

 1

國立交通大學

電機資訊國際學程

碩士論文

識別跟縮減觸發網通裝置錯誤的網路流量

Identifying and Downsizing Packet Traces Triggering Defects in

Networking Devices

研 究 生：鍾艾利

指導教授：林盈達 教授

中華民國一百零一年六月

 2

識別跟縮減觸發網通裝置錯誤的網路流量

Identifying and Downsizing Packet Traces Triggering Defects in

Networking Devices

研 究 生：鍾艾利 Student：Pawendtaoré Eliézer ZONGO

指導教授：林盈達 Advisor：Dr. Ying-Dar Lin

國 立 交 通 大 學

電機資訊國際學程

碩 士 論 文

A Thesis

Submitted to EECS International Graduate Program

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

June 2012

Hsinchu, Taiwan, Republic of China

中華民國一百零一年六月

 i

識別跟縮減觸發網通裝置錯誤的網路流量

學生：鍾艾利 指導教授：林盈達

國立交通大學電機資訊國際學程

摘 要

在將網路設備公開到市場上之前，測試是一種能夠保證產品品質與穩定性的方

法，而其中一種測試網路設備的方式是透過重播人工或是真實世界的網路流量

來進行測試，相較於使用人工網路流量，透過真實流量的重播測試可以呈現出

更多真實的特性。然而大量的真實網路流量及長時間的重播測試，為了減少重

播時間及能有效率的重現待測產品的錯誤，如何縮減產生網路產品錯誤的流量

是必須面對的問題。我們提出了透過線性搜尋與二元搜尋演算法的線性縮減與

二元縮減演算法來進行流量長度的縮減。為了評估我們的方法對流量縮減的有

效性，我們使用縮減比率來做為評估單位。從錯誤的分佈評估來看，在所有的

錯誤中，ICMP 和 HTTP 造成的錯誤占了所有網路設備錯誤的 60%，另外，我

們提出的線性縮減與二元縮減分別對於流量達到了 77%與 80%的縮減比率，根

據結果來看，測試的時間也依照同樣的比例減少，證明我們的縮減方法可以對

於網路產品測試的效率有大幅度的改善。

關鍵字：網絡設備，缺陷，網路流量，縮減

 ii

Identifying and Downsizing Packet Traces Triggering Defects in

Networking Devices

Student: Zongo Pawendtaoré Eliézer Advisor: Dr. Ying-Dar Lin

Department of Electrical Engineering & Computer Science / International

Graduate Program

National Chiao Tung University

Abstract

Testing networking devices before releasing them to the market is a way of

ensuring their quality and robustness. Replay technique with artificial or real-world

traffic is a method used to test networking devices. Using real-world traffic is more

preferable as it displays more realistic properties in comparison with artificial traffic.

The challenges with testing products with real-world traffic are mainly the high

volume of the captured traces and the prolonged time required for the replay testing.

In order to efficiently reproduce the defects produced by networking devices and

reduce the replay time, it is necessary to reduce the size of the traces that trigger the

defect of networking devices. In order to perform a defect-based traces downsizing,

we propose a binary and a linear downsizing algorithms respectively based on binary

and linear search algorithms. A metric called downsizing ratio is defined is order to

evaluate the efficiency of the traces downsizing. The evaluation of the defects

distribution show that ICMP and HTTP defects represent around 60% of the total

number of defects experienced by networking devices. In addition, the binary

downsizing and linear downsizing achieve a downsizing ratio of 77% and 80%

respectively. As a result, the time needed to perform testing is reduced by the same

amount. This is significant since the downsizing techniques used can improve the

testing of networking devices.

Keywords: networking devices, defects, packet traces, downsizing

 iii

Table of Contents

Abstract .. ii	

Table of Contents ... iii	

List of Figures .. iv	

List of Tables .. v	

Chapter 1 Introduction ... 1	

Chapter 2 Background .. 3	

2.1 Issues of Traffic Capture and Replay ... 3	

2.2 Overview of Stability Testing .. 4	

2.3 Related Works .. 5	

Chapter 3 Traces Downsizing ... 7	

3.1 Terminologies Definitions ... 7	

3.2 Problem Statement ... 8	

3.3 Issues to Be Addressed ... 8	

Chapter 4 Packet Traces Identification and Downsizing 10	

4.1 Solution Approach Overall Architecture ... 10	

4.2 Traces Identification ... 11	

4.3 Traces Downsizing Procedures .. 12	

Chapter 5 Experiments Studies and Results Analysis .. 15	

5.1 Traces Selection and Experimental Testbed .. 15	

5.2 Defects Distribution ... 17	

5.3 Downsizing Ratio (DR) .. 20	

5.4 Replay Throughput vs. Defects Occurrence .. 22	

5.5 Investigating the Determining Causes of Defects: Case Study 24	

Chapter 6 Conclusions and Future Works .. 26	

References ... 28	

 iv

List of Figures

Figure 1: Captured traces format ... 3	

Figure 2: Stability Testing Architecture and Test-bed ... 4	

Figure 3: Traces Collection and Device Testing Flowchart .. 5	

Figure 4: General Solution Approach .. 10	

Figure 5: Sample recorded logs ... 11	

Figure 6: Linear Downsizing Flowchart and pseudocode ... 13	

Figure 7: Binary downsizing algorithm illustration and pseudocode 14	

Figure 8: Configuration of the CheckDevice ... 17	

Figure 9: Overview of DUT defects .. 18	

Figure 10: Defects distribution .. 19	

Figure 11: BD and LD Illustrations ... 21	

Figure 12: Two methods of DR evaluation .. 21	

Figure 13: Comparison of two downsizing algorithms DR ... 22	

Figure 14: Downsizing algorithms: iterations and time ... 22	

Figure 15: Replay throughput and Defects occurrence .. 23	

Figure 16: Log messages from a DUT running an open-source firmware 25	

Figure 17: DUTo web interface messages ... 25	

 v

List of Tables

Table 1: Notations Description .. 7	

Table 2: Sample packet traces selection .. 15	

Table 3: Downsized traces ... 18	

Table 4: Replay throughput and DUT failure .. 23	

 1

Chapter 1 Introduction

Networking devices are critical tools as they enable and support information

sharing between multiple systems. Testing is one of the methods used to discover

product defects in the early stage of development, and aims at reducing the number of

defects found by customers after sale [1]. Even though they undergo and pass a series

of tests during their development, networking devices still reveal customers found

defects when they are put under real-world conditions. This could be explained by the

fact that laboratory testing often uses artificial traces which have less realistic

properties, diversity and complexity in terms of applications and protocols [2]. For

instance applications such as peer-to-peer (P2P), video streaming services, on-line

games, etc. often have proprietary protocols, which are hard to model by generated

traffic.

Replay techniques fundamentally aim at reproducing and debugging the real-

world defects of devices in a controlled environment. In order to improve their

accuracy and efficiency, networking devices ought to be tested using real traffic rather

than artificial one because there is a higher chance to trigger more device bugs or

defects that would not be easily discovered when using artificial traffic.

The major limitations of real traffic replay are twofold: high volume of captured

traces and time consumption [3]. For example, during the peak hour, the captured

network traffic volume at National Chiao Tung University’s Betasite [1] could reach

60 gigabytes (GB) in 30 minutes and even during the regular hours around midnight,

the traffic volume would still reach at least 20GB every 30 minutes. Note that

replaying several hundreds of gigabytes could take up to 120 hours. Moreover,

reproducing a defect triggered by high volume of traffic is time-consuming. Thus, for

more efficiency in the testing of networking devices, the downsizing of packet traces

turns out to be a very crucial and imperative operation.

However it is not trivial to reduce the size of traces with high volume while

maintaining authentic and reliable information capable of reproducing the very same

defects triggered by the raw traces. In fact defects-driven traces downsizing is

challenging since the downsized traces should be representative of the original entire

traces. In addition downsized traces should be able to ensure defect reproduction,

 2

reduce testing time and make device testing more accurate and efficient.

There has been some works on network traffic data reduction or compression.

Some traces reduction approaches were based on the concepts of entropy and aimed at

reducing traces [3,4] with the objective of improving traffic trace analysis by

removing data redundancy in a large trace especially at packet-level. While those two

works focused on traffic data reduction, [5-8] emphasized instead on the compression

of packet headers. Their goal is to apply the trace compression technique to online

packet headers, allowing communication over low bandwidth channels. The purpose

of these works is to reduce traces collection storage. While these works help in

reducing the volume of network traffic traces, it is important to note that none of them

perform a defect-driven traces downsizing.

In our defect-driven traces downsizing approach, we would differentiate the

defects that occur with different types of devices. The downsized triggering traces

would be evaluated by measuring the downsizing ratio (DR). Variations of DR with

respect to different replay throughputs will be highlighted since the Internet

throughput varies as well on the real-world environment. The possible causes of the

networking devices failure should be addressed by doing a forensic investigation on

the downsized traces.

We proceed by first identifying among the raw large traces the ones that

trigger devices defects. The testing technique we are using is based on that of In-Lab

Real Testing (ILRT) [15] where the devices under test defects are constantly

monitored during the replay testing. Once a defect is triggered, the identified traces

are downsized using a Linear Downsizing algorithm or a Binary Downsizing

algorithm. Linear downsizing algorithm is done through incremental rollback and

replay technique. Binary Downsizing is based on binary search algorithm [18], and is

used in complement with linear downsizing. Our final step consists on splitting and

classifying traces according to the defects triggered.

The remainder of this paper is structured as follows. Chapter 2 presents the

background and related works. Chapter 3 describes some terminologies and discusses

the problem statements. Chapter 4 describes the design and algorithm of our proposed

solution. The experimental results of our works are studied and evaluated in Chapter

5. Finally, in Chapter 6 we draw some conclusions based on our findings and discuss

the future works.

 3

Chapter 2 Background
This chapter underlines the issues of traffic capture and replay, as well as an

overview of stability testing; finally it discusses the related works.

2.1 Issues of Traffic Capture and Replay

Testing networking devices with real-world network traffic requires the

capture of traces in a more controlled environment. The quality of the captured traces

is a determining factor of the accuracy and the efficiency of tests performed on

products or experimental studies [14]. There exists an environment within National

Chiao Tung University campus where the network traffic produced by volunteers is

captured. This environment called Beta Site [1] pursues the goal of evaluating

products performance with real traffic. Beta Site provides an incentive for students to

be volunteers and the daily-generated traffic is captured in files with PCAP format.

PCAP stands for "Packet Capture" and is a common packet capture data format. In

order to provide a database of traffic traces that can be used for products testing or

evaluation, the captured traces in the format of PCAP files are stored in a Pcap

Library [13]. However storing multiple PCAP files has a drawback due to the high

volume of the traces. In addition replaying large volume of packet traces for products

events or defects reproduction is highly time-consuming as mentioned earlier in the

introductory chapter. For event analysis, the smaller the volume of traffic replayed to

reproduce events, the easier and faster their analysis. [14]. Figure 1 displays a list of

captured traces in the format of PCAP files. The nomenclature of the PCAP files is

based on the date and the time of capture as follows: ddmmyy-hhmn.pcap. This

procedure of assigning names to PCAP files helps in distinguishing traces.

Figure 1: Captured traces format

 4

2.2 Overview of Stability Testing

Networking devices even after they pass the lab testing still face defects

challenges in the real-world environment. The defects found after the release of the

devices to the market are called customer found defects (CFD). ILRT [15] undertakes

testing on Small Office Home Office (SOHO) devices at the Network Benchmarking

Lab (NBL) [17]. SOHO routers are stateful devices running NAT functions. The

replay tool used to test SOHO routers is a modified version of Tcpreplay [16] with the

NAT functions in such a way that it can handle the address and port translation within

the device. Stability testing consists of replaying network traffic to devices under test

(DUT) while monitoring them with a tool called CheckDevice. The CheckDevice is a

probing tool that continuously sends ARP, HTTP and ICMP queries to DUT. During

the testing of networking devices, real traffic traces are replayed to multiple DUTs.

Each DUT is connected to a replayer (a server that hosts NATReplay and send the

traces to the DUT) and a CheckDevice.

Figure 2: Stability Testing Architecture and Test-bed

Note that the replayed traces are stored in a raw format, meaning that they are

not processed or modified. Figure 2 displays the stability testing architecture used by

ILRT. The testing environment involves NCTU Beta Site where the network traffic is

captured and NBL PCAP Library where the captured traces are stored. Figure 3

portrays the traces collection and the networking devices testing procedure. First, the

traces used for replay are captured from the NCTU Beta Site. The traces are then

replayed to multiple DUTs. In Figure 3, n represents the number of failed devices.

 5

Thus, whenever two or more DUTs hang, the replayed traffic traces are marked and

collected to a repository. These traces called bug traces are used to reproduce a

detected defect or a malfunction of devices.

Figure 3: Traces Collection and Device Testing Flowchart

2.3 Related Works

There exist several studies related to network traffic traces reduction. They

aim at different objectives and their approaches are diverse.

 The main objective of [3] consists of improving data collection and analysis on one

hand and reducing original data set with an acceptable loss of properties on the other.

It proposes an off-line Entropy-based approach for reducing large data sets, applied to

Counter-Strike traffic traces. It aims at producing network traffic statistics by

completely characterizing and modeling network traffic without losing sensible

information.

The proposed off-line technique to reduce traffic trace data sets presents the

advantage of correctly capturing mean, standard deviation, and marginal distributions

of network traffic traces, without compromising time properties.

The study in [5] suggests a compression algorithm that removes this redundancy in

order to produce substantially smaller traces. A method to compress and anonymize

packet traces [8] intends to resolve two main problems in packet trace collection and

analysis: volume of data and privacy issues. It is based on the fact that there are many

fields in the IP, UDP, and TCP headers that do not change over the lifetime of a

connection when observed at a single location.

 6

It is obvious that these described works all share the objective of either

reducing or compressing traces in order to either improve data storage or reduce the

complexity of traffic traces analysis. However, these works do not meet one of the

requirements of our study; their traces reduction is not defect-driven as we are

proposing. The purpose of our work first consists of identifying traces that triggers

defects of networking devices, then downsizing the traces in order to reduce their

volume. Therefore it is a defect-driven downsizing of defectuous traffic traces.

 7

Chapter 3 Traces Downsizing
This chapter highlights the definitions of terminologies specific to our work and

discusses the problem and issues that need to be addressed.

3.1 Terminologies Definitions

Terminologies that are specific to our work will be defined according to the

context in which they will be used. Triggering traces identification is referred to as

the process of locating in a bunch of network traffic the traces that are responsible or

causing the defects of the networking devices. Triggering traces identification often

results in a set of network traffic that is high in volume. Traces downsizing is a

process that consists of reducing the volume of the traces while keeping the

information or characteristics capable of inducing the same defects as the raw traces.

One of the objectives of our work is to categorize the traces based on the defects they

trigger. In order to achieve this, we perform traces splitting by dividing a single trace

into multiple traces based on the triggered defects. Table 1 is a description of a list of

notations that are further used in our work. P refers to packet traces in PCAP format

and L represents the logs that are triggered by the DUTs. Pj and Li are used to refer to

the j-th packet trace and the i-th log respectively. 𝑃!
!! represents packet trace j that

have triggered a device defects Li, but that are not yet downsized. 𝐷𝑃!
!! is the

downsized version of 𝑃!
!!.

Table 1: Notations Description

Notations Description

P Packet trace in a pcap format.

L Log or defect produced by a device under test.

Pj j-th packet trace.

Li i-th log.

𝑃!
!! j-th packet trace that triggers the i-th log

𝐷𝑃!
!! Downsized j-th packet trace that triggers the i-th log

 8

3.2 Problem Statement

Considering the defects in the form of logs produced by networking devices,

efficient investigation and testing of these devices require the identification of the

suspicious traces. However, as stated in chapter 1 the triggering traces are

voluminous, making their analysis or defects reproduction through replay more

complex because of the high demand in time and resources.

Therefore, given a set of packet traces and a set of the defects in the form of logs of

the networking device, we aim at attaining the following objectives: (1) for each log,

identify the triggering traffic traces and (2) downsize the triggering traffic traces in

the way that preserve the same characteristics necessary to reproduce the defects.

Hence, the problem could be defined as follows.

Given

(1) a set of packet traces {Pj, j=1…m} and

(2) a set of defectuous logs {Li, i=1…n} produced by networking devices,

suppose

(1) Li is the i-th log triggered by a device,

(2) Pj is the j-th packet traces,

(3) 𝑃!
!! is the j-th packet trace that triggers the i-th log

(4) 𝐷𝑃!
!! is the downsized trace from 𝑃!

!!,

the objectives are

(1) for each log Li triggered by a device, identify 𝑃!
!! such that 𝑃!

!! triggers Li ,

(2) for each 𝑃!
!!, find 𝐷𝑃!

!! such that 𝐷𝑃!
!! triggers 𝐿!.

3.3 Issues to Be Addressed

Defects distribution

The first issue regarding our work consists of determining the defects distribution.

This issue aims at differentiating the defects that are produced by networking devices

and by analyzing their recurrence. In other terms, we will look at the diversity of

defects and the number of times they are produced by networking devices. Defects

distribution is justified, as it is a means that could reveal the common defects that are

produced by networking devices.

Downsizing ratio

 9

The downsizing ratio (DR) is the relationship between the size of reduced traces and

that of the raw traces. It is an expression of the number of times by which raw traces

have been reduced. Since the main objective of our work consists of reducing packet

traces, to achieve an optimal downsizing, we introduce the DR as a metric to evaluate

the downsizing process.

Different networking devices differ in the way they are implemented. They might not

function the same way under the same conditions, thus would not produce the same

defects under the same conditions of usage. It is therefore important to measure the

variation of the DR with respect to DUTs from different vendors.

Replay throughput vs. defects occurrence

This issue aims at determining the different behavior of DUTs under different replay

throughput. Device under test when used in real-world conditions encounter high and

low bandwidth conditions. In the same way, we ought to test the devices using

different throughputs and observe their performance with low and high replay

throughputs.

Factors determining causes of devices defects

Finally, a very important aspect worth investigating is the analysis of the causes of

devices defects. Packet traces characteristics or properties [9,10] would trigger

defective behavior of the networking devices. For instance traffic such as P2P that

generates multiple concurrent connections often cause a burden on the devices in term

of resources allocation thus affecting their stability. We would look at the behavior of

the networking devices as they are handling the real-world traffic traces. Since some

networking devices are black boxes, meaning that they do not disclose any

information about the causes of their failure, we would perform some simulation on

devices with open-source firmware in order to investigate the causes of defects.

 10

Chapter 4 Packet Traces Identification and Downsizing

This chapter discusses the solution approach necessary for packet traces

identification, downsizing and splitting. In addition, it discusses the forensic analysis

of the downsized traces in order to find the possible causes of device failure.

4.1 Solution Approach Overall Architecture

As illustrated in Figure 4, the design of our solution is composed of two major

components. The first component is the traces identification. During the testing of

networking device using replay technique, the traces that trigger the DUT failure are

marked and collected. The second component is the traces downsizing where two

downsizing algorithms alternatives, namely Linear Downsizing (LD) algorithm and

Binary Downsizing (BD) algorithm are proposed. The purpose of traces downsizing is

to reduce original traces to smaller traces that are still able to trigger the same failures

as the original ones. After the packet traces downsizing, a repository of downsized

defect traces is collected and validated.

Figure 4: General Solution Approach

 After these steps are completed, we perform an analysis of the downsized traces. This

is an investigation process in order to depict the properties in the traces that led to the

failure of the networking devices.

 11

4.2 Traces Identification

Traces identification is the discovery among multiple replayed traces those

triggering defects on the device under test. The goal of traces identification is to

obtain Pj
Li from P. Traces identification is useful because it is the first step towards

the downsizing of packet traces as it extracts the suspicious traces Pj
Li from raw

network traffic. Traces identification process works by replaying network traffic to a

DUT. As the traffic is replayed, the status of the DUT is monitored and the failures

that it triggers are recorded. Queries of type ICMP, ARP and HTTP are regularly sent

to probe the DUT status. When the DUT replies to each of these individual queries

within the response time constraint and continuously handles incoming and outgoing

packets, it is considered to be working properly. Otherwise it is regarded as failed or

crashed. In fact the proper reception of requests and transmission of responses require

a good physical connection to the device as well as a properly configured and

operating TCP/IP stack.

In case of the device failure, we record the replayed traces information

through the monitoring system and the identified traces go through the downsizing

process.

Figure 5: Sample recorded logs

 12

Figure 5 is an illustration of the recorded logs during the failure of a device

under test. The recorded information includes the type of defect that occurred, the

information about the traces that are involved as well as the defect occurrence time. It

also displays details about the traces number of connections, the total size of replayed

traffic. This information is used to find and extract the suspicious traces from the raw

traces.

4.3 Traces Downsizing Procedures

As stated in the previous chapters, the traces downsizing purpose is to have traces

with reduced size that can trigger the defect in a reduce amount of time. In fact it

consists of obtaining 𝐷𝑃!
!! from Pj

Li.

Linear downsizing algorithm

There are two concepts involved in the Linear downsizing algorithm: reverse order

and rollback-and-replay. In the process of traces downsizing, when a defect is

triggered after the replay of traces, Pj
Li is replayed in a reverse and decreasing order. It

means that the replay testing starts by replaying the last replayed traces towards the

first ones. The second concept involved in LD is the rollback-and-replay, which

consists of including an amount of traces each time the replayed traces failed to

trigger a defect. Figure 6 shows a flowchart and pseudocode that describes the Linear

Downsizing process. There are three steps involved in this flowchart namely rollback,

replay and recording. Rollback consists of replaying some amount of the traces that

were replayed just before the defect occurred. The rollback size is determined

according to the target downsized trace size. When a defect Li is triggered during the

replaying test, the first step towards downsizing is rollback. If these packets do not

trigger the defect, we include the adjacent packet traces and redo the replay testing.

We keep incrementing packet traces until the defect is triggered. When the defect Li is

triggered, we complete the downsizing process and record these traces as the

downsized traces 𝐷𝑃!
!!.

 13

Figure 6: Linear Downsizing Flowchart and pseudocode

The linear downsizing algorithm is likely to be advantageous if the packet traces that

triggered the defect belong to last replayed traces during the test. However when the

triggering traces do not belong to the traces replayed at the beginning of the test, an

alternative, which is the binary downsizing algorithm, is proposed.

Binary downsizing algorithm

Binary downsizing algorithm is based on binary search algorithm and consists of

locating the traces that trigger a device defect by recursively splitting 𝑃!
!! in halves

and testing the device with each half until the defect is reproduced.

Figure 7 is an illustration and pseudocode of the binary downsizing algorithm.

Considering 𝑃!
!! as traces that triggered a device defect, we will describe how to

downsize 𝑃!
!! using the binary downsizing algorithm in order to obtain 𝐷𝑃!

!!.

First of all, we split P in half and generate two sets of traces PR and PL with the same

size. PR and PL respectively represent the first and second half of P. After the

splitting, PR is first replayed to the DUT because it is more likely that the traces that

trigger the defect belong to the last replayed traces. If PR triggers the defect of the

DUT we further split PR into two halves where PRR and PRL are respectively he first

and second half. As in the previous case, we replay PRR to the DUT.

Let
𝑃!
!! = traces Pj that triggered a

defect i of a DUT
Δ𝑃!

!! = incremental trace

|RT| = |𝑃!
!!|% |Δ𝑃!

!!| residual trace
size
𝐷𝑃!

!! = downsized trace
Replay order = reverse order

set 𝐷𝑃!

!! = null
replay RT to DUT
 if defect is triggered
 𝐷𝑃!

!! = RT
 else
 while (𝐷𝑃!

!! not equal 𝑃!
!!)

 if defect is not triggered
 append Δ𝑃!

!! to traces and replay
 else
 𝐷𝑃!

!! = replayed traces

 return 𝐷𝑃!
!!

 14

(a) Binary downsizing illustration

(b) Binary downsizing pseudocode

Figure 7: Binary downsizing algorithm illustration and pseudocode

If the replay of PRR does not trigger the device defect, it means that PRR alone cannot

trigger the device defect. Therefore, we need to include additional traces to reproduce

the defect and we include the second half of PRL, which is PRLR. In this case the replay

input is the addition of PRLR and PRR.

In the binary downsizing process, the half-splitting of traces and their replay are

continuously done until reduced traces that can trigger the device defect are obtained.

Let
𝑃!
!! = traces that triggered a defect of a DUT
ΔT = minimum desired DT
Split 𝑃!

!! in two halves: right_node and left_node
While traces to replay > ΔT
 Replay right_node to DUT
 if defect is triggered
 split traces and replay right_node
 𝐷𝑃!

!! = replayed traces

 return 𝐷𝑃!
!!

 else
 append previous node right_node

 15

Chapter 5 Experiments Studies and Results Analysis

In this chapter, the experiments conducted to identify the traces that trigger the

defects of networking devices are discussed. The outcome of the two downsizing

algorithms is compared and a case about a networking device behavior during a

hanging defect is studied.

5.1 Traces Selection and Experimental Testbed

Sample traces

To conduct the experiments, we used the network traffic captured from NCTU Beta

Site. As mentioned earlier in section 2.2, ILRT testing is performed using real traffic

captured by NCTU Beta Site and the recording of suspicious traces is done whenever

at least two different types of DUTs failed the test. The recorded traces are stored in a

repository of bug traces. For our experiment, we selected from the repository sample

traces based on their size and the number of failed devices. Our selected sample is a

set of 34 PCAP files with a total size of 1.2 TB and causing the failure of 4 DUTs.

Table 2 lists a portion of the selected and the 4 commercial DUTs that are used. For

the following downsizing process we labeled these DUTs as DUT1, DUT2, DUT3 and

DUT4.

Table 2: Sample packet traces selection

No File Name Size DUTs used
1 100614-1710.pcap 48 GB

DUT1
DUT2
DUT3
DUT4

2 100614-1810.pcap 52 GB
3 100614-1840.pcap 63 GB
4 100614-1910.pcap 62 GB
5 100614-2010.pcap 55 GB
6 100614-2040.pcap 60 GB
7 100614-2110.pcap 50 GB
8 100614-2140.pcap 56 GB

… … …
Total size of Traces 1.2 TB

Experimental testbed

The experimental testbed used is based upon that of ILRT mentioned in Figure

2 in Chapter 2 and mainly comprises a replayer, a DUT and a monitoring tool called

CheckDevice.

 16

The replayer replays the captured traffic traces to the DUT. The CheckDevice

monitors both the replayer and the DUT. Throughout our experiments the sample

traces are replayed using a replay throughput of 50 mbps, as it is the case of ILRT

environment. However, we use a replay throughput of 100 mbps in our experiments to

find the behavior of the DUT under higher throughput.

Overview of the CheckDevice

The CheckDevice is a tool developed by NBL and is used in networking devices

testing. It has two main functions. One is that it is used to configure the replayer and

the DUT parameters, and the other is that it monitors the status of the replayer and

DUT by regularly sending queries to it.

As shown on Figure 8, for the configuration of replay parameters, the CheckDevice is

used to set the DUT and replayer IP address, MAC address and the DUT LAN/WAN

addresses. In addition it specifies the PCAP path, which is the directory of the traces

to be replayed, sets the replay throughput and enables other parameters configuration

on the replayer side. The CheckDevice also sets the check interval time, which is the

DUT timeout in milliseconds (ms), the execution time and the hanging time tolerance.

The hanging time tolerance is the time allowed to the DUT for recovery before

stopping the replay testing. For our test, we re-use the settings of ILRT, meaning that

the timeout is set to 10,000 ms, the check interval to 2,000 ms and the hanging time

tolerance to 3600 s.

The second function of the CheckDevice consists of monitoring the DUT by

simultaneously sending three requests namely ARP, ICMP and HTTP requests to the

DUT in order to probe its status. The DUT would be regarded as normal if it can reply

to all requests within the predefined timeout time; otherwise the DUT is more likely

to be experiencing defects.

 17

Figure 8: Configuration of the CheckDevice

5.2 Defects Distribution

As shown in Figure 9, there can be distinguished three types of queries: ARP request,

ICMP request and HTTP request. Based on the different combination of responses

from the DUT, we differentiated 7 different types of device defects.

We classified these defects into 3 groups: single-defect, combined-defect and

hanging. A single-defect occurs when the DUT is unable to respond to 1 out of the 3

requests; in the combined defect situation the DUT is unable to respond to 2 out of 3

request, and finally, a hanging occurs when all the 3 requests are not replied to. The

single-defect group is composed of an ARP, ICMP and HTTP defect corresponding to

a failure of the DUT to respond to an ARP, ICMP or HTTP request respectively. The

combined-defect encompasses ARP/ICMP, ARP/HTTP and ICMP/HTTP defects

respectively and a crash happens when the DUT fails to respond to any request sent

by the CheckDevice. These defects are illustrated in Figure 9 below.

 18

Figure 9: Overview of DUT defects

Table 3 displays a list of downsized traces that triggered defects for each DUT that is

used in our experiments. For each trace that triggered a defect of a DUT, we checked

with the other three DUTs to see whether the same trace are able to trigger the same

defect. In this table, “✔” suggests that the same defect is triggered and “✖” means that

the replayed trace did not triggered a defect on other DUTs. The observation that can

be drawn indicates that some downsized traces could trigger the same defects on

multiple DUTs. In fact downsized traces also trigger defects on multiple DUTs as it is

the case for the original “bug traces”.

Table 3: Downsized traces

DUT /
DEFECT

DUT1 (✔) DUT2 (✔) DUT3 (✔) DUT4 (✔)

DUT2 DUT3 DUT4 DUT1 DUT3 DUT4 DUT1 DUT2 DUT4 DUT1 DUT2 DUT3

Hanging 0.96 GB 326.35 GB 27.35 GB 1200 GB

✖ ✖ ✖ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ ✔

ICMP 0.96 GB 7.7 GB 15.32 GB 24.1 GB

✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔

HTTP 0.96 GB 0.63 GB 10.38 GB 20.96 GB.

✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔

ICMP/HTTP 0.96 GB 8.1 GB 16.07 GB 27 GB.

✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔

DUT

CheckDevice

ARP Request

ICMP Request

HTTP Request

DUT

CheckDevice

ARP Response

ICMP Response

HTTP Response

DUT

CheckDevice

ICMP Response

HTTP Response

DUT

CheckDevice

ARP Response

HTTP Response

ARP Response

ICMP Response

DUT

CheckDevice

ARP Response

ICMP Response
HTTP Response

DUT

CheckDevice

DUT

CheckDevice

HTTP Response

DUT

CheckDevice

ARP Response

ARP Response

ICMP Response

DUT

CheckDevice

ICMP Response
HTTP Response

ICMP Response

HTTP Response

ARP Response

HTTP Response

ICMP Response

ARP Response

ARP defect

ICMP defect

HTTP defect

Hanging / Crash

ICMP/ARP defect

ICMP/HTTP defect

ARP/HTTP defect

No defect found

Requests by CheckDevice

#####

#####

#####

#####

#####

#####

#####

#####

#####

#####

#####

#####

Failed Response

Successful Response

CheckDevice Request

 19

DUT /

DEFECT
DUT1 (✔) DUT2 (✔) DUT3 (✔) DUT4 (✔)

DUT2 DUT3 DUT4 DUT1 DUT3 DUT4 DUT1 DUT2 DUT4 DUT1 DUT2 DUT3

Hanging 8.47 GB 128 GB 32 GB

✖ ✖ ✖ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ ✔

ICMP 1.66 GB 12.7 GB 11.32 GB 64.7 GB

✖ ✖ ✖ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔

HTTP 0.96 GB 2.72 GB 6.02 GB 40.8 GB.

✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔

ICMP/HTTP 2.3 GB 10.4 GB 11.9 GB 120.96 GB.

✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔

In Figure 10 we evaluated the overall defects distribution from the experiments using

4 different DUTs.

Figure 10: Defects distribution

According to the overall defect distribution, about 70% of defects are single-defect,

23% are combined-defects and 7% are hanging or crashes. In other terms, DUTs are 3

times more likely to experience a single defect than a combined-defect. In addition, a

DUT crashes 10 times less frequently than it experiences single defects. The reason

could be explained by the fact that the crash occurrence is tightly related to the

combination of single-defects. We also observe that HTTP, ICMP defects represent

more than half（60%）of the total defects experienced by DUTs. This situation

occurs because ICMP and HTTP requests are more resource-intensive than ARP

10%

31%
28%

17%

3% 3%
7%

0%

5%

10%

15%

20%

25%

30%

35%

O
cc
ur
re
nc
e	

Type of Defect

Overall defects distribution

 20

requests, giving more overhead to DUT. In addition, networking devices sometimes

do not reply to those requests in order to preserve resources in order to handle

incoming packets.

5.3 Downsizing Ratio (DR)

We introduced a metric to evaluate the effect of the downsizing algorithms. As stated

in section 3.3 the downsizing ratio is the relationship in percentage between the size

of the reduced traces and that of the original one. We proposed two formulas to

evaluate the DR of the two downsizing algorithms. In the first formula, DR1 compares

each single 𝐷𝑃!
!! with respect to the corresponding 𝑃!

!!. In this case, each defect’s

DR is the size of the downsized trace over the size of the trace that triggered the

defect. DR1 is expressed as follows:

𝐷𝑅! = 1 −

𝐷𝑃𝑗
𝐿𝑖

!!
!"

!
!,!!!

𝑛

In the second formula, DR2 compares each single 𝐷𝑃!
!! with respect to the

corresponding P instead. In this case each defect’s DR is the size of the downsized

trace over the size of the original trace used for the testing. DR2 is expressed as

follows:

𝐷𝑅! = 1−
𝐷𝑃!

!!!
!,!!!

𝑃

Linear downsizing vs. binary downsizing

Figure 11 is an illustration about how LD and BD actually work. In the illustration, P

has the size of 1.2 TB, the size of 𝑃!
!! is 8047 MB and the illustrated defect is a

hanging of a device. “✔” means that the traces triggered a defect while “✖” suggests

that the traces did not. In the case of BD as shown in Figure 11(a), traces are split into

halves and replayed for testing while for LD Figure 11(b), they are incremented and

replayed until the defect is reproduced. The incremental size is set to 500 MB for the

LD algorithm. For these illustration 𝐷𝑃!
!! is 1572 MB and 1547 MB for BD and LD

respectively.

 21

Figure 11: BD and LD Illustrations

We evaluate the overall DR using the two formulas DR1 and DR2, previously

introduced and show the result on Figure 12. Using DR1 we achieve a DR of

respectively 74% and 78% for BD and LD. On the other hand, using DR2 results in

80% and 83% for BD and LD respectively. In comparing, DR1 and DR2 we observe

that, DR2 evaluation results in a DR that is slightly higher than that of DR1. This can

be explained by the fact that with DR2 the size of the downsized trace is compared

against that of the original and entire trace, which is usually high in volume (1.2 TB

in our case). Thus the DR2 somehow depends on the size of the original trace,

meaning that the DR might get higher with a higher volume of raw traces.

In Figure 13, we actually compare the two downsizing algorithms in terms of their

DRs. We observe that BD and LD respectively achieve DRs 77% and 80%. So, LD

has a DR that is slightly higher than that of BD, but in general BD would require

fewer iterations than LD.

Figure 12: Two methods of DR evaluation

74%	
 78%	
 80% 83%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BD	
 LD	

D
ow

ns
iz

in
g

R
at

io

Downsizng Algorithm

DR1

DR2

 22

Figure 13: Comparison of two downsizing algorithms DR

Figure 14 presents a comparison of both LD and BD based on the downsizing process

number of iterations and time. LD is used as a baseline and is compared to BD. The

results show that BD is about 3 times faster than the BD in terms of time of

downsizing process. In addition, LD requires 5 times more iterations than BD. Thus

BD turns to be faster than LD because it takes advantage of the binary search

algorithm.

Figure 14: Downsizing algorithms: iterations and time

5.4 Replay Throughput vs. Defects Occurrence

Throughput is a key element in testing networking devices. In the real-life

environment, the Internet throughput fluctuates and networking devices should be

able to cope with these variations. Therefore we conducted an experiment where

DUTs are tested with a throughput that is two times higher than that used in ILRT

testing environment. The reason is to find out how replay throughput affects the

stability of the DUTs. In Table 4 “✔” means a crash of the DUT while “✖” represents

a DUT that is properly functioning. We can observe that there are 3 out 4 DUTs that

77% 80%

0%

20%

40%

60%

80%

100%

BD	
 LD	

D
ow

ns
iz
in
g	

Ra
ti
o	

Downsizing Algorithm

32%	

20%	

100%	
 100%	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

Time	
 Iteration	

BD	

LD	

 23

crashed under a replay throughput of 100 mbps as opposed to 2 in the case of 50

mbps. It is also observed through the replay testing that DUTs do not product defects

under a replay throughput that is below 50 mbps.

Table 4: Replay throughput and DUT failure

DUT/Replay Throughput

50 Mbps 100 Mbps

DUT1 ✔ ✔
DUT2 ✔ ✔
DUT3 ✖ ✔
DUT4 ✖ ✖

In more details in Figure 15 we note that there is a higher number of defects when

devices are tested with a higher replay throughput. Our results show that networking

devices produce 1.5 – 2.8 times more defects in higher throughput (100 mbps) than in

lower throughput environment (50mbps). In addition, tested with a replay throughput

above 100 mbps, most of the DUTs experience a hanging. In some particular cases,

the DUT reduces its throughput to less than 100 mbps to avoid hanging. This could be

explained based on the fact that with a higher replay throughput, the number of

number of requests per time unit to the DUT is much more likely to increase as well.

A high number of requests eventually overload the DUT and results in more defects if

the DUT cannot handle all the requests.

Figure 15: Replay throughput and Defects occurrence

0%	

5%	

10%	

15%	

20%	

25%	

D
ef
ec
ts
	
 (%

)	

Defect	
 Type	

50	
 mbps	

100	
 mbps	

 24

5.5 Investigating the Determining Causes of Defects: Case Study

The DUT that are used in our experiments are SOHO routers and behave like

black boxes because they do not display significant information about their failure.

Therefore it makes it challenging to discover the causes of their defects. As said in the

previous section, replay throughput could certainly explain some defects as their

number increases with higher throughput. But in order to find more insight about the

causes of the defects, we need to obtain some information about the logging system

within the router. So, we conducted a new experiment where we installed an open-

source third-party firmware [19] on DUT4, which is the only DUT that supports and is

compatible with the open-source firmware. We labeled it DUTo. For the replay

testing of DUTo we used the same packet traces, the same throughput with the same

environment as the one that was used to test other DUTs for consistency. We are able

to monitor more closely DUTo through its terminal. Figure 16 displays the log

messages produced as it crashes. We note that the message displayed is

“nf_conntrack: table full, dropping packet”. One of the important features built on top

of the Netfilter framework is connection tracking. Connection tracking allows the

kernel to keep track of all logical network connections or sessions, and thereby relate

all of the packets, which may make up that connection. NAT relies on this

information to translate all related packets in the same way [20]. In our case, the

message means that the NAT table is full as the device tries to build more connections

than it can handle. In Figure 17, we can observe from the web interface messages that

the DUTo is actually overwhelmed by the high number of active connections it needs

to handle. It has to handle 99% of the maximum number of active connections. This

overloads the device resulting in a high CPU usage (94%). All these reasons more

likely are the causes of the device crash and could also explain the failure with the

other DUT used in previous experiments.

 25

Figure 16: Log messages from a DUT running an open-source firmware

Figure 17: DUTo web interface messages

 26

Chapter 6 Conclusions and Future Works

Testing networking devices with real-world traffic is an alternative to testing

with artificial traffic given the realistic properties of real-world traffic. However, due

to the high volume of captured traces, it is necessary to downsize the packet traces for

more efficiency in the devices testing and their defect reproduction.

This work proposed a linear and a binary downsizing algorithm to downsize

packet traces triggering the defects of networking devices. From the downsizing

experiments, we distinguished 7 different types of devices defects, which we

classified into single-defects, combined-defects and hanging. The observed defects

result from a failure of the DUTs to respond to the ARP, ICMP or HTTP queries sent

to probe their status. According to the results of our experiments, ICMP and HTTP

defects represent more than half of the total number of defects produced by the DUTs.

This might be explained by the overhead in terms of resources that these requests

have on the DUT. We also proposed two downsizing algorithms for packet traces

downsizing. The proposed downsizing algorithms achieved a downsizing ratio of 77%

and 80% using respectively BD and LD algorithms. The experiments results also

showed that BD is about 3 times faster than the BD in terms of time of downsizing

process, and LD requires 5 times more iterations than BD.

 In our study it is shown that the throughput at which the DUTs are tested

could affect the occurrence of defects. In fact the DUTs produced 1.5 – 2.8 times

more defects with higher replay throughput (100 mbps) than in lower replay

throughput (50mbps). Below a replay throughput of 50 mbps, we do not observe

devices defect. This could be explained by the fact that the number of requests per

time unit is more likely to increase with a higher replay throughput.

In investigating the cause of DUT’s defects, we observed that the connection-

tracking table of the DUT gets full during the device hanging. This suggests that the

size of the table could be associated with the device eventual failure because it is

shrunk as the device tries to build more connections or handle NAT translations. The

DUT, which can no longer process incoming requests, ends up overloaded and

eventually crashes.

In our work, we define the defects as the DUT’s incapacity to respond to probing

queries and handle them consequently.

 27

For future works, devices defect could be defined in a more comprehensive

way that will consist of monitoring the internal behavior of DUTs. Therefore it will be

necessary to introduce probing methods that will be able to disclose more detailed

information about the performance of the DUTs. Since the CheckDevice probing

technique consists of sending queries to the DUT, it could be limited in detecting the

status of the DUT daemons status. Therefore in order to detect more defects from the

DUT, the Simple Network Management Protocol (SNMP) could be used in addition

the CheckDevice. SNMP is a monitoring tool that monitors the conditions of network-

attached devices. However for SNMP to be used, the devices must support it. This

could eventually help discover even more defects that would not be revealed through

probing queries, and improve the efficiency and accuracy networking devices testing.

 28

References
[1] Y. D. Lin, I. W. Chen, P. C. Lin, C. S. Chen, C.H. Hsu, “On Campus Beta Site:

Architecture Designs, Operational Experience, and Top Product Defects,” IEEE

Communication Magazine, 2010

[2] M. K. Daskalantonakis, “A Practical View of Software Management and

Implementation Experiences within Motorola,” IEEE Trans. Software Eng., vol. 18,

no. 11, 1992, pp. 998–1009.

[3] Alessio Botta, Alberto Dainotti, Antonio Pescape, and Giorgio Ventre “Reducing

Network Traffic Data Sets” ICC 2007 proceeding.

[4] Antonio Pescape “Entropy-Based Reduction of Traffic Data”, IEEE

Communications Letters, Vol.11, No.2, February 2007.

[5] Y. Liu, D. Towsley, J. Weng, D. Goeckel, “An Information Theoretic Approach

to Network Trace Compression”, UM-CS-2005-003 TR, Jan 2005

[6] Y. Liu, D. Towsley, T. Ye, and J. Bolot, “An Information-theoretic Approach to

Network Monitoring and Measurement” IMC 2005

[7] G. Iannaccone, C. Diot, I. Graham, N. McKeown. “Monitoring very high speed

links,” Proceedings of ACM Internet Measurement Workshop, November 2001.

[8] M. Peuhkuri. “A method to compress and anonymize packet traces,” Proceedings of

ACM Internet Measurement Workshop, November 2001.

[9] Y. Liu, D. Towsley, T. Ye, and J. Bolot, “An Information-theoretic Approach to

Network Monitoring and Measurement,” IMC 2005

[10] K. C. Claffy, G. C. Polyzos, and H. W. Braun, “Applications of Sampling

Methodologies to Network Traffic Characterization,” ACM SIGCOMM 1993

[11] Szabó, G., Szabó, I., Orincsay, D “Accurate Traffic Classification,” IEEE

WOWMOM, Finnland, June 2007

[12] Karagiannis, T., Papagiannaki, K., Faloutsos, M “BLINC: Multilevel Traffic

Classification in the Dark”, ACM SIGCOMM, Philadelphia, USA, August 2005

[13] NBL PCAPLib. [Online]. Available: http://security.nbl.org.tw/

[14] Y-D. Lin, T.-H. Cheng, P.-C. Lin, I.-W. Chen, and Y.-C. Lai,“Low-storage

capture and loss-recovery stateful replay of real flows,” IEEE Communications

Magazine, to appear, available upon request.

[15] Ying-Dar Lin, Jui-Tsun Hung, Ren-Hung Hwang, Chun-Nan Lu “In-Lab Replay

Testing with A Case Study on SOHO Routers”

 29

[16] TCPReplay.[Online].Available: http://tcpreplay.synfin.net/

[17] Network Benchmarking Lab.[Online].Available: http://nbl.org.tw

[18] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms (2nd ed.)

MIT Press 2003

[19] DD-WRT.[Online].Available: http://www.dd-wrt.com/

[20] Netfilter.[Online].Available: http://www.netfilter.org

	

