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學生：鍾艾利       指導教授：林盈達  
 
 
 

國立交通大學電機資訊國際學程 
 
 

 
摘    要 

 
 

在將網路設備公開到市場上之前，測試是一種能夠保證產品品質與穩定性的方

法，而其中一種測試網路設備的方式是透過重播人工或是真實世界的網路流量

來進行測試，相較於使用人工網路流量，透過真實流量的重播測試可以呈現出

更多真實的特性。然而大量的真實網路流量及長時間的重播測試，為了減少重

播時間及能有效率的重現待測產品的錯誤，如何縮減產生網路產品錯誤的流量

是必須面對的問題。我們提出了透過線性搜尋與二元搜尋演算法的線性縮減與

二元縮減演算法來進行流量長度的縮減。為了評估我們的方法對流量縮減的有

效性，我們使用縮減比率來做為評估單位。從錯誤的分佈評估來看，在所有的

錯誤中，ICMP 和 HTTP 造成的錯誤占了所有網路設備錯誤的 60%，另外，我

們提出的線性縮減與二元縮減分別對於流量達到了 77%與 80%的縮減比率，根

據結果來看，測試的時間也依照同樣的比例減少，證明我們的縮減方法可以對

於網路產品測試的效率有大幅度的改善。 

 

關鍵字：網絡設備，缺陷，網路流量，縮減 
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Abstract  
 

Testing networking devices before releasing them to the market is a way of 

ensuring their quality and robustness. Replay technique with artificial or real-world 

traffic is a method used to test networking devices. Using real-world traffic is more 

preferable as it displays more realistic properties in comparison with artificial traffic. 

The challenges with testing products with real-world traffic are mainly the high 

volume of the captured traces and the prolonged time required for the replay testing. 

In order to efficiently reproduce the defects produced by networking devices and 

reduce the replay time, it is necessary to reduce the size of the traces that trigger the 

defect of networking devices. In order to perform a defect-based traces downsizing, 

we propose a binary and a linear downsizing algorithms respectively based on binary 

and linear search algorithms. A metric called downsizing ratio is defined is order to 

evaluate the efficiency of the traces downsizing. The evaluation of the defects 

distribution show that ICMP and HTTP defects represent around 60% of the total 

number of defects experienced by networking devices. In addition, the binary 

downsizing and linear downsizing achieve a downsizing ratio of 77% and 80% 

respectively. As a result, the time needed to perform testing is reduced by the same 

amount. This is significant since the downsizing techniques used can improve the 

testing of networking devices.  

 

Keywords: networking devices, defects, packet traces, downsizing  
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Chapter 1 Introduction  
 

Networking devices are critical tools as they enable and support information 

sharing between multiple systems. Testing is one of the methods used to discover 

product defects in the early stage of development, and aims at reducing the number of 

defects found by customers after sale [1]. Even though they undergo and pass a series 

of tests during their development, networking devices still reveal customers found 

defects when they are put under real-world conditions. This could be explained by the 

fact that laboratory testing often uses artificial traces which have less realistic 

properties, diversity and complexity in terms of applications and protocols [2]. For 

instance applications such as peer-to-peer (P2P), video streaming services, on-line 

games, etc. often have proprietary protocols, which are hard to model by generated 

traffic. 

Replay techniques fundamentally aim at reproducing and debugging the real-

world defects of devices in a controlled environment. In order to improve their 

accuracy and efficiency, networking devices ought to be tested using real traffic rather 

than artificial one because there is a higher chance to trigger more device bugs or 

defects that would not be easily discovered when using artificial traffic.  

The major limitations of real traffic replay are twofold: high volume of captured 

traces and time consumption [3]. For example, during the peak hour, the captured 

network traffic volume at National Chiao Tung University’s Betasite [1] could reach 

60 gigabytes (GB) in 30 minutes and even during the regular hours around midnight, 

the traffic volume would still reach at least 20GB every 30 minutes. Note that 

replaying several hundreds of gigabytes could take up to 120 hours. Moreover, 

reproducing a defect triggered by high volume of traffic is time-consuming. Thus, for 

more efficiency in the testing of networking devices, the downsizing of packet traces 

turns out to be a very crucial and imperative operation.  

However it is not trivial to reduce the size of traces with high volume while 

maintaining authentic and reliable information capable of reproducing the very same 

defects triggered by the raw traces. In fact defects-driven traces downsizing is 

challenging since the downsized traces should be representative of the original entire 

traces. In addition downsized traces should be able to ensure defect reproduction, 
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reduce testing time and make device testing more accurate and efficient. 

There has been some works on network traffic data reduction or compression. 

Some traces reduction approaches were based on the concepts of entropy and aimed at 

reducing traces [3,4] with the objective of improving traffic trace analysis by 

removing data redundancy in a large trace especially at packet-level. While those two 

works focused on traffic data reduction, [5-8] emphasized instead on the compression 

of packet headers. Their goal is to apply the trace compression technique to online 

packet headers, allowing communication over low bandwidth channels. The purpose 

of these works is to reduce traces collection storage. While these works help in 

reducing the volume of network traffic traces, it is important to note that none of them 

perform a defect-driven traces downsizing. 

In our defect-driven traces downsizing approach, we would differentiate the 

defects that occur with different types of devices. The downsized triggering traces 

would be evaluated by measuring the downsizing ratio (DR). Variations of DR with 

respect to different replay throughputs will be highlighted since the Internet 

throughput varies as well on the real-world environment. The possible causes of the 

networking devices failure should be addressed by doing a forensic investigation on 

the downsized traces.  

We proceed by first identifying among the raw large traces the ones that 

trigger devices defects. The testing technique we are using is based on that of In-Lab 

Real Testing (ILRT) [15] where the devices under test defects are constantly 

monitored during the replay testing. Once a defect is triggered, the identified traces 

are downsized using a Linear Downsizing algorithm or a Binary Downsizing 

algorithm. Linear downsizing algorithm is done through incremental rollback and 

replay technique. Binary Downsizing is based on binary search algorithm [18], and is 

used in complement with linear downsizing. Our final step consists on splitting and 

classifying traces according to the defects triggered. 

The remainder of this paper is structured as follows. Chapter 2 presents the 

background and related works. Chapter 3 describes some terminologies and discusses 

the problem statements. Chapter 4 describes the design and algorithm of our proposed 

solution. The experimental results of our works are studied and evaluated in Chapter 

5. Finally, in Chapter 6 we draw some conclusions based on our findings and discuss 

the future works. 
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Chapter 2 Background 
This chapter underlines the issues of traffic capture and replay, as well as an 

overview of stability testing; finally it discusses the related works. 

2.1 Issues of Traffic Capture and Replay 

Testing networking devices with real-world network traffic requires the 

capture of traces in a more controlled environment. The quality of the captured traces 

is a determining factor of the accuracy and the efficiency of tests performed on 

products or experimental studies [14]. There exists an environment within National 

Chiao Tung University campus where the network traffic produced by volunteers is 

captured. This environment called Beta Site [1] pursues the goal of evaluating 

products performance with real traffic. Beta Site provides an incentive for students to 

be volunteers and the daily-generated traffic is captured in files with PCAP format. 

PCAP stands for "Packet Capture" and is a common packet capture data format. In 

order to provide a database of traffic traces that can be used for products testing or 

evaluation, the captured traces in the format of PCAP files are stored in a Pcap 

Library [13]. However storing multiple PCAP files has a drawback due to the high 

volume of the traces. In addition replaying large volume of packet traces for products 

events or defects reproduction is highly time-consuming as mentioned earlier in the 

introductory chapter. For event analysis, the smaller the volume of traffic replayed to 

reproduce events, the easier and faster their analysis. [14]. Figure 1 displays a list of 

captured traces in the format of PCAP files. The nomenclature of the PCAP files is 

based on the date and the time of capture as follows: ddmmyy-hhmn.pcap. This 

procedure of assigning names to PCAP files helps in distinguishing traces.  

 

 
Figure 1: Captured traces format 
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2.2 Overview of Stability Testing  

Networking devices even after they pass the lab testing still face defects 

challenges in the real-world environment. The defects found after the release of the 

devices to the market are called customer found defects (CFD). ILRT [15] undertakes 

testing on Small Office Home Office (SOHO) devices at the Network Benchmarking 

Lab (NBL) [17]. SOHO routers are stateful devices running NAT functions. The 

replay tool used to test SOHO routers is a modified version of Tcpreplay [16] with the 

NAT functions in such a way that it can handle the address and port translation within 

the device. Stability testing consists of replaying network traffic to devices under test 

(DUT) while monitoring them with a tool called CheckDevice. The CheckDevice is a 

probing tool that continuously sends ARP, HTTP and ICMP queries to DUT. During 

the testing of networking devices, real traffic traces are replayed to multiple DUTs. 

Each DUT is connected to a replayer (a server that hosts NATReplay and send the 

traces to the DUT) and a CheckDevice.  

 

 
Figure 2: Stability Testing Architecture and Test-bed 

 

Note that the replayed traces are stored in a raw format, meaning that they are 

not processed or modified. Figure 2 displays the stability testing architecture used by 

ILRT. The testing environment involves NCTU Beta Site where the network traffic is 

captured and NBL PCAP Library where the captured traces are stored. Figure 3 

portrays the traces collection and the networking devices testing procedure. First, the 

traces used for replay are captured from the NCTU Beta Site. The traces are then 

replayed to multiple DUTs. In Figure 3, n represents the number of failed devices. 
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Thus, whenever two or more DUTs hang, the replayed traffic traces are marked and 

collected to a repository. These traces called bug traces are used to reproduce a 

detected defect or a malfunction of devices. 

 

 
Figure 3: Traces Collection and Device Testing Flowchart 

 

2.3 Related Works 

There exist several studies related to network traffic traces reduction. They 

aim at different objectives and their approaches are diverse. 

 The main objective of [3] consists of improving data collection and analysis on one 

hand and reducing original data set with an acceptable loss of properties on the other. 

It proposes an off-line Entropy-based approach for reducing large data sets, applied to 

Counter-Strike traffic traces. It aims at producing network traffic statistics by 

completely characterizing and modeling network traffic without losing sensible 

information.  

The proposed off-line technique to reduce traffic trace data sets presents the 

advantage of correctly capturing mean, standard deviation, and marginal distributions 

of network traffic traces, without compromising time properties. 

The study in [5] suggests a compression algorithm that removes this redundancy in 

order to produce substantially smaller traces. A method to compress and anonymize 

packet traces [8] intends to resolve two main problems in packet trace collection and 

analysis: volume of data and privacy issues. It is based on the fact that there are many 

fields in the IP, UDP, and TCP headers that do not change over the lifetime of a 

connection when observed at a single location.  
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It is obvious that these described works all share the objective of either 

reducing or compressing traces in order to either improve data storage or reduce the 

complexity of traffic traces analysis. However, these works do not meet one of the 

requirements of our study; their traces reduction is not defect-driven as we are 

proposing. The purpose of our work first consists of identifying traces that triggers 

defects of networking devices, then downsizing the traces in order to reduce their 

volume. Therefore it is a defect-driven downsizing of defectuous traffic traces. 
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Chapter 3 Traces Downsizing  
This chapter highlights the definitions of terminologies specific to our work and 

discusses the problem and issues that need to be addressed. 

3.1 Terminologies Definitions 
 

Terminologies that are specific to our work will be defined according to the 

context in which they will be used. Triggering traces identification is referred to as 

the process of locating in a bunch of network traffic the traces that are responsible or 

causing the defects of the networking devices. Triggering traces identification often 

results in a set of network traffic that is high in volume. Traces downsizing is a 

process that consists of reducing the volume of the traces while keeping the 

information or characteristics capable of inducing the same defects as the raw traces. 

One of the objectives of our work is to categorize the traces based on the defects they 

trigger. In order to achieve this, we perform traces splitting by dividing a single trace 

into multiple traces based on the triggered defects. Table 1 is a description of a list of 

notations that are further used in our work. P refers to packet traces in PCAP format 

and L represents the logs that are triggered by the DUTs. Pj and Li are used to refer to 

the j-th packet trace and the i-th log respectively. 𝑃!
!! represents packet trace j that 

have triggered a device defects Li, but that are not yet downsized. 𝐷𝑃!
!!  is the 

downsized version of  𝑃!
!!. 

Table 1: Notations Description 

Notations Description 

P Packet trace in a pcap format.   

L Log or defect produced by a device under test. 

Pj j-th packet trace. 

Li i-th log. 

𝑃!
!! j-th packet trace that triggers the i-th log 

𝐷𝑃!
!! Downsized j-th packet trace that triggers the i-th log 
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3.2 Problem Statement 
 

Considering the defects in the form of logs produced by networking devices, 

efficient investigation and testing of these devices require the identification of the 

suspicious traces. However, as stated in chapter 1 the triggering traces are 

voluminous, making their analysis or defects reproduction through replay more 

complex because of the high demand in time and resources.  

Therefore, given a set of packet traces and a set of the defects in the form of logs of 

the networking device, we aim at attaining the following objectives: (1) for each log, 

identify the triggering traffic traces and (2) downsize the triggering traffic traces in 

the way that preserve the same characteristics necessary to reproduce the defects. 

Hence, the problem could be defined as follows.  

Given  

(1) a set of packet traces {Pj, j=1…m} and 

(2) a set of defectuous logs {Li, i=1…n}  produced by networking devices, 

suppose  

(1) Li is the i-th log triggered by a device,   

(2) Pj is the j-th packet traces,  

(3) 𝑃!
!!  is the j-th packet trace that triggers the i-th log 

(4) 𝐷𝑃!
!! is the downsized trace from 𝑃!

!!,  

the objectives are  

(1) for each log Li triggered by a device, identify 𝑃!
!! such that 𝑃!

!! triggers  Li , 

(2) for each 𝑃!
!!,  find 𝐷𝑃!

!!  such that  𝐷𝑃!
!!   triggers  𝐿!. 

3.3 Issues to Be Addressed  
 

Defects distribution 

The first issue regarding our work consists of determining the defects distribution. 

This issue aims at differentiating the defects that are produced by networking devices 

and by analyzing their recurrence. In other terms, we will look at the diversity of 

defects and the number of times they are produced by networking devices. Defects 

distribution is justified, as it is a means that could reveal the common defects that are 

produced by networking devices.  

Downsizing ratio  
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The downsizing ratio (DR) is the relationship between the size of reduced traces and 

that of the raw traces. It is an expression of the number of times by which raw traces 

have been reduced. Since the main objective of our work consists of reducing packet 

traces, to achieve an optimal downsizing, we introduce the DR as a metric to evaluate 

the downsizing process.  

Different networking devices differ in the way they are implemented. They might not 

function the same way under the same conditions, thus would not produce the same 

defects under the same conditions of usage. It is therefore important to measure the 

variation of the DR with respect to DUTs from different vendors.  

 

Replay throughput vs. defects occurrence 

This issue aims at determining the different behavior of DUTs under different replay 

throughput. Device under test when used in real-world conditions encounter high and 

low bandwidth conditions. In the same way, we ought to test the devices using 

different throughputs and observe their performance with low and high replay 

throughputs.  

 

Factors determining causes of devices defects 

Finally, a very important aspect worth investigating is the analysis of the causes of 

devices defects. Packet traces characteristics or properties [9,10] would trigger 

defective behavior of the networking devices. For instance traffic such as P2P that 

generates multiple concurrent connections often cause a burden on the devices in term 

of resources allocation thus affecting their stability. We would look at the behavior of 

the networking devices as they are handling the real-world traffic traces. Since some 

networking devices are black boxes, meaning that they do not disclose any 

information about the causes of their failure, we would perform some simulation on 

devices with open-source firmware in order to investigate the causes of defects.  
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Chapter 4 Packet Traces Identification and Downsizing  
 
This chapter discusses the solution approach necessary for packet traces 

identification, downsizing and splitting. In addition, it discusses the forensic analysis 

of the downsized traces in order to find the possible causes of device failure. 

4.1 Solution Approach Overall Architecture 
 

As illustrated in Figure 4, the design of our solution is composed of two major 

components. The first component is the traces identification. During the testing of 

networking device using replay technique, the traces that trigger the DUT failure are 

marked and collected. The second component is the traces downsizing where two 

downsizing algorithms alternatives, namely Linear Downsizing (LD) algorithm and 

Binary Downsizing (BD) algorithm are proposed. The purpose of traces downsizing is 

to reduce original traces to smaller traces that are still able to trigger the same failures 

as the original ones. After the packet traces downsizing, a repository of downsized 

defect traces is collected and validated.  

 
Figure 4: General Solution Approach 

 

 After these steps are completed, we perform an analysis of the downsized traces. This 

is an investigation process in order to depict the properties in the traces that led to the 

failure of the networking devices. 
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4.2 Traces Identification 
 

Traces identification is the discovery among multiple replayed traces those 

triggering defects on the device under test. The goal of traces identification is to 

obtain Pj
Li from P. Traces identification is useful because it is the first step towards 

the downsizing of packet traces as it extracts the suspicious traces Pj
Li  from raw 

network traffic. Traces identification process works by replaying network traffic to a 

DUT. As the traffic is replayed, the status of the DUT is monitored and the failures 

that it triggers are recorded. Queries of type ICMP, ARP and HTTP are regularly sent 

to probe the DUT status. When the DUT replies to each of these individual queries 

within the response time constraint and continuously handles incoming and outgoing 

packets, it is considered to be working properly. Otherwise it is regarded as failed or 

crashed. In fact the proper reception of requests and transmission of responses require 

a good physical connection to the device as well as a properly configured and 

operating TCP/IP stack.  

In case of the device failure, we record the replayed traces information 

through the monitoring system and the identified traces go through the downsizing 

process.

 
Figure 5: Sample recorded logs 
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Figure 5 is an illustration of the recorded logs during the failure of a device 

under test. The recorded information includes the type of defect that occurred, the 

information about the traces that are involved as well as the defect occurrence time. It 

also displays details about the traces number of connections, the total size of replayed 

traffic. This information is used to find and extract the suspicious traces from the raw 

traces.  

4.3 Traces Downsizing Procedures 
 

As stated in the previous chapters, the traces downsizing purpose is to have traces 

with reduced size that can trigger the defect in a reduce amount of time. In fact it 

consists of obtaining 𝐷𝑃!
!! from Pj

Li.   

 

Linear downsizing algorithm 

There are two concepts involved in the Linear downsizing algorithm: reverse order 

and rollback-and-replay. In the process of traces downsizing, when a defect is 

triggered after the replay of traces, Pj
Li is replayed in a reverse and decreasing order. It 

means that the replay testing starts by replaying the last replayed traces towards the 

first ones. The second concept involved in LD is the rollback-and-replay, which 

consists of including an amount of traces each time the replayed traces failed to 

trigger a defect.  Figure 6 shows a flowchart and pseudocode that describes the Linear 

Downsizing process. There are three steps involved in this flowchart namely rollback, 

replay and recording. Rollback consists of replaying some amount of the traces that 

were replayed just before the defect occurred. The rollback size is determined 

according to the target downsized trace size. When a defect Li is triggered during the 

replaying test, the first step towards downsizing is rollback. If these packets do not 

trigger the defect, we include the adjacent packet traces and redo the replay testing. 

We keep incrementing packet traces until the defect is triggered. When the defect Li is 

triggered, we complete the downsizing process and record these traces as the 

downsized traces 𝐷𝑃!
!!.   
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Figure 6: Linear Downsizing Flowchart and pseudocode 

The linear downsizing algorithm is likely to be advantageous if the packet traces that 

triggered the defect belong to last replayed traces during the test. However when the 

triggering traces do not belong to the traces replayed at the beginning of the test, an 

alternative, which is the binary downsizing algorithm, is proposed. 

 

Binary downsizing algorithm 

Binary downsizing algorithm is based on binary search algorithm and consists of 

locating the traces that trigger a device defect by recursively splitting 𝑃!
!! in halves 

and testing the device with each half until the defect is reproduced. 

Figure 7 is an illustration and pseudocode of the binary downsizing algorithm. 

Considering 𝑃!
!! as traces that triggered a device defect, we will describe how to 

downsize 𝑃!
!! using the binary downsizing algorithm in order to obtain 𝐷𝑃!

!!.  

First of all, we split P in half and generate two sets of traces PR and PL with the same 

size. PR and PL respectively represent the first and second half of P.  After the 

splitting, PR is first replayed to the DUT because it is more likely that the traces that 

trigger the defect belong to the last replayed traces. If PR triggers the defect of the 

DUT we further split PR into two halves where PRR and PRL are respectively he first 

and second half.  As in the previous case, we replay PRR to the DUT.  

Let  
𝑃!
!! = traces Pj that triggered a 

defect i of a DUT 
Δ𝑃!

!! = incremental trace  

|RT| = |𝑃!
!!|% |Δ𝑃!

!!| residual trace 
size 
𝐷𝑃!

!! = downsized trace 
Replay order = reverse order 
 
set 𝐷𝑃!

!! = null 
replay RT to DUT 
 if defect is triggered  
    𝐷𝑃!

!! =  RT 
 else 
  while (𝐷𝑃!

!!     not  equal    𝑃!
!!   ) 

   if defect is not triggered 
    append Δ𝑃!

!!   to traces and replay  
   else 
    𝐷𝑃!

!! = replayed traces 

     return 𝐷𝑃!
!! 
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(a) Binary downsizing illustration 

 

(b) Binary downsizing pseudocode  

 

Figure 7: Binary downsizing algorithm illustration and pseudocode 

 
If the replay of PRR does not trigger the device defect, it means that PRR alone cannot 

trigger the device defect. Therefore, we need to include additional traces to reproduce 

the defect and we include the second half of PRL, which is PRLR. In this case the replay 

input is the addition of PRLR  and  PRR.  

In the binary downsizing process, the half-splitting of traces and their replay are 

continuously done until reduced traces that can trigger the device defect are obtained.  

  

Let  
𝑃!
!! = traces that triggered a defect of a DUT 
ΔT = minimum desired DT 
Split 𝑃!

!!   in two halves: right_node and left_node 
While traces to replay > ΔT 
  Replay right_node to DUT 
    if defect is triggered 
      split traces and replay right_node 
      𝐷𝑃!

!! = replayed traces 

      return 𝐷𝑃!
!! 

    else 
      append previous node right_node  
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Chapter 5 Experiments Studies and Results Analysis  
 

In this chapter, the experiments conducted to identify the traces that trigger the 

defects of networking devices are discussed. The outcome of the two downsizing 

algorithms is compared and a case about a networking device behavior during a 

hanging defect is studied. 

5.1 Traces Selection and Experimental Testbed  
 

Sample traces 

To conduct the experiments, we used the network traffic captured from NCTU Beta 

Site. As mentioned earlier in section 2.2, ILRT testing is performed using real traffic 

captured by NCTU Beta Site and the recording of suspicious traces is done whenever 

at least two different types of DUTs failed the test. The recorded traces are stored in a 

repository of bug traces. For our experiment, we selected from the repository sample 

traces based on their size and the number of failed devices. Our selected sample is a 

set of 34 PCAP files with a total size of 1.2 TB and causing the failure of 4 DUTs. 

Table 2 lists a portion of the selected and the 4 commercial DUTs that are used. For 

the following downsizing process we labeled these DUTs as DUT1, DUT2, DUT3 and 

DUT4.   

Table 2: Sample packet traces selection 

No File Name Size DUTs used 
1 100614-1710.pcap 48 GB 

DUT1 
DUT2 
DUT3 
DUT4 

 

2 100614-1810.pcap 52 GB 
3 100614-1840.pcap 63 GB 
4 100614-1910.pcap 62 GB 
5 100614-2010.pcap 55 GB 
6 100614-2040.pcap 60 GB 
7 100614-2110.pcap 50 GB 
8 100614-2140.pcap 56 GB 

… … … 
Total size of Traces 1.2 TB 

 

Experimental testbed 

The experimental testbed used is based upon that of ILRT mentioned in Figure 

2 in Chapter 2 and mainly comprises a replayer, a DUT and a monitoring tool called 

CheckDevice. 
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The replayer replays the captured traffic traces to the DUT. The CheckDevice 

monitors both the replayer and the DUT. Throughout our experiments the sample 

traces are replayed using a replay throughput of 50 mbps, as it is the case of ILRT 

environment. However, we use a replay throughput of 100 mbps in our experiments to 

find the behavior of the DUT under higher throughput. 

 

Overview of the CheckDevice  

The CheckDevice is a tool developed by NBL and is used in networking devices 

testing. It has two main functions. One is that it is used to configure the replayer and 

the DUT parameters, and the other is that it monitors the status of the replayer and 

DUT by regularly sending queries to it.  

As shown on Figure 8, for the configuration of replay parameters, the CheckDevice is 

used to set the DUT and replayer IP address, MAC address and the DUT LAN/WAN 

addresses. In addition it specifies the PCAP path, which is the directory of the traces 

to be replayed, sets the replay throughput and enables other parameters configuration 

on the replayer side.  The CheckDevice also sets the check interval time, which is the 

DUT timeout in milliseconds (ms), the execution time and the hanging time tolerance. 

The hanging time tolerance is the time allowed to the DUT for recovery before 

stopping the replay testing. For our test, we re-use the settings of ILRT, meaning that 

the timeout is set to 10,000 ms, the check interval to 2,000 ms and the hanging time 

tolerance to 3600 s.  

The second function of the CheckDevice consists of monitoring the DUT by 

simultaneously sending three requests namely ARP, ICMP and HTTP requests to the 

DUT in order to probe its status. The DUT would be regarded as normal if it can reply 

to all requests within the predefined timeout time; otherwise the DUT is more likely 

to be experiencing defects.  
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Figure 8: Configuration of the CheckDevice 

 

5.2 Defects Distribution   
 
As shown in Figure 9, there can be distinguished three types of queries: ARP request, 

ICMP request and HTTP request. Based on the different combination of responses 

from the DUT, we differentiated 7 different types of device defects. 

We classified these defects into 3 groups: single-defect, combined-defect and 

hanging. A single-defect occurs when the DUT is unable to respond to 1 out of the 3 

requests; in the combined defect situation the DUT is unable to respond to 2 out of 3 

request, and finally, a hanging occurs when all the 3 requests are not replied to. The 

single-defect group is composed of an ARP, ICMP and HTTP defect corresponding to 

a failure of the DUT to respond to an ARP, ICMP or HTTP request respectively. The 

combined-defect encompasses ARP/ICMP, ARP/HTTP and ICMP/HTTP defects 

respectively and a crash happens when the DUT fails to respond to any request sent 

by the CheckDevice. These defects are illustrated in Figure 9 below. 



 

 18 

 

Figure 9: Overview of DUT defects 

Table 3 displays a list of downsized traces that triggered defects for each DUT that is 

used in our experiments. For each trace that triggered a defect of a DUT, we checked 

with the other three DUTs to see whether the same trace are able to trigger the same 

defect. In this table, “✔” suggests that the same defect is triggered and  “✖” means that 

the replayed trace did not triggered a defect on other DUTs. The observation that can 

be drawn indicates that some downsized traces could trigger the same defects on 

multiple DUTs. In fact downsized traces also trigger defects on multiple DUTs as it is 

the case for the original “bug traces”. 

Table 3: Downsized traces 

DUT / 
DEFECT 

DUT1 (✔) DUT2 (✔) DUT3 (✔) DUT4 (✔) 

DUT2 DUT3 DUT4 DUT1 DUT3 DUT4 DUT1 DUT2 DUT4 DUT1 DUT2 DUT3 

Hanging 0.96 GB 326.35 GB 27.35 GB 1200 GB 

✖ ✖ ✖ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ ✔ 

ICMP 0.96 GB 7.7 GB 15.32 GB 24.1 GB 

✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ 

HTTP 0.96 GB 0.63 GB 10.38 GB 20.96 GB. 

✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ 

ICMP/HTTP 0.96 GB 8.1 GB 16.07 GB 27 GB. 

✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ 

DUT

CheckDevice

ARP Request

ICMP Request

HTTP Request

DUT

CheckDevice

ARP Response

ICMP Response

HTTP Response

DUT

CheckDevice

ICMP Response

HTTP Response

DUT

CheckDevice

ARP Response

HTTP Response

ARP Response

ICMP  Response

DUT

CheckDevice

ARP Response

ICMP Response
HTTP Response

DUT

CheckDevice

DUT

CheckDevice

HTTP Response

DUT

CheckDevice

ARP Response

ARP Response

ICMP  Response

DUT

CheckDevice

ICMP Response
HTTP Response

ICMP Response

HTTP  Response

ARP  Response

HTTP  Response

ICMP  Response

ARP  Response

ARP defect

ICMP defect

HTTP defect

Hanging / Crash

ICMP/ARP defect

ICMP/HTTP defect

ARP/HTTP defect

No defect found

Requests by CheckDevice

#####

#####

#####

#####

#####

#####

#####

#####

#####

#####

#####

#####

##### Failed Response

Successful Response

CheckDevice Request
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DUT / 

DEFECT 
DUT1 (✔) DUT2 (✔) DUT3 (✔) DUT4 (✔) 

DUT2 DUT3 DUT4 DUT1 DUT3 DUT4 DUT1 DUT2 DUT4 DUT1 DUT2 DUT3 

Hanging 8.47 GB 128 GB 32 GB  

✖ ✖ ✖ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ ✔ 

ICMP 1.66 GB 12.7 GB 11.32 GB 64.7 GB 

✖ ✖ ✖ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ 

HTTP 0.96 GB 2.72 GB 6.02 GB 40.8 GB. 

✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ 

ICMP/HTTP 2.3 GB 10.4 GB 11.9 GB 120.96 GB. 

✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ 

 

In Figure 10 we evaluated the overall defects distribution from the experiments using 

4 different DUTs. 

 

 
Figure 10: Defects distribution 

According to the overall defect distribution, about 70% of defects are single-defect, 

23% are combined-defects and 7% are hanging or crashes. In other terms, DUTs are 3 

times more likely to experience a single defect than a combined-defect. In addition, a 

DUT crashes 10 times less frequently than it experiences single defects. The reason 

could be explained by the fact that the crash occurrence is tightly related to the 

combination of single-defects. We also observe that HTTP, ICMP defects represent 

more than half（60%）of the total defects experienced by DUTs. This situation 

occurs because ICMP and HTTP requests are more resource-intensive than ARP 
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requests, giving more overhead to DUT. In addition, networking devices sometimes 

do not reply to those requests in order to preserve resources in order to handle 

incoming packets. 

5.3 Downsizing Ratio (DR)  
 
We introduced a metric to evaluate the effect of the downsizing algorithms.  As stated 

in section 3.3 the downsizing ratio is the relationship in percentage between the size 

of the reduced traces and that of the original one. We proposed two formulas to 

evaluate the DR of the two downsizing algorithms. In the first formula, DR1 compares 

each single 𝐷𝑃!
!!  with respect to the corresponding 𝑃!

!!. In this case, each defect’s 

DR is the size of the downsized trace over the size of the trace that triggered the 

defect.  DR1 is expressed as follows: 

𝐷𝑅! = 1 −   

𝐷𝑃𝑗
𝐿𝑖

!!
!"

!
!,!!!

𝑛  

In the second formula, DR2 compares each single 𝐷𝑃!
!!  with respect to the 

corresponding P instead. In this case each defect’s DR is the size of the downsized 

trace over the size of the original trace used for the testing.  DR2 is expressed as 

follows: 

𝐷𝑅! = 1−   
𝐷𝑃!

!!!
!,!!!

𝑃  
 
Linear downsizing vs. binary downsizing   

Figure 11 is an illustration about how LD and BD actually work. In the illustration, P 

has the size of 1.2 TB, the size of 𝑃!
!! is 8047 MB and the illustrated defect is a 

hanging of a device. “✔” means that the traces triggered a defect while  “✖” suggests 

that the traces did not. In the case of BD as shown in Figure 11(a), traces are split into 

halves and replayed for testing while for LD Figure 11(b), they are incremented and 

replayed until the defect is reproduced.  The incremental size is set to 500 MB for the 

LD algorithm. For these illustration 𝐷𝑃!
!! is 1572 MB and 1547 MB for BD and LD 

respectively. 
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Figure 11: BD and LD Illustrations  

We evaluate the overall DR using the two formulas DR1 and DR2, previously 

introduced and show the result on Figure 12. Using DR1 we achieve a DR of 

respectively 74% and 78% for BD and LD. On the other hand, using DR2 results in 

80% and 83% for BD and LD respectively. In comparing, DR1 and DR2 we observe 

that, DR2 evaluation results in a DR that is slightly higher than that of DR1. This can 

be explained by the fact that with DR2 the size of the downsized trace is compared 

against that of the original and entire trace, which is usually high in volume (1.2 TB 

in our case). Thus the DR2 somehow depends on the size of the original trace, 

meaning that the DR might get higher with a higher volume of raw traces.  

In Figure 13, we actually compare the two downsizing algorithms in terms of their 

DRs. We observe that BD and LD respectively achieve DRs 77% and 80%. So, LD 

has a DR that is slightly higher than that of BD, but in general BD would require 

fewer iterations than LD. 

 
Figure 12: Two methods of DR evaluation 
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Figure 13: Comparison of two downsizing algorithms DR 

Figure 14 presents a comparison of both LD and BD based on the downsizing process 

number of iterations and time. LD is used as a baseline and is compared to BD. The 

results show that BD is about 3 times faster than the BD in terms of time of 

downsizing process. In addition, LD requires 5 times more iterations than BD. Thus 

BD turns to be faster than LD because it takes advantage of the binary search 

algorithm. 

 

 
Figure 14: Downsizing algorithms: iterations and time 

5.4 Replay Throughput vs. Defects Occurrence   
 
Throughput is a key element in testing networking devices. In the real-life 

environment, the Internet throughput fluctuates and networking devices should be 

able to cope with these variations. Therefore we conducted an experiment where 

DUTs are tested with a throughput that is two times higher than that used in ILRT 

testing environment. The reason is to find out how replay throughput affects the 

stability of the DUTs. In Table 4 “✔” means a crash of the DUT while “✖” represents 

a DUT that is properly functioning. We can observe that there are 3 out 4 DUTs that 
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crashed under a replay throughput of 100 mbps as opposed to 2 in the case of 50 

mbps. It is also observed through the replay testing that DUTs do not product defects 

under a replay throughput that is below 50 mbps. 

Table 4: Replay throughput and DUT failure 

DUT/Replay Throughput 
 

50 Mbps 100 Mbps 

DUT1 ✔ ✔ 
DUT2 ✔ ✔ 
DUT3 ✖ ✔ 
DUT4 ✖ ✖ 

 
In more details in Figure 15 we note that there is a higher number of defects when 

devices are tested with a higher replay throughput. Our results show that networking 

devices produce 1.5 – 2.8 times more defects in higher throughput (100 mbps) than in 

lower throughput environment (50mbps). In addition, tested with a replay throughput 

above 100 mbps, most of the DUTs experience a hanging. In some particular cases, 

the DUT reduces its throughput to less than 100 mbps to avoid hanging. This could be 

explained based on the fact that with a higher replay throughput, the number of 

number of requests per time unit to the DUT is much more likely to increase as well. 

A high number of requests eventually overload the DUT and results in more defects if 

the DUT cannot handle all the requests.  

 

 
Figure 15: Replay throughput and Defects occurrence 
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5.5 Investigating the Determining Causes of Defects: Case Study 
 

The DUT that are used in our experiments are SOHO routers and behave like 

black boxes because they do not display significant information about their failure. 

Therefore it makes it challenging to discover the causes of their defects. As said in the 

previous section, replay throughput could certainly explain some defects as their 

number increases with higher throughput. But in order to find more insight about the 

causes of the defects, we need to obtain some information about the logging system 

within the router. So, we conducted a new experiment where we installed an open-

source third-party firmware [19] on DUT4, which is the only DUT that supports and is 

compatible with the open-source firmware. We labeled it DUTo. For the replay 

testing of DUTo we used the same packet traces, the same throughput with the same 

environment as the one that was used to test other DUTs for consistency. We are able 

to monitor more closely DUTo through its terminal. Figure 16 displays the log 

messages produced as it crashes. We note that the message displayed is 

“nf_conntrack: table full, dropping packet”. One of the important features built on top 

of the Netfilter framework is connection tracking. Connection tracking allows the 

kernel to keep track of all logical network connections or sessions, and thereby relate 

all of the packets, which may make up that connection. NAT relies on this 

information to translate all related packets in the same way [20]. In our case, the 

message means that the NAT table is full as the device tries to build more connections 

than it can handle.  In Figure 17, we can observe from the web interface messages that 

the DUTo is actually overwhelmed by the high number of active connections it needs 

to handle. It has to handle 99% of the maximum number of active connections. This 

overloads the device resulting in a high CPU usage (94%). All these reasons more 

likely are the causes of the device crash and could also explain the failure with the 

other DUT used in previous experiments.  
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Figure 16: Log messages from a DUT running an open-source firmware 

 
Figure 17: DUTo web interface messages 
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Chapter 6 Conclusions and Future Works  
 

Testing networking devices with real-world traffic is an alternative to testing 

with artificial traffic given the realistic properties of real-world traffic. However, due 

to the high volume of captured traces, it is necessary to downsize the packet traces for 

more efficiency in the devices testing and their defect reproduction. 

This work proposed a linear and a binary downsizing algorithm to downsize 

packet traces triggering the defects of networking devices. From the downsizing 

experiments, we distinguished 7 different types of devices defects, which we 

classified into single-defects, combined-defects and hanging. The observed defects 

result from a failure of the DUTs to respond to the ARP, ICMP or HTTP queries sent 

to probe their status. According to the results of our experiments, ICMP and HTTP 

defects represent more than half of the total number of defects produced by the DUTs. 

This might be explained by the overhead in terms of resources that these requests 

have on the DUT. We also proposed two downsizing algorithms for packet traces 

downsizing. The proposed downsizing algorithms achieved a downsizing ratio of 77% 

and 80% using respectively BD and LD algorithms. The experiments results also 

showed that BD is about 3 times faster than the BD in terms of time of downsizing 

process, and LD requires 5 times more iterations than BD. 

 In our study it is shown that the throughput at which the DUTs are tested 

could affect the occurrence of defects. In fact the DUTs produced 1.5 – 2.8 times 

more defects with higher replay throughput (100 mbps) than in lower replay 

throughput (50mbps). Below a replay throughput of 50 mbps, we do not observe 

devices defect. This could be explained by the fact that the number of requests per 

time unit is more likely to increase with a higher replay throughput.  

In investigating the cause of DUT’s defects, we observed that the connection-

tracking table of the DUT gets full during the device hanging. This suggests that the 

size of the table could be associated with the device eventual failure because it is 

shrunk as the device tries to build more connections or handle NAT translations. The 

DUT, which can no longer process incoming requests, ends up overloaded and 

eventually crashes.  

In our work, we define the defects as the DUT’s incapacity to respond to probing 

queries and handle them consequently.  
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For future works, devices defect could be defined in a more comprehensive 

way that will consist of monitoring the internal behavior of DUTs. Therefore it will be 

necessary to introduce probing methods that will be able to disclose more detailed 

information about the performance of the DUTs. Since the CheckDevice probing 

technique consists of sending queries to the DUT, it could be limited in detecting the 

status of the DUT daemons status. Therefore in order to detect more defects from the 

DUT, the Simple Network Management Protocol (SNMP) could be used in addition 

the CheckDevice. SNMP is a monitoring tool that monitors the conditions of network-

attached devices. However for SNMP to be used, the devices must support it. This 

could eventually help discover even more defects that would not be revealed through 

probing queries, and improve the efficiency and accuracy networking devices testing.  
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