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利用行為相似性偵測 Android 平台惡意應用程式 

 

學生: 陳健宏                            指導教授: 林盈達 

國立交通大學網路工程研究所 

 

摘要 

隨著行動裝置計算能力的提升與盛行，在手機上提供的應用程式越趨多樣化，

但卻同時成為了系統安全上新的攻擊目標。對於目前流行的 Android 系統平台，

攻擊者可以透過再包裝與混淆的技術，將惡意程式碼同時隱藏到多個看似一般的

應用程式來進行散佈，使得 Android 平台上的惡意程式偵測與分析工作更加的費

時和困難。然而，被打包惡意程式碼的應用程式即使有了不同的外表，但同樣的

惡意程式碼仍然會產生出同樣的行為，因此我們提出了一套利用系統呼叫序列來

進行應用程式的行為偵測方法，此方法能夠從多執行緒的惡意程式所產生的系統

呼叫序列中找出共同子序列，並且利用貝氏機率模型來過濾出有較高機率出現在

惡意應用程式，但較低機率在正常應用程式執行時出現的系統呼叫序列。最後我

們能夠利用這些抽取出來的系統呼叫序列，對待檢測的應用程式所執行的系統呼

叫序列中進行掃描。我們使用五個種類的被打包惡意程式碼的應用程式與一百正

常的應用程式來進行準確率的評估，在所有的種類裡面，我們的方法可以得到

97.6%的高準確率，在所有 25 個被檢測的惡意應用程式中，僅有一個沒有被辨識

出來。 

 

 

關鍵字: 惡意應用程式，行為偵測，系統呼叫，Android 
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Identifying Malicious Applications by Behavioral Similarity on 

Android Platforms 

 

Student: Chien-Hung Chen                Advisor: Dr. Ying-Dar Lin 

Department of Computer and Information Science 

National Chiao Tung University 

 

Abstract 

As mobile applications become popular, they become the new target of attackers. 

For Android platforms, adversaries can easily repackage the malicious code into the 

different benign applications for distribution. The work of detecting and analyzing the 

malicious application becomes a challenge of Android. Though, the repackaged 

applications have different outward appearances, the same malicious behaviors still 

appear during runtime. Therefore, we propose a behavior-based detection mechanism 

based on system call sequences. We extract the common system call subsequences of 

malicious applications and purpose a comparison approach to deal with multiple 

threads produced by the applications. We also utilize the Bayes probability model to 

filter subsequences which have lower probability of appearance in the repackaged 

applications. Finally, we can detect repackaged applications by those extracted 

subsequences. In our experiment, we use five different types of repackaged 

applications and 100 benign applications to evaluate the accuracy rate. The detection 

result demonstrates that our approach has 97.6% high accuracy. We evaluate 25 

repackaged applications and miss only one evaluated target. 

 

 

Keywords: malicious applications, behavior-based detection, system call, Android 
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Chapter 1 Introduction 

With the rapid increase of wireless mobile networks, the smart handheld have 

become popular and bring us new applications and integration with existing online 

services. Over the past decade, many operating systems have been developed to 

provide a comprehensive infrastructure for these devices. Among them, the Android 

platform, developed by Google, is one of the most popular mobile operating systems 

because of its open source. A large community of developers has designed many new 

applications for Android. Android provides an open environment called “Android 

Market” from which users can download applications. However, this scenario suffers 

from some weakness. An adversary can distribute their malicious applications that can 

launch various security attacks including escalating privilege, monitoring users’ 

behaviors, and compromising the sensitive information at the end devices [1-3]. 

Especially, different from the traditional attacking mechanisms on the desktop, an 

adversary can repackage the malware into the different benign applications to deceive 

users installing the affected applications on mobile devices. Hence, detecting malware 

from various applications becomes a challenge of Android [4]. 

Signature-Based Detection vs. Behavior-Based Detection 

 Typically, the malware detection mechanisms can be categorized into two types. 

The first type is the signature-based detection mechanisms. We search the binary 

image for the suspicious malicious patterns and then extract the unique signature for 

each of them. Then we can identify malware by matching the binary image of these 

applications with a database of signatures. Although signature-based detection 

mechanisms are simple, efficient, and effective for the known existing malware, they 

suffer from the drawback of not being able to detect the previously unknown malware. 

To overcome the limitation, the behavior-based detection mechanisms have been 
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therefore proposed. These mechanisms attempt to observe suspicious runtime 

application behaviors. Independent of the binary image of malware, the 

behavior-based mechanisms could significantly increase the detection rate for 

unknown and obfuscated malware. Hence, the behavior-based mechanisms are more 

suitable to detect the repackaged malicious applications. 

 To identify Android malicious applications, many detection mechanisms have 

been proposed. For example, TaintDroid [5] tracks the information flow in the system 

to identify the sensitive information leakage from applications, but it only detects the 

malware that tries to obtain the sensitive data. In addition, ScanDroid [6] and Kirin [7] 

attempt to verify the permission and the information flow in program codes before 

users install applications. However, only codes with violated permissions in codes can 

be identified as the malicious applications. Others detection mechanisms utilize the 

kernel-based system calls to analyze the behaviors of malware. AAsandbox[8] counts 

all system calls used in Android system to identify the anomaly. Isohara, et al. [9] 

write a set of regular expression rules to matching in the repackaged applications. 

CrowDroid [10] utilizes system calls to clustering benign and malicious applications. 

But it suffers from a drawback of needing the original application to compare with the 

repackaged one. According to our observation, none of them can be utilized to detect 

all the repackaged applications efficiently.  

 To solve the problem of repackaged applications, we propose a novel 

behavior-based detection version which relies on system call sequences. The key idea 

is to observe the system call sequences that are trigger by applications, i.e., although a 

malicious code can camouflage into a benign application, the malicious behavior still 

appears in the system call sequences. Since the system call interface is embedded in 

the kernel space at the low layer of Android architecture, processes are hard to hide 

triggered system calls. By applying this concept, our approach extract common 
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system call sequences in a set of same type but are repackaged malware by longest 

common substring algorithm to find the longest sequence patterns. To filter out the 

benign behaviors, we also employ the Bayes probabilistic model for evaluating the 

appearance probability of extracted system call sequences to find the significant 

malicious sequences. Through this approach, the repackaged malware can be detected 

with high accuracy and the false positive rate can be reduced significantly. 

 The rest of this thesis is organized as follows. In Chapter 2, we give a brief 

survey of related works which describes both desktop and Android environments. In 

Chapter 3 and Chapter 4, we describe the details of the proposed mechanism on 

processing system call sequences and its implementation, respectively. Some 

experiment results and discussions are presented in Chapter 5. Finally, Chapter 6 

gives the conclusions and future works. 
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Chapter 2 Background 

In this chapter, we describe the issue on how to detect repackaged malicious 

applications on the Android environment. Malware has been an issue on desktops 

many years ago, and many works have been proposed to detect malware. In recent 

years, malware has propagated to handhelds. Herein, we give a brief overview about 

malware behavior differences between desktops and handhelds. Some related works, 

such as malware detection by system calls on desktops and Android platforms, are 

also discussed. 

2.1 Malware Differences between Desktops and Handhelds 

Compared with desktops, malware detection in handhelds suffers from some 

limitations. Among them, one of the biggest problems is the power consumption. 

Unlike powerful desktops, handhelds are only supported with finite energy from 

batteries. This situation constrains us from exhausting the energy to detect malware. 

The other problem is the limitation of the kernel of the operating system. For instance, 

Android is built on the Linux kernel. Android applications are executed on the virtual 

machine, Dalvik, which isolates applications by marking each application run as its 

own user. Hence, it is hard to observe or to block the malicious application from our 

programs without the root privilege. Due to these significant drawbacks, traditional 

desktop based malware detection mechanisms cannot be performed on the Android 

environment. 

Many changes in malware’s purpose and behavior also lead us to improve 

detection methods for the new circumstance. Basically, attack methods can be 

categorized into two types: server-side attack and client-side attack. In a server-side 

attack, attackers directly aim to the potential vulnerabilities in a server which exposes 

its services to clients. Most active malware, like worms or some kinds of bots, usually 
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utilizes this avenue for spreading. Fortunately, handhelds do not always access the 

Internet services, a server-side attack cannot mount very well on handhelds. In 

contrast, client-side attacks target vulnerabilities in client applications which interact 

with the malicious server. Hence, attacker can construct a phishing site or embed the 

malicious code into an ordinary server and infect applications of a client when a client 

accesses the forgery information. For example, spyware and trojan horses are the two 

typical instances to infect systems through this scenario. In addition, an attacker can 

easily obtain the privacy information through the applications that have been infected 

by spyware and trojan horses, i.e., the secret information can be obtained through the 

SMS messages or phone calls. Compared with detecting worms and bots, it is a thorny 

problem to detect spyware and trojan horses on handhelds. 

2.2 Related Works on Desktop Environment 

In the traditional desktop environment, signature-based detection is the most 

popular technique used in anti-virus and intrusion detection systems. Unfortunately, 

signature-based methods cannot detect the zero day malware. To overcome this 

security flaw, many behavior-based methods were proposed. Among them, system 

call is one of the popular techniques used to deeply monitor program behaviors. 

Forrest, et al. [11] records the normal system call behaviors of a specific program into 

a database. As the compromised program executing malicious code paths, the 

anomalous system call sequence patterns are detected because the system call patterns 

do not exist in the database. After that, many researches have extended the system call 

approach and apply system call sequences into different models, such as hidden 

Markov model [12], finite state automata [13], or Bayes model [14], to improve the 

detection efficiency. Unfortunately, those proposed methods need to collect all the 

behaviors in the specified programs. Collecting all behaviors in a large system, such 

as the Android environment, is computational infeasible. 
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Christodorescu, et al. [15] apply malware behavior sequences into dependence 

graphs and extract the subgraphs which do not appear in benign program for detecting 

malware variants. Rozenberg, et al. [16] also collect fix length short system call 

sequences from malware to detect unknown malware. In this work, we do the similar 

but more force on multi threads processing and discover more precise system call 

sequences to achieve the high accuracy for detecting repackaged applications. 

2.3 Related Works on Android Environment 

Table 1. Related Works of Malicious Android Applications Detection 

Analysis 

Approach 

Paper Works 

[Reference #] 
Factor Target 

Static 

ScanDroid [6] Program Code Application Verification 

Kirin [7] Permission Application Verification 

DroidMOSS [17] Code Instructions Repackaged Applications 

Dynamic 

TaintDroid [5] Data flow Data Leaking 

Kernel-based 

behavior analysis [9] 

System Call 

Name and Parameter 
Anomaly Behaviors 

AASandbox [8] Amount of System Call Anomaly Behaviors 

CrowDroid [10] Amount of System Call Repackaged Applications 

This Work System Call Sequences Repackaged Applications 

Referring to Table 1, in the Android environment, many researchers focus on 

how to verify Android applications. For instance, Enck, et al. [5] developed a novel 

system called “TaintDroid”. The key idea is that they track the sensitive data by 

labeling data in the memory and detecting the runtime privacy leaking behavior of 

applications. Although TaintDroid system is simple and efficient, it only detects the 

malware that attempts to obtain the sensitive data. For other types of repackaged 

applications, TaintDroid cannot detect them well. 

Kirin [6] utilizes a set of permission rules to block before installing applications 

which require unsafe permission combination. ScanDroid [7] extracts security 

specifications from manifest for automatically checking data flows in the application 
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code. They can identify malicious applications which violate permissions in codes. 

AAsandbox [8] applies both static and dynamic approaches to analyze 

applications. This means that it decompiles the installation file and then searches for 

the suspicious patterns in the decompiled codes. During the application runtime, 

AAsandbox counts all system calls used in Android system. However, AAsandbox 

only sworks with specific malware, i.e., it cannot detect multiple types of malware. 

This is because its dynamic approach only detects abnormal system call usage. 

The method proposed by T. Isohara, et al. [9] collects the runtime information of 

applications through system calls. They search some keywords in the names and 

parameters of system calls to generate a set of regular expression rules. In addition, 

they utilize the generated rules to search suspicious system calls and detect Android 

malware. However, the malicious applications still have a chance to escape from 

being detected by encapsulating or obfuscating the keyword in parameters. 

CrowDroid [10] is another typical method to evaluate applications by using 

system calls. After the system collects all the system calls used from a set of user 

devices during the application runtime, it adopts K-means clustering algorithm to 

classify the collected data into two groups, the benign group and the malicious group. 

And the malicious group can be used to identify the specified user who is running the 

repackaged application. CrowDroid needs a set of users to execute the same original 

application or the repackaged application, nevertheless, find the original application 

of all repackaged malicious applications is inefficient and impossible in Android 

environment. 

DroidMOSS [17] is a system which aims to discover repackaged applications in 

the third-party marketplace. DroidMOSS calculates the similarity scores by 

comparing the author information and code instruction hash between the original 

applications and the repackaged applications in the different marketplaces. Finally, it 
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finds the repackaged applications in the third-party marketplaces since the repackaged 

application has a different appearance with the original application provided by the 

official market. However, DroidMOSS has two weaknesses. Let us consider the 

following scenario, i.e., once the malware is distributed both in the third-party 

marketplace and in the official market, DroidMOSS cannot distinguish the malware 

from the repackaged applications. The other is that not all of the original applications 

can be obtained from the official market.  

As a result of these incomplete methods, our proposed method aims to extract 

longest system call sequences patterns from the same type of repackaged applications 

and utilize the patterns to detect repackaged malware without the original applications. 

Our contribution includes a new approach about extracting multi-thread common 

system call sequences and applying the system call sequence to detect repackaged 

applications with Bayes probability. 
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Chapter 3 Problem Statement 

To detect Android repackaged applications, we therefore proposed a 

behavior-based detection mechanism. In the beginning of this chapter, we describe the 

key idea that is adopted in the proposed mechanism. And then, we give the problem 

statement in subsection 3.2. 

3.1 System Call Sequence Detection 

To disseminate malware to users, attackers usually embed their malicious codes 

into the normal applications, and then publish these repackaged applications to the 

official Android market or the third-party market. This dissemination path is simple, 

efficient, and effective because the repackaged applications are like benign 

applications to fool users into obtaining the secret information. In order to detect the 

malicious repackaged applications, the proposed mechanism observers the behaviors 

during the execution period of repackaged applications rather than the outward 

appearance of repackaged applications. The key idea is that, even attackers can embed 

the malicious codes into varies applications, the behaviors of executing applications 

are consistent with the barely malicious code instructions. Hence, the proposed 

mechanism observes the execution behaviors of application and then extracts the 

common behavior patterns to distinguish malware. 

For collecting application behaviors, we utilize the kernel-based system calls. 

System calls provide interact between processes and the operating system kernel for 

receiving service or resource requests. All service and resource requests can be 

observed by monitoring the system call interface, and the sequential requests form up 

a sequence of system calls. The observed system call sequence can be regarded as the 

request behaviors during the application executing. There are other ways to collect 

call sequences, such as function calls of higher layers also provide the similar 
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functionality to form up call sequences, but it would lead ambiguous because of its 

multi-interfaces. Let us consider a scenario. For example, Android applications can 

request a service of application framework through Android API or directly access the 

libraries through Java Native Interface to achieve the same functionality. The 

application can produce the same behavior but with different call interfaces, and the 

call sequence will be more complicated if we need to integrate more than one 

interfaces. It is also possible that the program gets the root permission and executes at 

lower level than Android API and JNI. Hence, the proposed mechanism used system 

calls not only simply indicate the running behavior of applications, but also record the 

behavior of malicious codes completely than using high level function call.  

Therefore, for detecting malicious repackaged applications, we initially collect a 

set of same type repackaged applications  . Let    denotes the  -th repackaged 

application in the set  . Then, for each   , we record the corresponding    as a set 

of system call sequences. After that, we can extract the common system call 

subsequences       from the set {  ,   ,   , …,  | |} to derive the common 

behavior patterns. Finally, for those undiscovered repackaged applications      with 

the same malicious codes, we can detect them from a set of applications to be 

inspected   by      . 

Table 2. Definition of Symbols 

  A set of same type repackaged applications. 

   The  -th repackaged application in  . 

   The set of recorded system call sequences from   . 

      The set of significant common system call subsequences 

which are extracted from the set {  ,   ,   , …,  | |}. 

  A set of applications to be inspected. 

     [1] The set of true repackaged applications in  . 
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3.2 Problem Description 

The detail problem description is given as follows. Given the Android platform, 

a set of malicious repackaged applications, and a set of applications to be inspected, 

design an approach to extract the behavior patterns of applications by system call 

sequences, and aim to detect malicious repackaged applications with the same 

malicious codes. 

The problem could be defined as in the following: 

Given 

(1) the Android platform, 

(2) a set of malicious applications  , and 

(3) a set of applications to be inspected  , 

suppose 

(1)    is the  -th repackaged application in  , 

(2)    is the set of recorded system call sequences from   , 

(3)       is the set of significant common system call subsequences which are 

extracted from the set {  ,   ,   , …,  | |} and 

(4)      is the set of true repackaged applications in  , 

the objectives are 

(1) extract       from   and 

(2) identify      from   by      . 
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Chapter 4 Approach 

In this chapter, we detail the processing of our system call sequence detection 

mechanism. In Section 4.1, we give an overview of system call sequence processing 

which we present. The details of our approach are illustrated in Section 4.2 and 

Section 4.3, respectively. Final, we describe the implementation issues in Section 4.4. 

4.1 Approach Overview 

 

Figure 1. Flowchart of System Call Sequence Processing 

Figure 1 shows the overview of our approach. For extracting the common 

behavior patterns, three phases, including recording phase, extraction phase, and 

evaluation phase, are involved in the proposed approach. In the following, we first 

describe these phases, respectively. 

Recording Phase 

 In this phase, for all of applications in  , we sequentially select an application 

   from  , and then execute the    individually to record the system call requests 

during the Android system runtime. Next, we extract Si from all of system call data by 
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the process ID of    and the corresponding child thread IDs. After all of    

extracting, we can obtain   in the recording phase. 

Extraction Phase 

The extraction phase aims to extract a set of common system call subsequences 

  from all of   . Since the same malicious code can trigger same system call 

sequences, we extract   by Longest Common Substring (LCSs) algorithm for 

comparing system call sequences of different repackaged applications. In addition, to 

improve the efficiency, we also present a mechanism for reducing the time cost of 

extracting within multi-thread system call sequences. Finally,   is obtained and each 

common system call subsequence in   is denoted as   , where   is the index of 

subsequences in  . It needs to address clearly that we extract substring in the system 

call sequences. The substring is a consecutive part of system call sequences, but we 

still denote it as subsequences since a substring is always a subsequence and most 

works use subsequences to call their system call combinations. 

Evaluation Phase 

However, it is impossible for all of the extracted subsequence to be used as the 

detection patterns. This is because some system call subsequences not only appear in 

repackaged applications, but also in benign applications. For example, some extracted 

subsequences are too short to be a part of malicious code. So, in the evaluation phase, 

we evaluate appearance probability of subsequences to filter out non-discriminating 

subsequences. We leverage the Bayes probabilistic model to calculate the probability 

of    by counting the number of each subsequence appearance in a set of benign 

applications   and  . After that, we can indicate those non-discriminating 

subsequences in   and filter out them because they have the lower probability. After 

filtering, we can get      , which has the higher probability, appearance in malware 

applications but have a lower probability appear in benign applications at the end of 
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this phase. If an application matches the same system call subsequence pattern of 

      in execution time, we can claim that the application is repackaged with the 

same malicious code. 

4.2 Extraction of System Call Subsequence 

Since the common malicious behavior is the most resemble part of repackaged 

applications, the system call sequences which are collected from repackaged 

applications should also contain the common subsequences. It is our hope to extract 

the common subsequence of system call sequences to indicate the malicious behavior. 

In the extraction phase, suppose that each system call names as an element, the LCSs 

algorithm can find the longest common consecutive system call combination with two 

different system call sequences. Figure 2 illustrated how to extract subsequence from 

multiple applications in the extraction phase which contains two parts of procedure. 

When a new    is added to the procedure, we extract subsequences between    and 

all of the processed sequence sets {  ,    ,    , …,     } in the queue. After 

extracting the common subsequences, this procedure adds this application into the 

queue, saves all of the extracted subsequences into the storage, and processes      

for the next target. 

Layering Multi-Thread Comparison 

Android applications usually have multiple threads. Under this situation, we can 

get several system call sequences from different threads of an application. To extract 

system call subsequences by LCSs algorithm, the simpler way of processing multiple 

sequences is to exhaust all combinations of two sequences. However, it leads the 

heavy overhead if an application has many child threads. Suppose we have   

applications and each application has   threads. The time complexity can be denote 

as      . To overcome this drawback, we present a Layering Multi-Thread 

Comparison (LMTC) mechanism to reduce the processing overhead on multi-thread 
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system call sequences in the extraction phase. Since child threads have their parents, 

we can establish the thread tree for each    that depends on the relationship of 

threads of parent-child. All of the threads are separated into several layers in the 

thread tree. It is our observation, that same behaviors are usually appeared at the same 

layer. Even these behaviors are belonged to different applications. Since every 

application has a regular order of work processes, the order is also appeared in the 

relationship of threads of parent-child. Without loss of generality, we assume the 

malicious code pattern should be appeared at the same layer of process trees of 

different repackaged application. The comparison times of subsequence extraction can 

be reduced through only extracting the common subsequence with the other same 

layer system call sequences. Suppose each thread tree is layered into   layers in 

average, the time complexity of comparison can be denote as       ⁄    . 

 

Figure 2. Example of Thread Trees 

Figure 2 shows a clearer example of the process trees of malware “DroidDream 

Light”. The five thread trees are extracted from five different applications which are 

repackaged with the same malicious code. Obviously, they have varies tree structures 

and the different number of child threads. Each node denotes an individual thread, and 

the arrows indicate the relationship of parent-child between two threads. If we need to 
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extract common system call subsequences from these five process trees, for each 

sequence extraction, each thread tree needs to compare the chosen thread with the 

other four threads. The total number of extract combinations is 98784 (      

     ). However, only 5437 extract combinations are available by applying LMTC 

in this example. ( 1 (         ) combination in the first layer, 5400 

(         ) combinations in the second layer, and 36 (         ) 

combinations in the third layer, respectively. It is worth noting that the fourth layer 

has no combinations since some process trees do not have threads in the fourth layer.) 

4.3 Sequence Evaluation with Probability of Appearing 

We get a set of system call subsequences after the extraction phase, but not all of 

the extracted subsequences can be guaranteed as the truly malicious applications that 

do not appear in the benign applications. Therefore, we have to evaluate the extracted 

subsequences in terms of the probability of appearance under the Bayes probability 

model. The probability formula is calculated as 

)1(                 ,
)() |()() |(

)() |(
)|(

BPBCPMPMCP

MPMCP
CMP

jj

j

j



  

where the    is the system call subsequence that is used to evaluate.      denotes 

the probability that the given applications are benign applications.      denotes the 

probability that the given applications is a repackaged application.  (  | ) denotes 

the probability that the subsequences appear in benign applications, and  (  | ) 

denotes the probability that the subsequences appear in repackaged applications. 

Finally, we can get the probability  ( |  ) that an application is a repackaged 

application, detected by the specific system call subsequence. In the first step of 

evaluation phase, we count the number of sequences occurrence in benign 

applications and malicious applications. Then, in the second step, we can calculate the 
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probability  ( |  )  by the formula (1). After the processing of probability 

calculation, we obtain the subsequences that appeared in the malicious application has 

the higher probability than that of benign applications. And this information helps us 

to find       which achieves the higher accuracy for detecting repackaged 

applications. 

4.4 Environment Implementation 

 To execute a large amount of applications, we deploy the Android emulator for 

easier managing the execution environment. When a new application executes each 

time, we establish a new environment and install such an application into the system 

to keep the integrity and correctness of environment. It can prevent the situation that 

an application is distorted by other applications that are not really relevant anymore. 

In the testing environment, the version of Android emulator we used is the Android 

version 2.1. According to our heuristic experiments, Android version 2.1 is the most 

suitable environment to execute samples. 

System call recorder 

 

Figure 3. Zygote Mode 

For recording the system calls during the period of system runtime, we use the 

tool “strace” [18] to trace system calls and signals in Linux kernel. We change the 

boot configuration of Android emulator to make strace attach on Zygote. As 

illustrating in Figure 3, Zygote is a monitor process of an Android system. It usually 

focuses on processing the request about executing a new Android application. The 

new applications will be forked from Zygote and executed. This procedure is called 
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Zygote Mode. Since all of the Android applications are forked from Zygote, strace can 

monitor all of the executed Android applications by tracing the child processes of 

Zygote. strace individually records system calls of different threads into separated 

files, and each thread produces system call sequences. After the time quantum is large 

enough to record system calls, we can extract the system call sequence of the 

application that we want to monitor by its process ID. Moreover, the child sequences 

can be traced by checking whether the thread had forked any child threads. The 

behavior of producing a child thread can be found by clone and fork system calls in 

the system call sequence. The system call sequences of child threads are also 

extracted for saving the complete behaviors. 
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Chapter 5 Evaluation 

We use five types of repackaged applications to evaluate the effectiveness of our 

approach. Initially, we describe the experiment environment and the used application 

samples in Section 5.1. In Section 5.2, we present the utility of system call sequences 

extraction and evaluation of our approach. Finally, the accuracy of malware detection, 

including false positive and false negative, are discussed in Section 5.3 and Section 

5.4.  

5.1 Experiment Environment 

Host 1

Emulator

(Android 2.1)

Application

(APK file) System call recorder1. Installing

Host 2

Detector2. Detecting

Database

System Call Sequences
Common System Call 

Subsequences

3. Storing System Call Sequences

Trainer
6. Storing 

Training Results

Internet

5. Training

7. Loading Subsequences

Data

Program

Environment

Firewall

 

Figure 4. Experiment Environment 

Figure 4 illustrates the experiment environment which includes three programs: 

system call recorder, trainer, and detector. The system call recorder is implemented in 

the emulator. The emulator is continuously connected to Internet for grabbing more 

behaviors of applications due to the reason that, some application behaviors need to 

interact with the Internet. The trainer program is responsible for the system call 

subsequences extraction and evaluation. And the detector program detects suspicious 
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applications resorting by matching with common system call subsequences that are 

trained by the trainer program before.  

Table 3. Number of Training Samples and Sequences 

Malware Type Number of 

Training 

Samples 

Number of 

Evaluation 

Samples 

Number of 

Recorded 

Sequences 

Number of 

Extracted 

Subsequences 

Kmin 10 9 181 241 

Geinimi 8 7 95 156 

DroidDream 4 4 90 105 

BaseBridge 4 3 86 74 

DroidDream Light 3 2 30 28 

For evaluating our approach, we prepare five different repackaged application 

types: Kmin [19], Geinimi [20], DroidDream [21], BaseBridge [22] and DroidDream 

Light [23]. Each repackaged application type has a number of applications, and we 

divide those repackaged applications into two parts as Table 2 listed. The first part is 

used to extract the common system call subsequences, and the second part to evaluate 

the false negative of detection rate of our approach. We also collect two sets of benign 

applications. The first set is used to evaluate the appearance probability of common 

system call subsequences for excluding useless subsequences, and the other set to 

evaluate the false positive of detection rate of our approach. The benign applications 

are collected from a third-party web site. For ensuring the benign property, we utilize 

several anti-virus tools [24] to check whether those applications are virus-free. For 

each of benign and repackaged application samples, we record the system call 

sequences for 3 minutes. Since the efficiency of LCSs algorithm can be lower when 

computing with long sequences, we only record the first 5000 system calls of each 

thread. However, only few threads can generate more than 5000 system calls in 

3minutes. 

5.2 System Call Sequences Distribution 
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Initially, we record the system call sequences of repackaged applications. The 

number of total recorded sequences of each type is showed in Table 3. After the 

system call sequences are recorded, by our extraction algorithm, we get another set of 

sequences that are the common system call subsequences. For each extracted common 

subsequence, we also apply a SHA1 digest algorithm for it to prevent the duplicate 

subsequences. We extract the subsequences of each type individually. Table 2 shows 

the result about the number of extracted sequences.  

 

Figure 5. Probability Distribution of Subsequences 

After the extraction, we count the number of subsequences appearance in the 

benign application set and the repackaged application set from which the 

subsequences are extracted for the training of Bayes probability. At first, we prepare 

300 benign applications as the benign application set. The repackaged application set 

is also prepared as listed in Table 3. After the calculation by Bayes probability model, 

Figure 5 shows the probability distribution of subsequences. We calculate the 

probability in five different types of repackaged applications, and the number of 

subsequences is the sum of five results. Most of subsequences are distributed at the 

interval 10%~15% and 100%. The higher probability of subsequences means if the 

subsequences are discovered in an application, it has higher probability that the 
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application is repackaged. We select higher probability subsequences as the 

significant common system call subsequences. 

Table 4. The Number of Subsequences of 100% Probability 

Malware Type Kmin Geinimi DroidDream BaseBridge DroidDream Light 

Number of 

Subsequences 
158 28 9 3 3 

We exclude the subsequences with lower probability than threshold, and we set 

the threshold as 100% initially. After excluding these subsequences, we can collect 

the significant common system call subsequences which have a probability that is 

higher than the threshold and Table 4 shows the final collected results. 

5.3 Accuracy of Detection 

Table 5. Detection Result 

Malware Type Kmin 

Sample Name Kmin - 1  Kmin - 2 Kmin - 3 Kmin - 4 Kmin - 5 

Number of matched subsequences 67 36 29 47 58 

Sample Name Kmin - 6  Kmin - 7 Kmin - 8 Kmin - 9  

Number of matched subsequences 29 26 25 52  

Malware Type Geinimi 

Sample Name Geimi - 1  Geimi - 2 Geimi - 3 Geimi - 4 Geimi - 5 

Number of matched subsequences 8 13 1 7 3 

Sample Name Geimi - 6  Geimi - 7    

Number of matched subsequences 5 6    

Malware Type DroidDream 

Sample Name DD - 1  DD - 2 DD - 3 DD - 4  

Number of matched subsequences 6 5 5 6  

Malware Type BaseBridge 

Sample Name Base - 1  Base - 2 Base - 3   

Number of matched subsequences 1 1 1   

Malware Type DroidDream Light 

Sample Name DDL - 1  DDL - 2    

Number of matched subsequences 0 1    

With regarding the detection accuracy, we prepare several repackaged 
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applications listed in Table 3 to evaluate the false negative of detection rate. In 

addition, we also prepare 100 benign applications to evaluate the false positive of 

detection rate. We put the significant common system call subsequences which are 

extracted from different types independently of the five type sets. Then, we take those 

subsequences as the pattern to match in the system call sequences of the same type of 

repackaged applications. An application is detected as a repackaged application if it 

has the same subsequence in its system call sequences. Table 5 shows the detected 

result. Most of repackaged applications can be detected by our approach, except the 

application DDL – 1 which cannot be detected by common subsequences that we 

trained in this experiment. We also evaluate the false positive rate with the benign 

application set. 

Table 6. True Positive and True Negative 

Malware Type Kmin Geinimi DroidDream BaseBridge DroidDream Light 

True Positive 100% 100% 100% 100% 50% 

True Negative 100% 98% 100% 100% 100% 

 

Figure 6. Accuracy of Detection 

Suppose that true positive ( TP ) denotes the percentage of repackaged 

applications detected correctly, and false negative ( FN ) denotes the percentage of 

repackaged applications detected incorrectly; on the contrary true negative (TN ) 
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denotes the percentage of benign applications which are not detected by any excluded 

subsequences, and false positive ( FP ) be the percentage of benign applications which 

are incorrectly detected as repackaged applications.   denotes the number of benign 

applications.   denotes the number of repackaged applications. Table 6 

demonstrates the true positive and true negative of detection rate that we evaluated 

with prepared samples. And the Accuracy can be calculated as 

)2(               %.100
)()(







BFPTNMFNTP

BTNMTP
Accuracy  

Our approach has a good accuracy rate to detect repackaged applications. It is 

worth noting that, our approach has a very low false positive rate and a false negative 

rate. For all of five type samples, we only miss one evaluated target in 25 repackaged 

applications. For the 100 benign evaluation samples, our approach only has 2 false 

positive of benign samples. The accuracy is 97%. Referring to Figure 6, compared 

with other experimental results, only the true positive rate of DroidDream Light is 

significantly lower than that of our results, but we only miss one target. And this 

could be explained by an insufficient training and evaluation samples of DroidDream 

Light.  

5.4 Relationship of Training Samples and Sequences 

 

Figure 7. True Positive and True Negative of Different Training Sets 
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subsequences which are extracted from different types together. First, we change the 

number of benign training samples which are used to training the Bayes probability. 

The first set is the 300 benign samples that we initially used. The second set is the half 

of the first set. And the number of samples of third set is same as the total number of 

malicious training samples showed in Table 2. 

All of three sets are trained with the same 29 malicious samples. We take these 

three sets to evaluate true positive and true negative in the same benign and malicious 

evaluation samples of Chapter 5.3. Figure 7 shows the result. If we add more benign 

samples to training, we can get a higher true negative rate. However, it is possible to 

get a lower true positive rate, since the more benign training samples we used will 

cause more subsequences are filtered. And the malware detection ability is also 

reduced because we get less subsequence. 

 

Figure 8. Sequences of Different Number of Repackaged Applications 

The second part we evaluate is to reduce the number of malicious training 

samples. We select Kmin and Geinimi as two independent samples sets. For each of 

the malicious training samples set, we divide in half to get another two sets for 

observing the changes. All the four sets are trained with the same 300 benign samples. 

Figure 8 show that when we used less malicious samples to extract common 

subsequences, we got fewer subsequences. And the number of sequences of 100% 

241 

112 

156 

65 

158 

65 

28 
7 

0

50

100

150

200

250

300

Kmin (10 training samples) Kmin (5 training samples) Geinimi (8 training
samples)

Geinimi (4 training
samples)

N
u

m
b

e
r 

o
f 

Se
q

u
e

n
ce

s 

Number of Extracted
Sequences

Number of Sequences
of 100% Probability



 

26 
 

probability is also reduced in the similar proportion. 

Table 7. Change of True Positive and True Negative 

Malware Type Kmin 

(10 samples) 

Kmin 

(5 samples) 

Geinimi 

(8 samples) 

Geinimi 

(4 samples) 

True Positive 100% 100% 100% 100% 

True Negative 100% 100% 98% 100% 

Accuracy 100% 100% 98.13% 100% 

We also evaluate the detection accuracy of these four sets. As Table 7 showed, if 

we use less malicious training samples, the true negative rate is increased. But it is 

possible to get a poor true positive rate if we reduce more malicious training samples. 

Since the less malicious training samples we used, the less subsequence can be 

extracted. Both of the miss match of benign samples and the detection ability of 

malicious samples are reduced. 

Table 8. The Relationship of Number of Samples and Sequences (Kmin) 

Number of Malicious 

Training Samples 

Number of Extracted 

Sequences 

Number of Benign 

Training Samples 

Number of Sequences 

of 100% Probability 

10 241 300 158 

10 241 150 161 

5 112 300 65 

5 112 150 67 

Finally, we use Kmin as the example to show the relationship between the 

number of samples and the number of sequences in Table 8. It can be observed more 

malicious training samples result in more extracted sequences. However, there are 

less sequences can be obtained when more benign training samples are used for 

training. So, if we take more malicious samples to train for increasing the true positive 

rate, the benign training samples should also be increased to keep the high true 

negative rate. 

5.5 Fixed-Length and Longest Common Subsequences 

To identify the benefit of using the longest common subsequences, we compare 
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our approach with other works which use the fixed-length common subsequences. For 

example, Rozenberg, et al. [16] using 15 system calls as the length of subsequences. 

So we compare the accuracy of detection between using the longest common 

subsequences and the fixed-length common subsequences of length 15.  

 

Figure 9. Number of Subsequences of Different Approaches 

Figure 9 shows the number of extracted subsequences and the number of 

subsequences which doesn’t appear in our benign training samples by using different 

approaches. For using the fixed-length common subsequences of length 15, the 

number of extracted subsequences is dramatically higher than using the longest 

common subsequences. After filtering by our training, the numbers of common 

subsequences of length 15 are still very high. 

 

Figure 10. Accuracy of Different Approaches 
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the accuracy with the same groups of repackaged applications and benign applications. 

As the Figure 10 indicates, using the longest common subsequences has higher true 

negative than using the fixed-length. In the 100 benign applications, fixed-length 

common subsequences have 12 false positives. But longest common subsequences 

only have 2. However, longest common subsequences has lower true positive rate 

since we have one false negative. Applying to the formula (2), the result shows that 

using the longest common subsequences has a higher accuracy than using 

fixed-length. The longest common subsequences reduce both the false positive rate 

and the number of subsequences which we use for detecting. 

5.6 Case Study of Subsequences 

Two case studies are prepared to clarify the content of subsequences we 

extracted and the reason of false positive. 

Malicious Behavior 

 
1 stat64("/data/data/com.droiddream.lovePositions/shared_prefs/pref_config_setting.xml", 0xbea238c8) = -1 ENOENT 

(No such file or directory) 
2 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
3 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
4 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
5 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
6 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
7 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
8 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
9 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
10 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
11 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
12 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
13 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
14 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
15 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
16 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
17 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
18 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
19 ioctl(10, 0xc0186201, 0xbea237f8) = 0 
20 mprotect(0x41adf000, 8192, PROT_READ|PROT_WRITE) = 0 
21 socket(PF_INET6, SOCK_STREAM, IPPROTO_IP) = -1 EAFNOSUPPORT (Address family not supported by 

protocol) 
22 socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 26 
23 getsockname(26, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 
24 bind(26, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("0.0.0.0")}, 128) = 0 
25 getsockname(26, {sa_family=AF_INET, sin_port=htons(60670), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 
26 ioctl(26, FIONBIO, [1]) = 0 
27 getsockname(26, {sa_family=AF_INET, sin_port=htons(60670), sin_addr=inet_addr("0.0.0.0")}, [16]) = 0 
28 connect(26, {sa_family=AF_INET, sin_port=htons(8080), sin_addr=inet_addr("184.105.245.17")}, 128) = -1 

EINPROGRESS (Operation now in progress) 
 

Figure 11. The Subsequence of Malicious Behavior 

We show a piece of subsequence which has malicious behaviors in Figure 9. It is 

a sequence which is extracted from malware “DroidDream”. Referring to the 
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subsequence, the application checks whether the file “pref_config_setting.xml” has 

existed at the first. If a device had been compromised by “DroidDream”, the file 

“pref_config_setting.xml” should exist. This examination is implemented to avoid 

stealing information from the same devices again. Since our environment is clear, the 

file “pref_config_setting.xml” should not exist in the file system. So, after the 

examination, the application starts to ask the remote server (184.105.245.17) for 

preparing to attack this device. 

The Reason of False Positive 

In our experiment of Chapter 5.3, our approach still has two false positives when 

detecting a benign application as a malicious one. These two cases are caused by the 

same subsequence which is extracted from malware “Geinimi”.  

 
1 prctl(0x8, 0x1, 0, 0, 0) = 0 
2 setgroups32(2, [3003, 1015]) = 0 
3 setgid32(10028)         = 0 
4 setuid32(10028)         = 0 
5 gettid()                = 251 

…… 
95 open("/data/app/com.moonbeam.android.magicshop.apk", O_RDONLY|O_LARGEFILE) = 24 
96 lseek(24, 0, SEEK_CUR)  = 0 
97 lseek(24, 0, SEEK_END)  = 3493907 
98 lseek(24, 0, SEEK_SET)  = 0 
99 lseek(24, 3493885, SEEK_SET) = 3493885 
100 read(24, "P", 1)        = 1 
101 read(24, "K", 1)        = 1 
102 read(24, "\5", 1)       = 1 
103 read(24, "\6", 1)       = 1 
104 lseek(24, 0, SEEK_CUR)  = 3493889 
105 lseek(24, 0, SEEK_CUR)  = 3493889 
106 lseek(24, 0, SEEK_END)  = 3493907 
107 lseek(24, 3493889, SEEK_SET) = 3493889 
108 lseek(24, 3493889, SEEK_SET) = 3493889 
109 read(24, "\0\0\0\0\30\1\30\1\2H\0\0\373\0075\0\0\0", 18) = 18 
110 lseek(24, 0, SEEK_CUR)  = 3493907 
111 lseek(24, 0, SEEK_END)  = 3493907 
112 lseek(24, 3493907, SEEK_SET) = 3493907 
113 lseek(24, 3475451, SEEK_SET) = 3475451 
114 read(24, "PK\1\2\24\0\24\0\10\0\10\0\262\246T=j\260l\257\322\34\0"..., 4096) = 4096 
115 lseek(24, 3479547, SEEK_SET) = 3479547 
116 read(24, "\0\0\0\367\226i;H\360\30PH\266\0\0H\266\0\0\23\0\0\0\0"..., 4096) = 4096 
 

Figure 12. The Case of False Positive 

Referring to Figure 10, the subsequence is the case of false positive which is 

executed when an application startup. This subsequence contents some of preparing 

operations before the system reads the content of applications. So, it is possible to 

appear both in repackaged applications and benign applications. However, the 

common subsequences of benign behavior should be filtered in our training. But this 
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subsequence contents 116 system calls which is too long. Therefore, it has small 

probability to happen again in other applications although the subsequence only 

contents benign behaviors. 
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Chapter 6 Conclusions and Future Works 

Due to openness and accessibility of Android, adversaries can repackage 

malicious code into the malicious applications as the benign applications. For users, 

the outward appearance of repackaged applications is like a normal application, and 

they are prone to distribute on marketplaces. Over the past few years, most of related 

works detect repackaged applications by comparing them with the original benign 

applications. However, it is computational infeasible to search all original applications 

in the Internet. To overcome this drawback, we present an approach with the concept 

on extracting the common behaviors of repackaged applications in system call 

sequences. The detection only requires a few repackaged applications with the same 

type to extract the common system call subsequences. In addition, our approach does 

not need to collect and compare the original benign applications with the repackages 

applications. We take those extracted common system call subsequences as the 

behavior patterns to detect repackaged applications. 

In our experiment, we use five different types of repackaged applications to 

evaluate the accuracy rate. Our approach extracts 238 common system call 

subsequences from training samples, and the detection result demonstrates that our 

approach has higher true positive rate in detecting most repackaged applications. We 

evaluate 25 repackaged applications and only miss one evaluated target. Our approach 

also has higher true negative rate in verifying benign applications. The accuracy of 

detection rate is 97.6% in all of evaluation applications.  

However, the evasion is still possible in the system call sequences detection. For 

example, the attacker can insert some system calls which are no effect to its behavior 

but can change the combination of system call sequences. To prevent this situation, 

we should allow some gaps exist in the sequence. For our LMTC algorithm, the 
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repackaged applications can produce the same thread into different layers to escape 

from our sequences extraction since our approach only compare between the 

sequences of same layers. But we still can compare between all of the sequences 

rather than only the same layers to prevent this scenario. 

In the future, we hope to study application behaviors analysis. We only can 

record the behaviors which are automatically generated from applications. However, 

applications have more behaviors when users perform the related operations. 

Therefore, we need to design a tool to grab the complete behaviors in the applications 

when they are triggered. Moreover, we also hope to develop an on-device detector of 

system call sequences detection which can work like the anti-virus software that 

directly detects repackaged applications on mobile devices. 



 

33 
 

Reference 

[1] W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android security,” 

IEEE Security & Privacy Magazine, vol. 7, no. 1, pp. 10–17, 2009. 

[2] T. Vidas, D. Votipka, and N. Christin, “All your droid are belong to us: A survey 

of current android attacks,” Proceedings of the 5th USENIX conference on 

Offensive technologies, San Francisco, CA, USA, August 2011. 

[3] Y. Zhou, and X. Jiang, “Dissecting Android Malware: Characterization and 

Evolution,” Proceedings of the 33rd IEEE Symposium on Security and Privacy, 

San Francisco, CA, May 2012. 

[4] M. Zheng, P. P.C. Lee, and J. C.S. Lui, "ADAM: An Automatic and Extensible 

Platform to Stress Test Android Anti-Virus Systems,“ Proceedings of the 9th 

Conference on Detection of Intrusions and Malware & Vulnerability Assessment 

(DIMVA'12), Heraklion, Crete, Greece, July 2012 

[5] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. 

Sheth, “TaintDroid: An information-flow tracking system for realtime privacy 

monitoring on smartphones,” Proceedings of the 9th USENIX conference on 

Operating systems design and implementation, Vancouver, BC, Canada, pp. 

393–407, October 2010. 

[6] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone 

application certification,” Proceedings of the 16th ACM conference on Computer 

and communications security, Chicago, IL, USA, pp. 235–245, November 2009. 

[7] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automated security 

certification of Android applications,” Technical report, University of Maryland, 

2009. 

[8] T.  l sing,  .  atyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, “An 

android application sandbox system for suspicious software detection,” 

Proceedings of the 5th International Conference on Malicious and Unwanted 

Software (Malware 2010), Nancy, France, pp. 55–62, 2010. 

[9] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis for 

Android malware detection,” Proceedings of the 7th International Conference on 

Computational Intelligence and Security, Sanya, Hainan, China, pp. 1011–1015, 

December 2011. 

[10] I. Burguera, U. Zurutuza, and N. T. Simin, “Crowdroid: Behavior-based malware 

detection system for Android,” Proceedings of the 1st ACM workshop on 

Security and privacy in smartphones and mobile devices, Chicago, IL, USA, pp. 

15–25, October 2011. 



 

34 
 

[11] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self for 

Unix process,” Proceedings of the 1996 IEEE Symposium on Security and 

Privacy, Oakland, CA, USA, pp. 120–128, May 1996. 

[12] C.Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using system 

calls: Alternative data models,” Proceedings of the 1999 IEEE Symposium on 

Security and Privacy, Oakland, CA, USA, pp. 133–145,May 1999. 

[13] K. Wee, and B. Moon, “Automatic generation of finite state automata for 

detecting intrusions using system call sequences,” Proceedings of International 

Workshop on Mathematical Methods, Models, and Architectures for Computer 

Network Security, St. Petersburg, Russia, 2003. 

[14] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system call 

detection,” ACM Transactions on Information and System Security, vol. 9, no. 1, 

pp. 61–93, February 2006. 

[15] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of malicious 

behavior,” Proceedings of the the 6th joint meeting of the European software 

engineering conference and the ACM SIGSOFT symposium on The foundations 

of software engineering, Dubrovnik, Croatia, pp.5–14, September 2007. 

[16] B. Rozenberg, E. Gudes, Y. Elovici, and Y. Fledel, “A Method for Detecting 

Unknown Malicious Executables,” Proceedings of the 2011 IEEE 10th 

International Conference on Trust, Security and Privacy in Computing and 

Communications, Changsha, China, pp. 190–196, November 2011. 

[17] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone 

applications in third-party Android marketplaces,” Proceedings of the 2nd ACM 

Conference on Data and Application Security and Privacy, San Antonio, TX, 

USA, February 2012. 

[18] “strace,” available at: http://sourceforge.net/projects/strace/ 

[19] “Encyclopedia entry: Trojan:AndroidOS/Kmin.A,” available at: 

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Nam

e=Trojan%3AAndroidOS%2FKmin.A . 

[20] T. Strazzere, and T. Wyatt, “Geinimi Trojan Technical Teardown,” Lookout 

Mobile Security, 2011. 

[21] “ ookout Mobile Security Technical Tear Down,”  ookout Mobile Security. 

[22] “Android.Basebridge,” available at: 

http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4

938-99 . 

[23] “Security Alert: New DroidDream Light Variant Published to Android Market,” 

available at: 

http://blog.mylookout.com/blog/2011/07/08/security-alert-new-droiddream-light-



 

35 
 

variant-published-to-android-market/ . 

[24] “VirusTotal - Free Online Virus, Malware and URL Scanner,” available at: 

https://www.virustotal.com/ . 


