
FloodLight (http://www.projectfloodlight.org), amongst oth-
ers. We also emphasize that, although we propose to use
OpenFlow to test cloud applications, the deployed applica-
tions do not require OpenFlow or any other SDN protocol to
run.

[0057] Contributions.
[0058] Our contributions are, for example:
[0059] We propose to use an OpenFlow-enabled test net-

work to test for resilience of distributed cloud applica-
tions to network stress and connection failures.

[0060] We show how a tester may utilize such an envi-
ronment for efficient testing of cloud applications by
presenting an implementation using open-source com-
ponents.

US 2014/0337674 Al

[0061] We present initial promising experiments on such
an OpenFlow-enabled network test environment for
some popular distributed services and applications.

[0062] Overview.

[0063] First, we present some relevant background on
OpenFlow and network emulators in Section 2. Then, Section
3 introduces desired aspects of a cloud application testing
framework. Section 4 discusses our OpenFlow-based test
framework. In Section 5, we showcase some early promising
experimental results using our approach. Next, we discuss
additional related work in Section 6. Finally, Section 7 ends
with a discussion of the proposed framework and directions.

[0064] 2 Background
[0065] 2.1 OpenFlow
[0066] Software-defined networking separates the control

plane from the data plane in a network. The control plane
resides on alogically centralized server (the controller), while
the fast data plane remains on the network switches. The
controller enforces network administrator policies by trans-
lating them into low-level configurations and inserting these
dynamically into switch flow tables using an API such as
OpenFlow.

[0067] A network’s configuration consists of the forward-
ing rules installed at the switches. Every rule consists of
matching entries that specify which packets match a rule, an
action to be performed on matched packets, and a set of
counters (which collect statistics). Possible actions include
“forward to output port”, “forward to controller”, “drop”, etc.
The controller uses a specialized control packet, called Flow-
Mod, to insert a rule into a switch’s data plane.

[0068] Rulescanbeinstalled proactively (i.e., atthe request
of'the application or operator) or reactively (i.e., triggered by
a Packetln message as described below). Rules can be
matched based on many parameters of a packet header,
including the source and destination IP addresses or media
access control (MAC) addresses, port numbers used for com-
munication, type of communication protocol used, etc. The
OpenFlow network operates in the following (simplified)
way.

[0069] On the arrival of the first packet of a new flow (i.e.,
a sequence of packets from a source to a destination), the
switch looks for a matching rule in the flow table and per-
forms the associated action. If there is no matching entry, the
switch buffers the packet and notifies the controller that a new
flow has arrived by sending a PacketIn control message con-
taining the headers of the packet. The controller responds
with a FlowMod message that contains a new rule matching
the flow that is to be installed in the switch’s flow table. The
switch installs the rule and forwards the buffered and subse-
quent flow packets according to it.

TABLE 1

A simplified OpenFlow flow entry table

Priority src-1P dest-IP action
17 192.168.10.10 * out port 3
12 192.168.10.* * out port 7
5 192.168.%.* 192.168.10.5 drop
Example 1
[0070] Considerthe simplified flow entry table presented in

Table 1. It only shows rule matches based on the IP addresses

Nov. 13,2014

of the sending host and the destination host. We assume that
all other rule components are wildcard matches in this
example. Each rule has a priority, which decides the order of
processing. When a new packet arrives at a switch configured
in this way, the rule with priority 17 will be analyzed first. If
the packet originated at 192.168.10.10, the switch forwards it
to port 3. However, if the packet originated from any other IP
with prefix 192.168.10, then the packet is sent to port 7. If
neither rule matches the incoming packet, and the packet
originated at a host with IP prefix 192.168 and destination
192.168.10.5, the last rule is used to drop the packet. This
could be for reasons of SPAM removal or firewall related
issues. Finally, if none of the installed rules matches the
incoming packet, the switch creates a Packetln message to be
sent to the controller for further processing.

[0071] 2.2 Network Emulators

[0072] Network simulators and network emulators have
been investigated for the past two decades for protocol-level
performance testing. The Linux kernel provides the netem
package (see http://tinyurl.com/25uxcbo), which is a network
emulation functionality that allows protocol testing by emu-
lating different properties of wide area networks. WANem
[11] provides a browser-based GUI to control netem. It also
provides some standard connection metrics such as band-
width for well-known communication standards or connec-
tion cables. Dummynet [2] is another popular emulator. There
are also large-scale emulation environments such as Emulab
[14].

[0073] Network emulators are used to model the behavior
of wide-area networks using a simulated network, which a
user controls using information such as bandwidth, capaci-
ties, roundtrip packet propagation delays, and other param-
eters related to networks and traffic shaping. It was shown that
network emulators can estimate the performance of protocols
very well, although they may face scalability issues, espe-
cially when emulating high data rates [12]. In addition, net-
work emulators often allow specification of other possible
network effects such as packet loss, packet duplication,
packet re-ordering, etc. Although our testing framework does
not specifically test against these events, we believe it can
effectively replicate their effect by degrading network perfor-
mance.

[0074] Furthermore, setting up a realistic emulation model
is non-trivial and contains abstractions and approximations of
the real network and traffic management. In order to perform
a realistic network emulation, we may need to generate real-
istic background network traffic to model potentially con-
gested network conditions. Instead, our approach allows fine-
grained testing in a real (OpenFlow) network with actual
switches, and with actual background traffic in a live network.

[0075]

[0076] In this section, we present our SDN-based test net-
work framework for testing of distributed applications. A
conceptual test environment overview is shown in FIG. 0. The
distributed application runs on a number of connected VMs,
depicted in the figure as connected through two switches S,
and S,. The control plane of the network is shown in red
(dashed lines), while the data plane is shown in blue (solid
lines). The tester can create work-loads for the distributed
application (dotted green line). However, the tester also con-
trols the OpenFlow controller by programming it to install
rules that manage or shape the traffic for some network test
scenarios.

3 Cloud Application Testing

US 2014/0337674 Al

[0077] 3.1 Resiliency Test Requirements
[0078] There are a number of features that a distributed
application testing framework needs to support. At a high
level, we can distinguish between tests for functional correct-
ness, performance (and other non-functional requirements),
and resiliency of the application to network/communication
latencies and loss. Our main focus is on resiliency of the
application to communication bottlenecks. Therefore, the test
framework should have the following capabilities:
[0079] 1. Network-Based Resiliency-Related Scenarios:
[0080] (a) Throttling or link failure of switch-level traffic
on central communication links, e.g. between routers
[0081] (b) Throttling or link failure of application mes-
sages only (application-level degradation)
[0082] (c) Throttling or link failure of all traffic between
two VMs (localized, or VM-level degradation)
[0083] (d) Throttling or link failure of localized applica-
tion-level communication between two VMs
[0084] (e)Network monitoring capabilities for messages
in the distributed system under test
[0085] 2. VM-Based Resiliency-Related Scenarios
[0086] (a) Health monitoring and logging of the distrib-
uted service or application
[0087] (b)High-level control of application such as shut-
down of component, shutdown of VM, etc.

[0088] 3. Work-Load Generation

[0089] 4. Dynamic and Fast Changes of Network Condi-
tions

[0090] Since we focus on testing cloud applications with

respect to network communication failures and congestions,
we assume that the tester has relevant test scenarios in mind.
Thus, we will not discuss further the capabilities mentioned
above in (2) and (3). In Section 4, we show how SDN can
naturally provide features (1) and (4).

[0091] 3.2 Defect Types

[0092] Similar to other testing strategies such as stress test-
ing and fault-injection based testing, this approach can dis-
cover a variety of defects. These range from high-level design
mistakes where desired properties are not maintained, to low-
level coding bugs such as NULL-pointer exceptions. Our
tests do not target any observed defect type in particular. We
leverage any testing policy that is used, including any existing
tests and monitors or health checks. Crashes and other visible
defects reported in logs are easy to detect.

[0093] 4 OpenFlow-Based Test Framework

[0094] In this section we present two SDN modules that
enable dynamic and fast changes of network conditions by
dropping, degrading, or rerouting communication flows.
These modules offer a natural way to satisfy the test features
(1) and (4) in Section 3. Both modules are implemented under
the open-source FloodLight OpenFlow controller: static flow
pusher comes with FloodLight and flow delay was developed
by us.

[0095] 4.1 Static Flow Pusher Module

[0096] The static flow pusher module allows a network
administrator to insert forwarding rules into an OpenFlow
network. This module is typically used based on a priori (or
out-of-band) knowledge of incoming flows, and thus allows
to proactively install rules on switches before such packets
arrive. This module is exposed to the administrator through a
REST API and, for each request, generates FlowMod packets
that communicate the desired rule change to the OpenFlow
switch.

Nov. 13,2014

Example 2

[0097] Consider the case where the tester analyzes the dis-
tributed service ZooKeeper (see http://zookeeper.apache.
org). FIG. 1 shows a sample curl command that the tester can
issue to the static flow entry pusher module. Here we model
the effect of'a bad connection from a particular source VM. As
shown, the rule only matches on TCP packets (protocol 6),
and one source VM. It applies only to messages that are sent
to port 2888, the default port number that ZooKeeper uses for
followers to connect to the leader. Thus, any other traffic
originating from the sender VM would not be impacted by
this rule. However, note that the rule does not specify a des-
tination host. The tester can further specialize this rule by
adding a destination MAC address to impact only traffic
between two particular end host VMs.

[0098] This rule forwards all matching packets to the Open-
Flow controller. The programmable controller, and thus the
tester, can decide how to further process these packets. In our
current implementation, the flow delay module, described
below, processes these packets. If the tester wants to drop
matching packets (modeling a communication loss), the rule
would end in an empty actions command, as in “actions™:*“”.
[0099] Finally, the tester can re-establish the connection by
deleting the rule using another curl command, as shown in
FIG. 2. Note that the deletion utilizes the name of the rule.
[0100] Wildcard Usage.

[0101] So far, we have presented how to use the OpenFlow
protocol to selectively degrade individual communication
links, between one source and one destination. The tester can
thus affect large parts of the communication network by com-
bining several updates to individual communication links.
However, sometimes the tester wants to impact a large section
of a network at once (requirement 1 a). For this, we use the
OpenFlow protocol facility of wildcards.

[0102] The OpenFlow protocol allows use of wildcards in
rule matching. Consider, for example, that all VMs for the
switch on the left in FIG. 0 are assigned an IP in the range
192.168.10.0-255, whereas all VMs for the switch on the
right are assigned an IP in the range 192.168.20.0-255. We
can thus model a large-scale disconnect of the two switches
by specitying that any traffic from 192.168.10.* to and from
192.168.20.* is impacted using only two rules.

[0103] 4.2 Flow Delay Module

[0104] The FloodLight static flow pusher module allows
our tester to control the behavior of one or many network
communication flows between VMs. As discussed above, the
tester can install rules that drop particular types of commu-
nication. The tester may thus observe the application behavior
under complete or partial connectivity loss. Note that partial
connectivity loss is likely to become a debugging issue as
more application traffic is shaped by routing it through dif-
ferent virtual sub-networks.

[0105] While dropping packets is enough to model (partial)
connectivity loss, we also want to test applications in con-
gested network situations. To do so, we developed a new flow
delay module in FloodLight. This module, implemented in
under 200 lines of Java, accepts a configuration file that
contains pertinent information about the application that is
being tested. This information includes MAC addresses of the
participating hosts/VMs, the relevant port numbers etc.,
which is used to generate the appropriate rule updates by the
controller.

[0106] The tester configures the flow delay module by
specifying a range of delays to be applied to matching packets

US 2014/0337674 Al

(in ms) When a switch forwards a packet to the SDN control-
ler, the flow delay module first checks whether this packet is
part of a flow under test. If it is not, it will be processed by
other standard FloodLight modules. Otherwise, the module
randomly chooses a delay from within the specified range of
delays. The module holds on to the current packet for the
specified delay period, and releases it to continue its path to
the destination. The tester can thus emulate network conges-
tion or long routes for only the particular network flows of
interest. By allowing the tester to specify a range of delays,
the tester can not only check for congested networks but also
increase the chance of packets arriving at the destination
out-of-order.

[0107] 5 Experiments
[0108] 5.1 Implementation
[0109] We implemented the techniques on a server with

two physical Intel Xeon processors, and each processor con-
tains 4 cores. The server has 32 GB memory, and runs Ubuntu
12.04.1 with the virtualization library libvirt version 1.0.4.
We use the Open vSwitch version 1.10.90, and the FloodLight
controller using development version 0.90+. Each bench-
marks described below was tested and analyzed in less than
one work-day each.

[0110] 5.2 Apache ZooKeeper

[0111] The Apache ZooKeeper project is a centralized ser-
vice meant for maintaining high-level configuration informa-
tion, providing distributed synchronization and group ser-
vices. ZooKeeper provides a well-tested, industry-standard,
open-source Java implementation that is used by many other
distributed services or applications. The VMs use the current
ubuntu ZooKeeper version 3.3.5+dfsgl-1ubuntul. The offi-
cial ZooKeeper project has currently two stable releases,
which are release 3.3.6 and release 3.4.5.

[0112] 5.2.1 Test Strategy

[0113] We use a ZooKeeper ensemble of three VMs. In
ZooKeeper, an ensemble is regarded as being in a good state
if at least a majority (here, two VMs) are communicating with
each other, and they agree upon a leader amongst the con-
nected VMs. When a leader becomes unresponsive, and if the
other two follower-VMs are still in communication, they will
re-elect a new leader amongst themselves. Should the third
VM re-join the ensemble, it joins it as a follower.

[0114] As a proof-of-concept of our SDN test framework,
we developed a naive random test strategy for ZooKeeper.
Each VM runs a random sequence of ZooKeeper events,
including stopping and then re-starting the ZooKeeper ser-
vice, creating new elements in the shared configuration state,
re-setting values, querying some states, or deleting some
states. The tester randomly disconnects communication links,
or re-routes them through the delay flow module, and re-
connects them after some time. The rules that are installed and
removed on the switches only apply to ZooKeeper messages.
Since two ports are used for communication, one for leader
election, and the other for following an elected leader, our
random tester also decides whether to impact all ZooKeeper
communications on a link or only one message type.

[0115] 5.2.2 Resiliency Test Analysis

[0116] We performed initial experiments using the
described test setup. Notably, we observe that many com-
mands that are randomly executed as a work-load on some
VM end with an uncaught KeeperException for reasons of
communication loss. This is due of the fact, that our distrib-
uted work-loads do not check whether the VM is part of the
ZooKeeper ensemble when a new command is started. Such

Nov. 13,2014

executions are thus not a cause of concern, and are deemed
recoverable errors in ZooKeeper’s terminology (see http://
wiki.apache.org’/hadoop/ZooKeeper/ErrorHandling).

[0117] However, we also found four distinct types of issues
that we believe require further investigation. One of these is a
NULL-pointer exception in the current Ubuntu precise ver-
sion of ZooKeeper, which has been fixed in the official stable
version 3.4.5. We highlight part of the offending code in F1G.
3. Interestingly, the function call to zk.exist(.) may end with
an exception or return NULL. The former is gracefully
handled in an outer exception handler.

[0118] We also noted three instances where the ZooKeeper
application fails abruptly in a fatal state or error state, because
ZooKeeper ends up in an unrecoverable state. Note that we
are testing the ZooKeeper service as the application, and thus
unrecoverable errors where the system cannot return in a
good state are a problem. We believe that at least one of these
cases is still not resolved in the newest version.

[0119] 6 Related Work

[0120] A related work with respect to distributed testing is
the work by Liibke et al. on NESSEE [7]. They provide an
architecture, based on Dummynet, that allows network emu-
lation of systems with typical client/server-based architec-
tures. The tool allows a tester to specify the network charac-
terics in detail using an XMIL.-based test description language.
The main goal, as is common for standard network emulators,
is to get precise and accurate performance measurements.
Our initial goal is to find distributed application resiliency
issues. We also address arbitrary distributed service architec-
tures.

[0121] Generally, various stress testing or fault injection
based methods are used to test for performance and robust-
ness in applications. During stress testing, a test network is
saturated with heavy load conditions. Typical stress testing
tools are Selenium (http://seleniumhgq.org) or LoadRunner by
HP.

[0122] Random fault-injection based methods are also fre-
quently used for distributed application resiliency testing,
such as chaos monkey testing or GameDay exercises. To
allow testers more control where faults should be injected,
various test description languages have been proposed. One
such example is the tool LFI by Marinescu and Candea for
fault-injection based testing of recovery code when library
calls fail [8]. A recent work also targets robustness/resiliency
testing of cloud applications. It allows a tester to specify a
desired testing policy using application-dependent abstrac-
tion labels that expose internal states of the system. This is
more effective than black-box testing, but needs support
through an application instrumentation and a scheduler that
controls and manages the ordering of certain execution
events. Here, we treat the applications as black boxes and
design programmable modules for an SDN to exercise rel-
evant network event orderings.

[0123] Some recent work discusses formal verification of
OpenFlow modules [1, 3, 10] and testing of OpenFlow
switches [6, 13]. Diagnosing and debugging of errors at the
SDN level has also been investigated [15]. All these tech-
niques target the verification and testing at the network level.
We are instead using the SDN to test distributed cloud appli-
cations.

[0124] 7 Directions

[0125] We proposed the use of software-defined network-
ing for testing of distributed cloud applications. Our main
goal is to find resiliency-related issues in distributed services

US 2014/0337674 Al

that are due to network communication failures such as loss or
degradation of connections. We showcase an implementation
using the OpenFlow API and the FloodLight controller.
[0126] The current capabilities of the FloodLight flow
delay module can be emulated precisely enough using net-
work emulators. However, we note again the difference
between emulating the communication and running it on an
actual live network. We can also allow the tester even more
control of the test scenarios. This includes the following
extensions: systematic exploration of message orderings, net-
work-level test statistics gathering, performance estimation,
and combining SDN control with network emumators.
[0127] Systematic exploration of message orderings has
been explored for fault injection in distributed services using
FATE and DESTINI [4] and PreFail [5]. Performing such
systematic exploration using a programmable SDN, however,
does not require intrusive modifications to the application
under test. Thus, we believe that developing further Open-
Flow modules will allow us to target additional testing goals.
[0128] OpenFlow collects network traffic statistics on indi-
vidual switches, which are communicated to the controller.
The tester can use this information in combination with the
choice to set desired lifetime lengths of installed rules during
debugging.

[0129] We also foresee various use cases for a combination
of programmable network control with network emulators.
First, we can utilize this approach as an extension of distrib-
uted application testing for performance estimation. The
tester can configure certain network characteristics captured
by several instances of network emulators. The SDN-based
test network can then dynamically change which traffic to
route through these configured sub-network emulators. A
second use case is to allow network emulators better scalabil-
ity by distributing their workload onto multiple servers con-
nected through an actual network. The additional advantage
of'using SDNss is that we can design a new SDN module that
monitors the performance of the distributed emulation. The
SDN module thus acts as a load balancer for network emula-
tors by routing flows to underutilized emulation servers.
[0130] The foregoing is to be understood as being in every
respect illustrative and exemplary, but not restrictive, and the
scope ofthe invention disclosed herein is not to be determined
from the Detailed Description, but rather from the claims as
interpreted according to the full breadth permitted by the
patent laws. It is to be understood that the embodiments
shown and described herein are only illustrative of the prin-
ciples of the present invention and that those skilled in the art
may implement various modifications without departing
from the scope and spirit of the invention. Those skilled in the
art could implement various other feature combinations with-
out departing from the scope and spirit of the invention.

What is claimed is:

1. A network testing method implemented in a software-
defined network (SDN), the network testing method compris-
ing:

providing a test scenario including one or more network

events;

Nov. 13,2014

injecting said one or more network events to the SDN using

an SDN controller; and

gathering network traffic statistics.

2. The network testing method as in claim 1, wherein said
one or more network events include a network connection
loss, network connection degradation, dropping a packet, or
delaying a packet.

3. The network testing method as in claim 1, wherein the
injection is carried out dynamically.

4. The network testing method as in claim 1, wherein the
network traffic statistics comprises how often an application
tries to connect to a certain port on a destination host.

5. The network testing method as in claim 1, wherein the
SDN network comprises an OpenFlow network and the SDN
controller comprises an OpenFlow controller.

6. The network testing method as in claim 1, wherein the
injection is carried out through OpenFlow application pro-
gramming interface (API).

7. The network testing method as in claim 5, wherein
injection is carried out using OpenFlow controller Flood-
Light comprising a static flow pusher module.

8. The network testing method as in claim 5, wherein the
OpenFlow controller comprises a flow delay module, and
said one or more network events include delaying a packet
using the flow delay module.

9. The network testing method as in claim 8,

wherein the flow delay module accepts a configuration file

that contains information about an application to be
tested, and

wherein the information includes at least one of a media

access control (MAC) address of a participating host or
virtual machine (VM) and a port number, and informa-
tion is used to generate a rule update.

10. The testing method as in claim 8, further comprising:

configuring the flow delay module by specifying a range of

a delay to be applied to a matching packet;

checking whether a packet is part of a flow under test; and

ifthe packet is part of the flow under test, randomly choos-

ing a delay from within the range.

11. A network testing apparatus used in a software-defined
network (SDN), the network testing apparatus comprising:

a testing system to provide a test scenario including one or

more network events, to inject said one or more network
events to the SDN using an SDN controller, and to gather
network traffic statistics.

12. The network testing apparatus as in claim 11, wherein
said one or more network events include a network connec-
tion loss, network connection degradation, dropping a packet,
or delaying a packet.

13. The network testing apparatus as in claim 11, wherein
the injection is carried out dynamically.

14. The network testing apparatus as in claim 11, wherein
the network traffic statistics comprises how often an applica-
tion tries to connect to a certain port on a destination host.

15. The network testing apparatus as in claim 11, wherein
the SDN network comprises an OpenFlow network and the
SDN controller comprises an OpenFlow controller.

#* #* #* #* #*

