

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

利用行為相似性偵測Android平台惡意應用程式

Identifying Malicious Applications by Behavioral Similarity on

Android Platforms

研 究 生：陳健宏

指導教授：林盈達 教授

中 華 民 國 一 百 零 一 年 六 月

利用行為相似性偵測 Android 平台惡意應用程式

Identifying Malicious Applications by Behavioral Similarity on Android

Platforms

研 究 生：陳健宏 Student：Chien-Hung Chen

指導教授：林盈達 Advisor：Dr. Ying-Dar Lin

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2012

Hsinchu, Taiwan

中華民國一百零一年六月

II

利用行為相似性偵測 Android 平台惡意應用程式

學生: 陳健宏 指導教授: 林盈達

國立交通大學網路工程研究所

摘要

隨著行動裝置計算能力的提升與盛行，在手機上提供的應用程式越趨多樣化，

但卻同時成為了系統安全上新的攻擊目標。對於目前流行的 Android 系統平台，

攻擊者可以透過再包裝與混淆的技術，將惡意程式碼同時隱藏到多個看似一般的

應用程式來進行散佈，使得 Android 平台上的惡意程式偵測與分析工作更加的費

時和困難。然而，被打包惡意程式碼的應用程式即使有了不同的外表，但同樣的

惡意程式碼仍然會產生出同樣的行為，因此我們提出了一套利用系統呼叫序列來

進行應用程式的行為偵測方法，此方法能夠從多執行緒的惡意程式所產生的系統

呼叫序列中找出共同子序列，並且利用貝氏機率模型來過濾出有較高機率出現在

惡意應用程式，但較低機率在正常應用程式執行時出現的系統呼叫序列。最後我

們能夠利用這些抽取出來的系統呼叫序列，對待檢測的應用程式所執行的系統呼

叫序列中進行掃描。我們使用五個種類的被打包惡意程式碼的應用程式與一百正

常的應用程式來進行準確率的評估，在所有的種類裡面，我們的方法可以得到

97.6%的高準確率，在所有 25 個被檢測的惡意應用程式中，僅有一個沒有被辨識

出來。

關鍵字: 惡意應用程式，行為偵測，系統呼叫，Android

III

Identifying Malicious Applications by Behavioral Similarity on

Android Platforms

Student: Chien-Hung Chen Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

As mobile applications become popular, they become the new target of attackers.

For Android platforms, adversaries can easily repackage the malicious code into the

different benign applications for distribution. The work of detecting and analyzing the

malicious application becomes a challenge of Android. Though, the repackaged

applications have different outward appearances, the same malicious behaviors still

appear during runtime. Therefore, we propose a behavior-based detection mechanism

based on system call sequences. We extract the common system call subsequences of

malicious applications and purpose a comparison approach to deal with multiple

threads produced by the applications. We also utilize the Bayes probability model to

filter subsequences which have lower probability of appearance in the repackaged

applications. Finally, we can detect repackaged applications by those extracted

subsequences. In our experiment, we use five different types of repackaged

applications and 100 benign applications to evaluate the accuracy rate. The detection

result demonstrates that our approach has 97.6% high accuracy. We evaluate 25

repackaged applications and miss only one evaluated target.

Keywords: malicious applications, behavior-based detection, system call, Android

IV

Contents

List of Figures ... V

List of Tables ... VI

Chapter 1. Introduction ... 1

Chapter 2. Background ... 4

2.1 Malware Differences between Desktops and Handhelds 4

2.2 Related Works on Desktop Environment .. 5

2.3 Related Works on Android Environment .. 6

Chapter 3. Problem Statement .. 9

3.1 System Call Sequence Detection ... 9

3.2 Problem Description .. 11

Chapter 4. Approach ... 12

4.1 Approach Overview ... 12

4.2 Extraction of System Call Subsequence .. 14

4.3 Sequence Evaluation with Probability of Appearing 16

4.4 Environment Implementation .. 17

Chapter 5. Evaluation.. 19

5.1 Experiment Environment ... 19

5.2 System Call Sequences Distribution .. 20

5.3 Accuracy of Detection ... 22

5.4 Relationship of Training Samples and Sequences ... 24

5.5 Fixed-Length and Longest Common Subsequences 26

5.6 Case Study of Subsequences .. 28

Chapter 6. Conclusions and Future Works ... 31

References .. 33

V

List of Figures

Figure 1. Flowchart of System Call Sequence Processing .. 12

Figure 2. Example of Thread Trees ... 15

Figure 3. Zygote Mode .. 17

Figure 4. Experiment Environment.. 19

Figure 5. Probability Distribution of Subsequences .. 21

Figure 6. Accuracy of Detection .. 23

Figure 7. True Positive and True Negative of Different Training Sets 24

Figure 8. Sequences of Different Number of Repackaged Applications 25

Figure 9. Number of Subsequences of Different Approaches 27

Figure 10. Accuracy of Different Approaches ... 27

Figure 11. The Subsequence of Malicious Behavior ... 28

Figure 12. The Case of False Positive ... 29

VI

List of Tables

Table 1. Related Works of Malicious Android Applications Detection 6

Table 2. Defincation of Symbols ... 10

Table 3. Number of Training Samples and Sequences .. 20

Table 4. The Number of Subsequences of 100% Probability 22

Table 5. Detection Result ... 22

Table 6. True Positive and True Negative ... 23

Table 7. Change of True Positive and True Negative .. 26

Table 8. The Relationship of Number of Samples and Sequences (Kmin) 26

1

Chapter 1 Introduction

With the rapid increase of wireless mobile networks, the smart handheld have

become popular and bring us new applications and integration with existing online

services. Over the past decade, many operating systems have been developed to

provide a comprehensive infrastructure for these devices. Among them, the Android

platform, developed by Google, is one of the most popular mobile operating systems

because of its open source. A large community of developers has designed many new

applications for Android. Android provides an open environment called “Android

Market” from which users can download applications. However, this scenario suffers

from some weakness. An adversary can distribute their malicious applications that can

launch various security attacks including escalating privilege, monitoring users’

behaviors, and compromising the sensitive information at the end devices [1-3].

Especially, different from the traditional attacking mechanisms on the desktop, an

adversary can repackage the malware into the different benign applications to deceive

users installing the affected applications on mobile devices. Hence, detecting malware

from various applications becomes a challenge of Android [4].

Signature-Based Detection vs. Behavior-Based Detection

 Typically, the malware detection mechanisms can be categorized into two types.

The first type is the signature-based detection mechanisms. We search the binary

image for the suspicious malicious patterns and then extract the unique signature for

each of them. Then we can identify malware by matching the binary image of these

applications with a database of signatures. Although signature-based detection

mechanisms are simple, efficient, and effective for the known existing malware, they

suffer from the drawback of not being able to detect the previously unknown malware.

To overcome the limitation, the behavior-based detection mechanisms have been

2

therefore proposed. These mechanisms attempt to observe suspicious runtime

application behaviors. Independent of the binary image of malware, the

behavior-based mechanisms could significantly increase the detection rate for

unknown and obfuscated malware. Hence, the behavior-based mechanisms are more

suitable to detect the repackaged malicious applications.

 To identify Android malicious applications, many detection mechanisms have

been proposed. For example, TaintDroid [5] tracks the information flow in the system

to identify the sensitive information leakage from applications, but it only detects the

malware that tries to obtain the sensitive data. In addition, ScanDroid [6] and Kirin [7]

attempt to verify the permission and the information flow in program codes before

users install applications. However, only codes with violated permissions in codes can

be identified as the malicious applications. Others detection mechanisms utilize the

kernel-based system calls to analyze the behaviors of malware. AAsandbox[8] counts

all system calls used in Android system to identify the anomaly. Isohara, et al. [9]

write a set of regular expression rules to matching in the repackaged applications.

CrowDroid [10] utilizes system calls to clustering benign and malicious applications.

But it suffers from a drawback of needing the original application to compare with the

repackaged one. According to our observation, none of them can be utilized to detect

all the repackaged applications efficiently.

 To solve the problem of repackaged applications, we propose a novel

behavior-based detection version which relies on system call sequences. The key idea

is to observe the system call sequences that are trigger by applications, i.e., although a

malicious code can camouflage into a benign application, the malicious behavior still

appears in the system call sequences. Since the system call interface is embedded in

the kernel space at the low layer of Android architecture, processes are hard to hide

triggered system calls. By applying this concept, our approach extract common

3

system call sequences in a set of same type but are repackaged malware by longest

common substring algorithm to find the longest sequence patterns. To filter out the

benign behaviors, we also employ the Bayes probabilistic model for evaluating the

appearance probability of extracted system call sequences to find the significant

malicious sequences. Through this approach, the repackaged malware can be detected

with high accuracy and the false positive rate can be reduced significantly.

 The rest of this thesis is organized as follows. In Chapter 2, we give a brief

survey of related works which describes both desktop and Android environments. In

Chapter 3 and Chapter 4, we describe the details of the proposed mechanism on

processing system call sequences and its implementation, respectively. Some

experiment results and discussions are presented in Chapter 5. Finally, Chapter 6

gives the conclusions and future works.

4

Chapter 2 Background

In this chapter, we describe the issue on how to detect repackaged malicious

applications on the Android environment. Malware has been an issue on desktops

many years ago, and many works have been proposed to detect malware. In recent

years, malware has propagated to handhelds. Herein, we give a brief overview about

malware behavior differences between desktops and handhelds. Some related works,

such as malware detection by system calls on desktops and Android platforms, are

also discussed.

2.1 Malware Differences between Desktops and Handhelds

Compared with desktops, malware detection in handhelds suffers from some

limitations. Among them, one of the biggest problems is the power consumption.

Unlike powerful desktops, handhelds are only supported with finite energy from

batteries. This situation constrains us from exhausting the energy to detect malware.

The other problem is the limitation of the kernel of the operating system. For instance,

Android is built on the Linux kernel. Android applications are executed on the virtual

machine, Dalvik, which isolates applications by marking each application run as its

own user. Hence, it is hard to observe or to block the malicious application from our

programs without the root privilege. Due to these significant drawbacks, traditional

desktop based malware detection mechanisms cannot be performed on the Android

environment.

Many changes in malware’s purpose and behavior also lead us to improve

detection methods for the new circumstance. Basically, attack methods can be

categorized into two types: server-side attack and client-side attack. In a server-side

attack, attackers directly aim to the potential vulnerabilities in a server which exposes

its services to clients. Most active malware, like worms or some kinds of bots, usually

5

utilizes this avenue for spreading. Fortunately, handhelds do not always access the

Internet services, a server-side attack cannot mount very well on handhelds. In

contrast, client-side attacks target vulnerabilities in client applications which interact

with the malicious server. Hence, attacker can construct a phishing site or embed the

malicious code into an ordinary server and infect applications of a client when a client

accesses the forgery information. For example, spyware and trojan horses are the two

typical instances to infect systems through this scenario. In addition, an attacker can

easily obtain the privacy information through the applications that have been infected

by spyware and trojan horses, i.e., the secret information can be obtained through the

SMS messages or phone calls. Compared with detecting worms and bots, it is a thorny

problem to detect spyware and trojan horses on handhelds.

2.2 Related Works on Desktop Environment

In the traditional desktop environment, signature-based detection is the most

popular technique used in anti-virus and intrusion detection systems. Unfortunately,

signature-based methods cannot detect the zero day malware. To overcome this

security flaw, many behavior-based methods were proposed. Among them, system

call is one of the popular techniques used to deeply monitor program behaviors.

Forrest, et al. [11] records the normal system call behaviors of a specific program into

a database. As the compromised program executing malicious code paths, the

anomalous system call sequence patterns are detected because the system call patterns

do not exist in the database. After that, many researches have extended the system call

approach and apply system call sequences into different models, such as hidden

Markov model [12], finite state automata [13], or Bayes model [14], to improve the

detection efficiency. Unfortunately, those proposed methods need to collect all the

behaviors in the specified programs. Collecting all behaviors in a large system, such

as the Android environment, is computational infeasible.

6

Christodorescu, et al. [15] apply malware behavior sequences into dependence

graphs and extract the subgraphs which do not appear in benign program for detecting

malware variants. Rozenberg, et al. [16] also collect fix length short system call

sequences from malware to detect unknown malware. In this work, we do the similar

but more force on multi threads processing and discover more precise system call

sequences to achieve the high accuracy for detecting repackaged applications.

2.3 Related Works on Android Environment

Table 1. Related Works of Malicious Android Applications Detection

Analysis

Approach

Paper Works

[Reference #]
Factor Target

Static

ScanDroid [6] Program Code Application Verification

Kirin [7] Permission Application Verification

DroidMOSS [17] Code Instructions Repackaged Applications

Dynamic

TaintDroid [5] Data flow Data Leaking

Kernel-based

behavior analysis [9]

System Call

Name and Parameter
Anomaly Behaviors

AASandbox [8] Amount of System Call Anomaly Behaviors

CrowDroid [10] Amount of System Call Repackaged Applications

This Work System Call Sequences Repackaged Applications

Referring to Table 1, in the Android environment, many researchers focus on

how to verify Android applications. For instance, Enck, et al. [5] developed a novel

system called “TaintDroid”. The key idea is that they track the sensitive data by

labeling data in the memory and detecting the runtime privacy leaking behavior of

applications. Although TaintDroid system is simple and efficient, it only detects the

malware that attempts to obtain the sensitive data. For other types of repackaged

applications, TaintDroid cannot detect them well.

Kirin [6] utilizes a set of permission rules to block before installing applications

which require unsafe permission combination. ScanDroid [7] extracts security

specifications from manifest for automatically checking data flows in the application

7

code. They can identify malicious applications which violate permissions in codes.

AAsandbox [8] applies both static and dynamic approaches to analyze

applications. This means that it decompiles the installation file and then searches for

the suspicious patterns in the decompiled codes. During the application runtime,

AAsandbox counts all system calls used in Android system. However, AAsandbox

only sworks with specific malware, i.e., it cannot detect multiple types of malware.

This is because its dynamic approach only detects abnormal system call usage.

The method proposed by T. Isohara, et al. [9] collects the runtime information of

applications through system calls. They search some keywords in the names and

parameters of system calls to generate a set of regular expression rules. In addition,

they utilize the generated rules to search suspicious system calls and detect Android

malware. However, the malicious applications still have a chance to escape from

being detected by encapsulating or obfuscating the keyword in parameters.

CrowDroid [10] is another typical method to evaluate applications by using

system calls. After the system collects all the system calls used from a set of user

devices during the application runtime, it adopts K-means clustering algorithm to

classify the collected data into two groups, the benign group and the malicious group.

And the malicious group can be used to identify the specified user who is running the

repackaged application. CrowDroid needs a set of users to execute the same original

application or the repackaged application, nevertheless, find the original application

of all repackaged malicious applications is inefficient and impossible in Android

environment.

DroidMOSS [17] is a system which aims to discover repackaged applications in

the third-party marketplace. DroidMOSS calculates the similarity scores by

comparing the author information and code instruction hash between the original

applications and the repackaged applications in the different marketplaces. Finally, it

8

finds the repackaged applications in the third-party marketplaces since the repackaged

application has a different appearance with the original application provided by the

official market. However, DroidMOSS has two weaknesses. Let us consider the

following scenario, i.e., once the malware is distributed both in the third-party

marketplace and in the official market, DroidMOSS cannot distinguish the malware

from the repackaged applications. The other is that not all of the original applications

can be obtained from the official market.

As a result of these incomplete methods, our proposed method aims to extract

longest system call sequences patterns from the same type of repackaged applications

and utilize the patterns to detect repackaged malware without the original applications.

Our contribution includes a new approach about extracting multi-thread common

system call sequences and applying the system call sequence to detect repackaged

applications with Bayes probability.

9

Chapter 3 Problem Statement

To detect Android repackaged applications, we therefore proposed a

behavior-based detection mechanism. In the beginning of this chapter, we describe the

key idea that is adopted in the proposed mechanism. And then, we give the problem

statement in subsection 3.2.

3.1 System Call Sequence Detection

To disseminate malware to users, attackers usually embed their malicious codes

into the normal applications, and then publish these repackaged applications to the

official Android market or the third-party market. This dissemination path is simple,

efficient, and effective because the repackaged applications are like benign

applications to fool users into obtaining the secret information. In order to detect the

malicious repackaged applications, the proposed mechanism observers the behaviors

during the execution period of repackaged applications rather than the outward

appearance of repackaged applications. The key idea is that, even attackers can embed

the malicious codes into varies applications, the behaviors of executing applications

are consistent with the barely malicious code instructions. Hence, the proposed

mechanism observes the execution behaviors of application and then extracts the

common behavior patterns to distinguish malware.

For collecting application behaviors, we utilize the kernel-based system calls.

System calls provide interact between processes and the operating system kernel for

receiving service or resource requests. All service and resource requests can be

observed by monitoring the system call interface, and the sequential requests form up

a sequence of system calls. The observed system call sequence can be regarded as the

request behaviors during the application executing. There are other ways to collect

call sequences, such as function calls of higher layers also provide the similar

10

functionality to form up call sequences, but it would lead ambiguous because of its

multi-interfaces. Let us consider a scenario. For example, Android applications can

request a service of application framework through Android API or directly access the

libraries through Java Native Interface to achieve the same functionality. The

application can produce the same behavior but with different call interfaces, and the

call sequence will be more complicated if we need to integrate more than one

interfaces. It is also possible that the program gets the root permission and executes at

lower level than Android API and JNI. Hence, the proposed mechanism used system

calls not only simply indicate the running behavior of applications, but also record the

behavior of malicious codes completely than using high level function call.

Therefore, for detecting malicious repackaged applications, we initially collect a

set of same type repackaged applications . Let denotes the -th repackaged

application in the set . Then, for each , we record the corresponding as a set

of system call sequences. After that, we can extract the common system call

subsequences from the set { , , , …, | |} to derive the common

behavior patterns. Finally, for those undiscovered repackaged applications with

the same malicious codes, we can detect them from a set of applications to be

inspected by .

Table 2. Definition of Symbols

 A set of same type repackaged applications.

 The -th repackaged application in .

 The set of recorded system call sequences from .

 The set of significant common system call subsequences

which are extracted from the set { , , , …, | |}.

 A set of applications to be inspected.

 [1] The set of true repackaged applications in .

11

3.2 Problem Description

The detail problem description is given as follows. Given the Android platform,

a set of malicious repackaged applications, and a set of applications to be inspected,

design an approach to extract the behavior patterns of applications by system call

sequences, and aim to detect malicious repackaged applications with the same

malicious codes.

The problem could be defined as in the following:

Given

(1) the Android platform,

(2) a set of malicious applications , and

(3) a set of applications to be inspected ,

suppose

(1) is the -th repackaged application in ,

(2) is the set of recorded system call sequences from ,

(3) is the set of significant common system call subsequences which are

extracted from the set { , , , …, | |} and

(4) is the set of true repackaged applications in ,

the objectives are

(1) extract from and

(2) identify from by .

12

Chapter 4 Approach

In this chapter, we detail the processing of our system call sequence detection

mechanism. In Section 4.1, we give an overview of system call sequence processing

which we present. The details of our approach are illustrated in Section 4.2 and

Section 4.3, respectively. Final, we describe the implementation issues in Section 4.4.

4.1 Approach Overview

Figure 1. Flowchart of System Call Sequence Processing

Figure 1 shows the overview of our approach. For extracting the common

behavior patterns, three phases, including recording phase, extraction phase, and

evaluation phase, are involved in the proposed approach. In the following, we first

describe these phases, respectively.

Recording Phase

 In this phase, for all of applications in , we sequentially select an application

 from , and then execute the individually to record the system call requests

during the Android system runtime. Next, we extract Si from all of system call data by

13

the process ID of and the corresponding child thread IDs. After all of

extracting, we can obtain in the recording phase.

Extraction Phase

The extraction phase aims to extract a set of common system call subsequences

 from all of . Since the same malicious code can trigger same system call

sequences, we extract by Longest Common Substring (LCSs) algorithm for

comparing system call sequences of different repackaged applications. In addition, to

improve the efficiency, we also present a mechanism for reducing the time cost of

extracting within multi-thread system call sequences. Finally, is obtained and each

common system call subsequence in is denoted as , where is the index of

subsequences in . It needs to address clearly that we extract substring in the system

call sequences. The substring is a consecutive part of system call sequences, but we

still denote it as subsequences since a substring is always a subsequence and most

works use subsequences to call their system call combinations.

Evaluation Phase

However, it is impossible for all of the extracted subsequence to be used as the

detection patterns. This is because some system call subsequences not only appear in

repackaged applications, but also in benign applications. For example, some extracted

subsequences are too short to be a part of malicious code. So, in the evaluation phase,

we evaluate appearance probability of subsequences to filter out non-discriminating

subsequences. We leverage the Bayes probabilistic model to calculate the probability

of by counting the number of each subsequence appearance in a set of benign

applications and . After that, we can indicate those non-discriminating

subsequences in and filter out them because they have the lower probability. After

filtering, we can get , which has the higher probability, appearance in malware

applications but have a lower probability appear in benign applications at the end of

14

this phase. If an application matches the same system call subsequence pattern of

 in execution time, we can claim that the application is repackaged with the

same malicious code.

4.2 Extraction of System Call Subsequence

Since the common malicious behavior is the most resemble part of repackaged

applications, the system call sequences which are collected from repackaged

applications should also contain the common subsequences. It is our hope to extract

the common subsequence of system call sequences to indicate the malicious behavior.

In the extraction phase, suppose that each system call names as an element, the LCSs

algorithm can find the longest common consecutive system call combination with two

different system call sequences. Figure 2 illustrated how to extract subsequence from

multiple applications in the extraction phase which contains two parts of procedure.

When a new is added to the procedure, we extract subsequences between and

all of the processed sequence sets { , , , …, } in the queue. After

extracting the common subsequences, this procedure adds this application into the

queue, saves all of the extracted subsequences into the storage, and processes

for the next target.

Layering Multi-Thread Comparison

Android applications usually have multiple threads. Under this situation, we can

get several system call sequences from different threads of an application. To extract

system call subsequences by LCSs algorithm, the simpler way of processing multiple

sequences is to exhaust all combinations of two sequences. However, it leads the

heavy overhead if an application has many child threads. Suppose we have

applications and each application has threads. The time complexity can be denote

as . To overcome this drawback, we present a Layering Multi-Thread

Comparison (LMTC) mechanism to reduce the processing overhead on multi-thread

15

system call sequences in the extraction phase. Since child threads have their parents,

we can establish the thread tree for each that depends on the relationship of

threads of parent-child. All of the threads are separated into several layers in the

thread tree. It is our observation, that same behaviors are usually appeared at the same

layer. Even these behaviors are belonged to different applications. Since every

application has a regular order of work processes, the order is also appeared in the

relationship of threads of parent-child. Without loss of generality, we assume the

malicious code pattern should be appeared at the same layer of process trees of

different repackaged application. The comparison times of subsequence extraction can

be reduced through only extracting the common subsequence with the other same

layer system call sequences. Suppose each thread tree is layered into layers in

average, the time complexity of comparison can be denote as ⁄ .

Figure 2. Example of Thread Trees

Figure 2 shows a clearer example of the process trees of malware “DroidDream

Light”. The five thread trees are extracted from five different applications which are

repackaged with the same malicious code. Obviously, they have varies tree structures

and the different number of child threads. Each node denotes an individual thread, and

the arrows indicate the relationship of parent-child between two threads. If we need to

16

extract common system call subsequences from these five process trees, for each

sequence extraction, each thread tree needs to compare the chosen thread with the

other four threads. The total number of extract combinations is 98784 (

). However, only 5437 extract combinations are available by applying LMTC

in this example. (1 () combination in the first layer, 5400

() combinations in the second layer, and 36 ()

combinations in the third layer, respectively. It is worth noting that the fourth layer

has no combinations since some process trees do not have threads in the fourth layer.)

4.3 Sequence Evaluation with Probability of Appearing

We get a set of system call subsequences after the extraction phase, but not all of

the extracted subsequences can be guaranteed as the truly malicious applications that

do not appear in the benign applications. Therefore, we have to evaluate the extracted

subsequences in terms of the probability of appearance under the Bayes probability

model. The probability formula is calculated as

)1(,
)() |()() |(

)() |(
)|(

BPBCPMPMCP

MPMCP
CMP

jj

j

j





where the is the system call subsequence that is used to evaluate. denotes

the probability that the given applications are benign applications. denotes the

probability that the given applications is a repackaged application. (|) denotes

the probability that the subsequences appear in benign applications, and (|)

denotes the probability that the subsequences appear in repackaged applications.

Finally, we can get the probability (|) that an application is a repackaged

application, detected by the specific system call subsequence. In the first step of

evaluation phase, we count the number of sequences occurrence in benign

applications and malicious applications. Then, in the second step, we can calculate the

17

probability (|) by the formula (1). After the processing of probability

calculation, we obtain the subsequences that appeared in the malicious application has

the higher probability than that of benign applications. And this information helps us

to find which achieves the higher accuracy for detecting repackaged

applications.

4.4 Environment Implementation

 To execute a large amount of applications, we deploy the Android emulator for

easier managing the execution environment. When a new application executes each

time, we establish a new environment and install such an application into the system

to keep the integrity and correctness of environment. It can prevent the situation that

an application is distorted by other applications that are not really relevant anymore.

In the testing environment, the version of Android emulator we used is the Android

version 2.1. According to our heuristic experiments, Android version 2.1 is the most

suitable environment to execute samples.

System call recorder

Figure 3. Zygote Mode

For recording the system calls during the period of system runtime, we use the

tool “strace” [18] to trace system calls and signals in Linux kernel. We change the

boot configuration of Android emulator to make strace attach on Zygote. As

illustrating in Figure 3, Zygote is a monitor process of an Android system. It usually

focuses on processing the request about executing a new Android application. The

new applications will be forked from Zygote and executed. This procedure is called

18

Zygote Mode. Since all of the Android applications are forked from Zygote, strace can

monitor all of the executed Android applications by tracing the child processes of

Zygote. strace individually records system calls of different threads into separated

files, and each thread produces system call sequences. After the time quantum is large

enough to record system calls, we can extract the system call sequence of the

application that we want to monitor by its process ID. Moreover, the child sequences

can be traced by checking whether the thread had forked any child threads. The

behavior of producing a child thread can be found by clone and fork system calls in

the system call sequence. The system call sequences of child threads are also

extracted for saving the complete behaviors.

19

Chapter 5 Evaluation

We use five types of repackaged applications to evaluate the effectiveness of our

approach. Initially, we describe the experiment environment and the used application

samples in Section 5.1. In Section 5.2, we present the utility of system call sequences

extraction and evaluation of our approach. Finally, the accuracy of malware detection,

including false positive and false negative, are discussed in Section 5.3 and Section

5.4.

5.1 Experiment Environment

Host 1

Emulator

(Android 2.1)

Application

(APK file) System call recorder1. Installing

Host 2

Detector2. Detecting

Database

System Call Sequences
Common System Call

Subsequences

3. Storing System Call Sequences

Trainer
6. Storing

Training Results

Internet

5. Training

7. Loading Subsequences

Data

Program

Environment

Firewall

Figure 4. Experiment Environment

Figure 4 illustrates the experiment environment which includes three programs:

system call recorder, trainer, and detector. The system call recorder is implemented in

the emulator. The emulator is continuously connected to Internet for grabbing more

behaviors of applications due to the reason that, some application behaviors need to

interact with the Internet. The trainer program is responsible for the system call

subsequences extraction and evaluation. And the detector program detects suspicious

20

applications resorting by matching with common system call subsequences that are

trained by the trainer program before.

Table 3. Number of Training Samples and Sequences

Malware Type Number of

Training

Samples

Number of

Evaluation

Samples

Number of

Recorded

Sequences

Number of

Extracted

Subsequences

Kmin 10 9 181 241

Geinimi 8 7 95 156

DroidDream 4 4 90 105

BaseBridge 4 3 86 74

DroidDream Light 3 2 30 28

For evaluating our approach, we prepare five different repackaged application

types: Kmin [19], Geinimi [20], DroidDream [21], BaseBridge [22] and DroidDream

Light [23]. Each repackaged application type has a number of applications, and we

divide those repackaged applications into two parts as Table 2 listed. The first part is

used to extract the common system call subsequences, and the second part to evaluate

the false negative of detection rate of our approach. We also collect two sets of benign

applications. The first set is used to evaluate the appearance probability of common

system call subsequences for excluding useless subsequences, and the other set to

evaluate the false positive of detection rate of our approach. The benign applications

are collected from a third-party web site. For ensuring the benign property, we utilize

several anti-virus tools [24] to check whether those applications are virus-free. For

each of benign and repackaged application samples, we record the system call

sequences for 3 minutes. Since the efficiency of LCSs algorithm can be lower when

computing with long sequences, we only record the first 5000 system calls of each

thread. However, only few threads can generate more than 5000 system calls in

3minutes.

5.2 System Call Sequences Distribution

21

Initially, we record the system call sequences of repackaged applications. The

number of total recorded sequences of each type is showed in Table 3. After the

system call sequences are recorded, by our extraction algorithm, we get another set of

sequences that are the common system call subsequences. For each extracted common

subsequence, we also apply a SHA1 digest algorithm for it to prevent the duplicate

subsequences. We extract the subsequences of each type individually. Table 2 shows

the result about the number of extracted sequences.

Figure 5. Probability Distribution of Subsequences

After the extraction, we count the number of subsequences appearance in the

benign application set and the repackaged application set from which the

subsequences are extracted for the training of Bayes probability. At first, we prepare

300 benign applications as the benign application set. The repackaged application set

is also prepared as listed in Table 3. After the calculation by Bayes probability model,

Figure 5 shows the probability distribution of subsequences. We calculate the

probability in five different types of repackaged applications, and the number of

subsequences is the sum of five results. Most of subsequences are distributed at the

interval 10%~15% and 100%. The higher probability of subsequences means if the

subsequences are discovered in an application, it has higher probability that the

8

149

50

24 17 13 6 2 4 8 3 7 4 4 1 1 5 4 5 0

201

0

50

100

150

200

250

N
u

m
b

e
r

o
f

Su
b

se
q

u
e

n
ce

s

Appearance Probability

22

application is repackaged. We select higher probability subsequences as the

significant common system call subsequences.

Table 4. The Number of Subsequences of 100% Probability

Malware Type Kmin Geinimi DroidDream BaseBridge DroidDream Light

Number of

Subsequences
158 28 9 3 3

We exclude the subsequences with lower probability than threshold, and we set

the threshold as 100% initially. After excluding these subsequences, we can collect

the significant common system call subsequences which have a probability that is

higher than the threshold and Table 4 shows the final collected results.

5.3 Accuracy of Detection

Table 5. Detection Result

Malware Type Kmin

Sample Name Kmin - 1 Kmin - 2 Kmin - 3 Kmin - 4 Kmin - 5

Number of matched subsequences 67 36 29 47 58

Sample Name Kmin - 6 Kmin - 7 Kmin - 8 Kmin - 9

Number of matched subsequences 29 26 25 52

Malware Type Geinimi

Sample Name Geimi - 1 Geimi - 2 Geimi - 3 Geimi - 4 Geimi - 5

Number of matched subsequences 8 13 1 7 3

Sample Name Geimi - 6 Geimi - 7

Number of matched subsequences 5 6

Malware Type DroidDream

Sample Name DD - 1 DD - 2 DD - 3 DD - 4

Number of matched subsequences 6 5 5 6

Malware Type BaseBridge

Sample Name Base - 1 Base - 2 Base - 3

Number of matched subsequences 1 1 1

Malware Type DroidDream Light

Sample Name DDL - 1 DDL - 2

Number of matched subsequences 0 1

With regarding the detection accuracy, we prepare several repackaged

23

applications listed in Table 3 to evaluate the false negative of detection rate. In

addition, we also prepare 100 benign applications to evaluate the false positive of

detection rate. We put the significant common system call subsequences which are

extracted from different types independently of the five type sets. Then, we take those

subsequences as the pattern to match in the system call sequences of the same type of

repackaged applications. An application is detected as a repackaged application if it

has the same subsequence in its system call sequences. Table 5 shows the detected

result. Most of repackaged applications can be detected by our approach, except the

application DDL – 1 which cannot be detected by common subsequences that we

trained in this experiment. We also evaluate the false positive rate with the benign

application set.

Table 6. True Positive and True Negative

Malware Type Kmin Geinimi DroidDream BaseBridge DroidDream Light

True Positive 100% 100% 100% 100% 50%

True Negative 100% 98% 100% 100% 100%

Figure 6. Accuracy of Detection

Suppose that true positive (TP) denotes the percentage of repackaged

applications detected correctly, and false negative (FN) denotes the percentage of

repackaged applications detected incorrectly; on the contrary true negative (TN)

Kmin Geimini DroidDream BaseBridge
DroidDream

Light

Accuracy 100.00% 98.13% 100.00% 100.00% 99.02%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n

ta
g

e

24

denotes the percentage of benign applications which are not detected by any excluded

subsequences, and false positive (FP) be the percentage of benign applications which

are incorrectly detected as repackaged applications. denotes the number of benign

applications. denotes the number of repackaged applications. Table 6

demonstrates the true positive and true negative of detection rate that we evaluated

with prepared samples. And the Accuracy can be calculated as

)2(%.100
)()(







BFPTNMFNTP

BTNMTP
Accuracy

Our approach has a good accuracy rate to detect repackaged applications. It is

worth noting that, our approach has a very low false positive rate and a false negative

rate. For all of five type samples, we only miss one evaluated target in 25 repackaged

applications. For the 100 benign evaluation samples, our approach only has 2 false

positive of benign samples. The accuracy is 97%. Referring to Figure 6, compared

with other experimental results, only the true positive rate of DroidDream Light is

significantly lower than that of our results, but we only miss one target. And this

could be explained by an insufficient training and evaluation samples of DroidDream

Light.

5.4 Relationship of Training Samples and Sequences

Figure 7. True Positive and True Negative of Different Training Sets

For more detail study about the accuracy, we put all of the system call

100 96 96

64

89
98

0

20

40

60

80

100

29 Benign Samples 150 Benign Samples 300 Benign Samples

P
e

rc
e

n
ta

ge
 (

%
)

True Positive True Negative

25

subsequences which are extracted from different types together. First, we change the

number of benign training samples which are used to training the Bayes probability.

The first set is the 300 benign samples that we initially used. The second set is the half

of the first set. And the number of samples of third set is same as the total number of

malicious training samples showed in Table 2.

All of three sets are trained with the same 29 malicious samples. We take these

three sets to evaluate true positive and true negative in the same benign and malicious

evaluation samples of Chapter 5.3. Figure 7 shows the result. If we add more benign

samples to training, we can get a higher true negative rate. However, it is possible to

get a lower true positive rate, since the more benign training samples we used will

cause more subsequences are filtered. And the malware detection ability is also

reduced because we get less subsequence.

Figure 8. Sequences of Different Number of Repackaged Applications

The second part we evaluate is to reduce the number of malicious training

samples. We select Kmin and Geinimi as two independent samples sets. For each of

the malicious training samples set, we divide in half to get another two sets for

observing the changes. All the four sets are trained with the same 300 benign samples.

Figure 8 show that when we used less malicious samples to extract common

subsequences, we got fewer subsequences. And the number of sequences of 100%

241

112

156

65

158

65

28
7

0

50

100

150

200

250

300

Kmin (10 training samples) Kmin (5 training samples) Geinimi (8 training
samples)

Geinimi (4 training
samples)

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s

Number of Extracted
Sequences

Number of Sequences
of 100% Probability

26

probability is also reduced in the similar proportion.

Table 7. Change of True Positive and True Negative

Malware Type Kmin

(10 samples)

Kmin

(5 samples)

Geinimi

(8 samples)

Geinimi

(4 samples)

True Positive 100% 100% 100% 100%

True Negative 100% 100% 98% 100%

Accuracy 100% 100% 98.13% 100%

We also evaluate the detection accuracy of these four sets. As Table 7 showed, if

we use less malicious training samples, the true negative rate is increased. But it is

possible to get a poor true positive rate if we reduce more malicious training samples.

Since the less malicious training samples we used, the less subsequence can be

extracted. Both of the miss match of benign samples and the detection ability of

malicious samples are reduced.

Table 8. The Relationship of Number of Samples and Sequences (Kmin)

Number of Malicious

Training Samples

Number of Extracted

Sequences

Number of Benign

Training Samples

Number of Sequences

of 100% Probability

10 241 300 158

10 241 150 161

5 112 300 65

5 112 150 67

Finally, we use Kmin as the example to show the relationship between the

number of samples and the number of sequences in Table 8. It can be observed more

malicious training samples result in more extracted sequences. However, there are

less sequences can be obtained when more benign training samples are used for

training. So, if we take more malicious samples to train for increasing the true positive

rate, the benign training samples should also be increased to keep the high true

negative rate.

5.5 Fixed-Length and Longest Common Subsequences

To identify the benefit of using the longest common subsequences, we compare

27

our approach with other works which use the fixed-length common subsequences. For

example, Rozenberg, et al. [16] using 15 system calls as the length of subsequences.

So we compare the accuracy of detection between using the longest common

subsequences and the fixed-length common subsequences of length 15.

Figure 9. Number of Subsequences of Different Approaches

Figure 9 shows the number of extracted subsequences and the number of

subsequences which doesn’t appear in our benign training samples by using different

approaches. For using the fixed-length common subsequences of length 15, the

number of extracted subsequences is dramatically higher than using the longest

common subsequences. After filtering by our training, the numbers of common

subsequences of length 15 are still very high.

Figure 10. Accuracy of Different Approaches

After the filtering, we use these two sets of common subsequences to evaluate

516 201

6206

2956

0
1000
2000
3000
4000
5000
6000
7000

Number of Extracted Subsequences Number of Subsequences of 100%
Probability

Longest Common Subsequences Fixed-Length Common Subsequences(Length 15)

98% 96% 97.60%
88%

100%
90.40%

0%

20%

40%

60%

80%

100%

True Negative True Positive Accuracy

Longest Common Subsequences Fixed-Length Common Subsequences(Length 15)

28

the accuracy with the same groups of repackaged applications and benign applications.

As the Figure 10 indicates, using the longest common subsequences has higher true

negative than using the fixed-length. In the 100 benign applications, fixed-length

common subsequences have 12 false positives. But longest common subsequences

only have 2. However, longest common subsequences has lower true positive rate

since we have one false negative. Applying to the formula (2), the result shows that

using the longest common subsequences has a higher accuracy than using

fixed-length. The longest common subsequences reduce both the false positive rate

and the number of subsequences which we use for detecting.

5.6 Case Study of Subsequences

Two case studies are prepared to clarify the content of subsequences we

extracted and the reason of false positive.

Malicious Behavior

1 stat64("/data/data/com.droiddream.lovePositions/shared_prefs/pref_config_setting.xml", 0xbea238c8) = -1 ENOENT

(No such file or directory)
2 ioctl(10, 0xc0186201, 0xbea237f8) = 0
3 ioctl(10, 0xc0186201, 0xbea237f8) = 0
4 ioctl(10, 0xc0186201, 0xbea237f8) = 0
5 ioctl(10, 0xc0186201, 0xbea237f8) = 0
6 ioctl(10, 0xc0186201, 0xbea237f8) = 0
7 ioctl(10, 0xc0186201, 0xbea237f8) = 0
8 ioctl(10, 0xc0186201, 0xbea237f8) = 0
9 ioctl(10, 0xc0186201, 0xbea237f8) = 0
10 ioctl(10, 0xc0186201, 0xbea237f8) = 0
11 ioctl(10, 0xc0186201, 0xbea237f8) = 0
12 ioctl(10, 0xc0186201, 0xbea237f8) = 0
13 ioctl(10, 0xc0186201, 0xbea237f8) = 0
14 ioctl(10, 0xc0186201, 0xbea237f8) = 0
15 ioctl(10, 0xc0186201, 0xbea237f8) = 0
16 ioctl(10, 0xc0186201, 0xbea237f8) = 0
17 ioctl(10, 0xc0186201, 0xbea237f8) = 0
18 ioctl(10, 0xc0186201, 0xbea237f8) = 0
19 ioctl(10, 0xc0186201, 0xbea237f8) = 0
20 mprotect(0x41adf000, 8192, PROT_READ|PROT_WRITE) = 0
21 socket(PF_INET6, SOCK_STREAM, IPPROTO_IP) = -1 EAFNOSUPPORT (Address family not supported by

protocol)
22 socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 26
23 getsockname(26, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0
24 bind(26, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("0.0.0.0")}, 128) = 0
25 getsockname(26, {sa_family=AF_INET, sin_port=htons(60670), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0
26 ioctl(26, FIONBIO, [1]) = 0
27 getsockname(26, {sa_family=AF_INET, sin_port=htons(60670), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0
28 connect(26, {sa_family=AF_INET, sin_port=htons(8080), sin_addr=inet_addr("184.105.245.17")}, 128) = -1

EINPROGRESS (Operation now in progress)

Figure 11. The Subsequence of Malicious Behavior

We show a piece of subsequence which has malicious behaviors in Figure 9. It is

a sequence which is extracted from malware “DroidDream”. Referring to the

29

subsequence, the application checks whether the file “pref_config_setting.xml” has

existed at the first. If a device had been compromised by “DroidDream”, the file

“pref_config_setting.xml” should exist. This examination is implemented to avoid

stealing information from the same devices again. Since our environment is clear, the

file “pref_config_setting.xml” should not exist in the file system. So, after the

examination, the application starts to ask the remote server (184.105.245.17) for

preparing to attack this device.

The Reason of False Positive

In our experiment of Chapter 5.3, our approach still has two false positives when

detecting a benign application as a malicious one. These two cases are caused by the

same subsequence which is extracted from malware “Geinimi”.

1 prctl(0x8, 0x1, 0, 0, 0) = 0
2 setgroups32(2, [3003, 1015]) = 0
3 setgid32(10028) = 0
4 setuid32(10028) = 0
5 gettid() = 251

……
95 open("/data/app/com.moonbeam.android.magicshop.apk", O_RDONLY|O_LARGEFILE) = 24
96 lseek(24, 0, SEEK_CUR) = 0
97 lseek(24, 0, SEEK_END) = 3493907
98 lseek(24, 0, SEEK_SET) = 0
99 lseek(24, 3493885, SEEK_SET) = 3493885
100 read(24, "P", 1) = 1
101 read(24, "K", 1) = 1
102 read(24, "\5", 1) = 1
103 read(24, "\6", 1) = 1
104 lseek(24, 0, SEEK_CUR) = 3493889
105 lseek(24, 0, SEEK_CUR) = 3493889
106 lseek(24, 0, SEEK_END) = 3493907
107 lseek(24, 3493889, SEEK_SET) = 3493889
108 lseek(24, 3493889, SEEK_SET) = 3493889
109 read(24, "\0\0\0\0\30\1\30\1\2H\0\0\373\0075\0\0\0", 18) = 18
110 lseek(24, 0, SEEK_CUR) = 3493907
111 lseek(24, 0, SEEK_END) = 3493907
112 lseek(24, 3493907, SEEK_SET) = 3493907
113 lseek(24, 3475451, SEEK_SET) = 3475451
114 read(24, "PK\1\2\24\0\24\0\10\0\10\0\262\246T=j\260l\257\322\34\0"..., 4096) = 4096
115 lseek(24, 3479547, SEEK_SET) = 3479547
116 read(24, "\0\0\0\367\226i;H\360\30PH\266\0\0H\266\0\0\23\0\0\0\0"..., 4096) = 4096

Figure 12. The Case of False Positive

Referring to Figure 10, the subsequence is the case of false positive which is

executed when an application startup. This subsequence contents some of preparing

operations before the system reads the content of applications. So, it is possible to

appear both in repackaged applications and benign applications. However, the

common subsequences of benign behavior should be filtered in our training. But this

30

subsequence contents 116 system calls which is too long. Therefore, it has small

probability to happen again in other applications although the subsequence only

contents benign behaviors.

31

Chapter 6 Conclusions and Future Works

Due to openness and accessibility of Android, adversaries can repackage

malicious code into the malicious applications as the benign applications. For users,

the outward appearance of repackaged applications is like a normal application, and

they are prone to distribute on marketplaces. Over the past few years, most of related

works detect repackaged applications by comparing them with the original benign

applications. However, it is computational infeasible to search all original applications

in the Internet. To overcome this drawback, we present an approach with the concept

on extracting the common behaviors of repackaged applications in system call

sequences. The detection only requires a few repackaged applications with the same

type to extract the common system call subsequences. In addition, our approach does

not need to collect and compare the original benign applications with the repackages

applications. We take those extracted common system call subsequences as the

behavior patterns to detect repackaged applications.

In our experiment, we use five different types of repackaged applications to

evaluate the accuracy rate. Our approach extracts 238 common system call

subsequences from training samples, and the detection result demonstrates that our

approach has higher true positive rate in detecting most repackaged applications. We

evaluate 25 repackaged applications and only miss one evaluated target. Our approach

also has higher true negative rate in verifying benign applications. The accuracy of

detection rate is 97.6% in all of evaluation applications.

However, the evasion is still possible in the system call sequences detection. For

example, the attacker can insert some system calls which are no effect to its behavior

but can change the combination of system call sequences. To prevent this situation,

we should allow some gaps exist in the sequence. For our LMTC algorithm, the

32

repackaged applications can produce the same thread into different layers to escape

from our sequences extraction since our approach only compare between the

sequences of same layers. But we still can compare between all of the sequences

rather than only the same layers to prevent this scenario.

In the future, we hope to study application behaviors analysis. We only can

record the behaviors which are automatically generated from applications. However,

applications have more behaviors when users perform the related operations.

Therefore, we need to design a tool to grab the complete behaviors in the applications

when they are triggered. Moreover, we also hope to develop an on-device detector of

system call sequences detection which can work like the anti-virus software that

directly detects repackaged applications on mobile devices.

33

Reference

[1] W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android security,”

IEEE Security & Privacy Magazine, vol. 7, no. 1, pp. 10–17, 2009.

[2] T. Vidas, D. Votipka, and N. Christin, “All your droid are belong to us: A survey

of current android attacks,” Proceedings of the 5th USENIX conference on

Offensive technologies, San Francisco, CA, USA, August 2011.

[3] Y. Zhou, and X. Jiang, “Dissecting Android Malware: Characterization and

Evolution,” Proceedings of the 33rd IEEE Symposium on Security and Privacy,

San Francisco, CA, May 2012.

[4] M. Zheng, P. P.C. Lee, and J. C.S. Lui, "ADAM: An Automatic and Extensible

Platform to Stress Test Android Anti-Virus Systems,“ Proceedings of the 9th

Conference on Detection of Intrusions and Malware & Vulnerability Assessment

(DIMVA'12), Heraklion, Crete, Greece, July 2012

[5] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.

Sheth, “TaintDroid: An information-flow tracking system for realtime privacy

monitoring on smartphones,” Proceedings of the 9th USENIX conference on

Operating systems design and implementation, Vancouver, BC, Canada, pp.

393–407, October 2010.

[6] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone

application certification,” Proceedings of the 16th ACM conference on Computer

and communications security, Chicago, IL, USA, pp. 235–245, November 2009.

[7] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automated security

certification of Android applications,” Technical report, University of Maryland,

2009.

[8] T. l sing, . atyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, “An

android application sandbox system for suspicious software detection,”

Proceedings of the 5th International Conference on Malicious and Unwanted

Software (Malware 2010), Nancy, France, pp. 55–62, 2010.

[9] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis for

Android malware detection,” Proceedings of the 7th International Conference on

Computational Intelligence and Security, Sanya, Hainan, China, pp. 1011–1015,

December 2011.

[10] I. Burguera, U. Zurutuza, and N. T. Simin, “Crowdroid: Behavior-based malware

detection system for Android,” Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile devices, Chicago, IL, USA, pp.

15–25, October 2011.

34

[11] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self for

Unix process,” Proceedings of the 1996 IEEE Symposium on Security and

Privacy, Oakland, CA, USA, pp. 120–128, May 1996.

[12] C.Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using system

calls: Alternative data models,” Proceedings of the 1999 IEEE Symposium on

Security and Privacy, Oakland, CA, USA, pp. 133–145,May 1999.

[13] K. Wee, and B. Moon, “Automatic generation of finite state automata for

detecting intrusions using system call sequences,” Proceedings of International

Workshop on Mathematical Methods, Models, and Architectures for Computer

Network Security, St. Petersburg, Russia, 2003.

[14] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system call

detection,” ACM Transactions on Information and System Security, vol. 9, no. 1,

pp. 61–93, February 2006.

[15] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of malicious

behavior,” Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, Dubrovnik, Croatia, pp.5–14, September 2007.

[16] B. Rozenberg, E. Gudes, Y. Elovici, and Y. Fledel, “A Method for Detecting

Unknown Malicious Executables,” Proceedings of the 2011 IEEE 10th

International Conference on Trust, Security and Privacy in Computing and

Communications, Changsha, China, pp. 190–196, November 2011.

[17] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone

applications in third-party Android marketplaces,” Proceedings of the 2nd ACM

Conference on Data and Application Security and Privacy, San Antonio, TX,

USA, February 2012.

[18] “strace,” available at: http://sourceforge.net/projects/strace/

[19] “Encyclopedia entry: Trojan:AndroidOS/Kmin.A,” available at:

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Nam

e=Trojan%3AAndroidOS%2FKmin.A .

[20] T. Strazzere, and T. Wyatt, “Geinimi Trojan Technical Teardown,” Lookout

Mobile Security, 2011.

[21] “ ookout Mobile Security Technical Tear Down,” ookout Mobile Security.

[22] “Android.Basebridge,” available at:

http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4

938-99 .

[23] “Security Alert: New DroidDream Light Variant Published to Android Market,”

available at:

http://blog.mylookout.com/blog/2011/07/08/security-alert-new-droiddream-light-

35

variant-published-to-android-market/ .

[24] “VirusTotal - Free Online Virus, Malware and URL Scanner,” available at:

https://www.virustotal.com/ .

