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摘   要 

 誤判和漏判發生於每台入侵偵測系統，而誤判和漏判發生的頻率和多寡被用

來評估入侵偵測系統的能力。單一台入侵偵測系統的偵測能力常不理想是因為伴

隨大量的誤判，再加上單單只有一台的偵測結果是無法調查其漏判的狀況。據此

顯示單靠一台來偵測是有所不足和其限制，因此為了克服單一台的限制，藉由整

合多台不同知識能力的入侵偵測系統為一方法，然而，在偵測同一份網路流量時，

不同的偵測能力可能會產生不同的偵測結果，所以如何利用這些偵測結果來對該

被偵測的網路流量做出一個好的決策是具挑戰性的難題。因此本研究提出一個信

譽基準的權重投票方法，用以整合考量各家入侵偵測系統的知識能力並嘗試同時

降低誤判和漏判的機會，且藉此提升多台所產生之警報處理的有效性。提出的方

法主要程序為：調查各家入侵偵測系統的偵測能力並對他們建立相對應的信譽值，

然後根據各信譽值分配權重給相對應的投票者，再實際對該被處理的網路流量執

行決策以決定是否為惡意的。在結果中，不同的信譽數值證明不同台入侵偵測系

統的偵測能力是不同的，即證明其知識能力不相同的特性。再者，在投票方法中，

我們使用 Accuracy 及 Efficiency 用以評估投票演算法，本文所提出的投票方法

準確性和有效性達到 95%和 94%，優於多數決的 66%和 41%。此外，本文提出的投

票方法相較於各台入侵偵測系統，在平均誤判及漏判減少的百分比數值為 21%和

58%。 

關鍵字關鍵字關鍵字關鍵字：：：：入侵偵測，誤判，漏判，警報後處理  
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Abstract 

 False Positive (FP) and False Negative (FN) happen to every Intrusion Detection 

System (IDS). How frequently they occur is used to evaluate the performance of an 

IDS. A large number of FPs will degrade the performance of the IDS. Furthermore, 

FNs cannot be investigated from one IDS’s alerts. Thus, to overcome the limitation of 

one IDS, a way to leverage multiple IDSs’ domain knowledge is used. However, due 

to different detection capabilities, different IDSs may have different detection results 

for a traffic trace. Hence, using these results to make a good decision regarding the 

trace’s status turns out to be challenging. This work proposes a Creditability-based 

Weighted Voting (CWV) to reduce both FPs/FNs and increase the performance of 

multiple IDSs. The CWV first investigates the detection capabilities of all IDSs and 

models the corresponding creditabilities to them. Then, according to the creditabilities, 

it assigns the weights to IDSs and makes a decision concerning the trace. From the 

experiment results, we demonstrate the different IDSs’ detection capabilities by their 

creditabilities. In addition, we use Accuracy and Efficiency to evaluate the CWV and 

the majority voting (MV). The CWV achieves the accuracy of 95% and the efficiency 

of 94% compared to 66% and 41% of the MV. Besides, with the CWV, the average 

percentages of FP/FN reduction for an IDS are 21% and 58%, respectively. 

Keywords: intrusion detection, false positives, false negatives, alert post-processing 
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Chapter 1 Introduction 

Intrusion Detection Systems (IDSs) usually protect computer networks against 

intrusions. A signature-based IDS is a popular approach nowadays. It specifies 

signatures of intrusions and tries to detect malicious activities by matching these 

signatures against the traffic data, called pattern matching. IDS vendors need to set up 

a signature database and maintain it. There are two major challenges in the 

signature-based IDS’s defense. One is growing and changing of malicious traffic and 

the other is the difficulty in the design of IDS. The former leads the signature database 

maintenance difficult. For instance, rules of Snort [1] are updated frequently. The latter 

includes runtime limitation and specificity of signatures. Runtime limitation presents 

that IDSs may not analyze the context of all activities in real-time. For example, a 

malicious activity differs only slightly from normal activities, so IDSs cannot detect it 

with part of content. Specificity of signatures presents that the balance between general 

signatures and specific ones is hard to determine. If the signatures are too general, they 

are easily matched in the payload, even though the payload is benign. On the other hand, 

if the signatures are too specific, IDSs would not detect malicious activities. Thus, 

because of these two challenges, False Positives (FPs) and False Negatives (FNs) of 

IDSs occur. 

FPs and FNs are used for evaluating the performance of an IDS. One IDS is often 

found to be dissatisfactory with respect to either or both of a large number of FPs and 

FNs. To illustrate the severity of FPs and FNs, we use two views: the vendor and the 

user. From the vendor’s view, a heavy workload of analysis happens due to a large 

number of FPs while FNs occur because of no corresponding signatures in the IDS. 

From the user’s view, frequent alert messages of FPs interrupt the user while the FNs 

means that malicious traffic intruding the protected networks is undetected. Thus, we 
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tend to reduce not only FPs, but also FNs because both of them are severe and 

non-negligible. 

In order to reduce FPs and FNs, an analyst post-processes, i.e., using alerts as input 

and processing them to improve their accuracy, all alerts produced by an IDS to confirm 

whether the alerts are TPs or FPs [2]. Nevertheless, the observed problem is the 

limitation of one IDS. This is because an analyst can only deal with the alerts which the 

IDS can detect in an IDS, but cannot investigate FNs of the IDS. Furthermore, if there 

are a large number of FPs and FNs, an analyst will analyze alerts with heavy workload. 

Accordingly, it is another problem in alert post-processing. 

The problem, in fact, has been estimated that up to 99% of alerts produced by an 

IDS are FPs [3-4]. Moreover, according to the alert management [2], i.e., an analyst 

post-processes all alerts for improving signature design, the limitation of one IDS is 

found out. To overcome the mentioned problem and limitation of one IDS, multiple 

IDSs are used because each has its own private and independent signature design. 

Based on different domain knowledge among IDSs, traffic can be recognized by 

leveraging IDSs’ detection capabilities. The advantage of this is the malicious activities 

which cannot be detected by some IDS could be detected by others. 

Several methods deal with alerts produced by an IDS to reduce the amount of FPs. 

Some of them analyze alerts to recognize high-level attack scenario for high view of 

attacks [5-8], some study the causes of FPs to identify root causes [4, 9, 10], and others 

classify alerts to TPs or FPs for reducing FPs [2, 11, 12]. However, these methods only 

consider one IDS to detect malicious traffic, so they still cannot evaluate FNs for the 

IDS. On the other hand, for solving the conflicts of detection from multiple IDSs, a 

Majority Voting (MV) algorithm [13] is proposed. MV finds potential FPs (P-FPs) and 

potential FNs (P-FNs) first by comparing IDSs alerts. If few IDSs generate alerts but 

most IDSs do not when they process the same traffic, these traces are P-FPs of the few 
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IDSs. In contrast, few IDSs do not generate alerts but most IDSs do, these are P-FNs of 

the few IDSs. Next, an analyst analyzes P-FPs and P-FNs to verify they are indeed FPs 

and FNs. However, in [14-15], authors found MV often leads error decision. We also 

find MV is not efficient enough in experiments. The reason is MV disregards different 

domain knowledge among IDSs that results in low percentages of P-FPs/P-FNs being 

FPs/FNs. 

In this work, to leverage different domain knowledge among multiple IDSs, 

reduce FPs and FNs, and increase the efficiency of alert post-processing, we propose a 

Creditability-based Weighted Voting (CWV) algorithm. For this purpose, there are two 

main components of our algorithm, Creditability Modeling (CM) and Weighted Voting 

(WV). First, the CM identifies IDSs’ detection capabilities of different types of traffic 

traces by investigating past detection experience to determine IDSs’ corresponding 

creditabilities. To investigate the detection capabilities on both or either two factors 

comprised an alert, i.e., protocols and malicious types, the creditabilities are therefore 

constructed in two levels, Protocol level and Alert Message level. For instance, “HTTP” 

is a protocol in Protocol level. “HTTP: Attempt to Read Password File” is an alert 

message of HTTP protocol in Alert Message level. Second, according to the 

creditabilities, we assign the weights for weighted voting to decide the traffic trace 

malicious or benign in WV. Thus, it would result in not only reducing FPs, but also 

increasing TPs. In other words, it could increase TNs and reduce FNs. 

The rest of this paper is organized as follows. Chapter 2 presents the background 

and related works. Chapter 3 states terminologies and problem statements. Chapter 4 

describes the design and solution ideas of our algorithm. Chapter 5 displays the 

evaluation of our works. Finally, Chapter 6 concludes this work and discusses the future 

works. 
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Chapter 2 Background 

This chapter describes alert post-processing and its related methods first, and then 

introduces the generation method of FP/FN datasets. 

2.1 Methods of alert post-processing 

If there are a large number of FPs and FNs, an analyst may have a heavy workload, 

i.e., he or she needs a long time to analyze the correctness of alerts. Accordingly, for 

reducing the number of FPs and FNs, a method, called alert post-processing (APP), is 

proposed. APP uses alerts as an input and processes them to improve their accuracy. 

Several researchers [2][4-12] proposed the methods to reduce the number of FPs from 

an IDS. These methods can be classified into three categories, i.e., alert correlation, 

alert clustering, alert classification, and illustrated systematically as follows. 

First, alert correlation [5-8] analyzes alerts by recognizing high-level attack 

scenario with higher view of attacks and makes correlated alerts be an attack graph. 

For example, Ning et al. [5] presented an alert correlation approach correlating alerts 

based on pre-conditions and post-conditions. Two alerts are correlated when the 

pre-condition of a later attack is satisfied by the post-condition of an earlier attack. This 

approach offered a more condensed view on the security issues raised by an IDS. 

Unfortunately, Sadoddin and Ghorbani [8] investigated that alert correlation may not 

have a significant effect in reducing the number of total alerts, even the number of FPs. 

This is because the goal of alert correlation is providing a higher view of attacks. It is 

different from the goal of reducing the number of FPs and FNs even if the alert 

correlation may sometimes reduce the number of FPs. 

Second, alert clustering [4, 9, 10] studies the causes of FPs and identifies root 

causes that makes an IDS alerts. It clusters the alerts with similar root causes together. 

For instance, Julisch [10] defined six attributes for an alert, i.e., source and destination 
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IP addresses, source and destination ports, alert types, and timestamps. The alerts with 

same six attributes are categorized to the same group, called alert cluster. Thus, the 

alerts in the same alert cluster, they may have the same root cause. According to the root 

causes, a system administrator may reduce the number of FPs of an IDS. 

 Third, alert classification [2, 11, 12] classifies alerts to TPs and FPs for reducing 

the number of FPs of an IDS. For example, the Adaptive Learner for Alert 

Classification (ALAC) was proposed [12], and it was an adaptive alert classifier based 

on the feedback of an intrusion detection analyst and machine-learning technique. Also, 

it had a recommender mode and an agent mode. The former was in which all alerts are 

labeled to TP/FP and passed to the analyst while the latter was in which some alerts are 

processed automatically. Intuitively, because of the goal of ALAC, it could reduce the 

number of FPs of the IDS. Although the agent mode reduces the analyst’s workload, the 

recommender mode would still lead a heavy workload to the analyst. 

However, the efficiency of APP is low when alerts only come from an IDS. This is 

because, as mentioned before, if there is only one IDS, APP only can process FP cases 

and cannot investigate FN ones. Hence, alert correlation, clustering, and classification 

cannot reduce the number of FNs due to the limitation of one IDS. Accordingly, the 

detection with multiple IDSs are recently noticed. For instance, Chen et al. [13] 

presented a particular method of APP, Majority Voting algorithm (MV), to deal with the 

alerts produced by multiple IDSs and reduce the number of FPs and FNs. The idea of 

MV is solving the conflicts of the detection of multiple IDSs. It finds FPs and FNs by 

comparing IDSs’ alerts. If few IDSs produce alerts from specific traffic traces, the trace 

is likely to be an FP case of the few IDSs. On the other hand, if few IDSs do not 

produce alerts, it is likely to be an FN case of the few IDSs. However, Parham [15] 

presented that majority voting is not absolutely correct in many cases, and it would 

often lead to error decision. Furthermore, the key reason of the inefficiency of MV is 
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disregarding different domain knowledge among multiple IDSs. 

Although some related works, used multiple IDSs such as the sensor fusion 

architecture (SFA), they focused on how to model and enhance their architectures, not 

APP. For example, Thomas and Balakrishnan [16-17] addressed the problem of 

optimizing the performance of the SFA. In practice, a neural network learner was 

designed in the SFA in order to determine the weight of each IDS based on the 

reliability of that IDS in detecting a certain attack. However, this neural network learner 

is a black box and authors did not concretely mention how to calculate the weights. 

In this work, by leveraging different domain knowledge among multiple IDSs, 

Creditability-based Weighted Voting (CWV) algorithm reduces both the number of FPs 

and FNs, and increases the efficiency of APP. CWV not only investigates the detection 

creditabilities of multiple IDSs to overcome the limitation of one IDS, but also reduces 

the number of FPs and FNs to decrease the heavy workload of analyst. According to the 

goals and methods of the above works, as summarized in Table 1, this work will focus 

on the comparison of MV and CWV and evaluate the efficiency of two algorithms. 

Table 1. Comparison of methods of alert post-processing. 

Approach Goal 
Number 
of IDSs 

FNs 
investigation 

Output Creditability  

Alert correlation 
[5-8] 

�Merge alerts for 
a high-level 
view of attack 

One N/A Attack graphs N/A 

Alert clustering 
[4, 9, 10] 

�Identify root 
causes of alerts 

One N/A Alert clusters N/A 

Alert classification 
[2, 11, 12] 

�Reduce FP 
�Reduce analyst’s 
workload 

One N/A TP/FP N/A 

Majority Voting 
(MV) [13] 

�Reduce FP/FN 
�Reduce analyst’s 
workload 

Multiple Yes (by some 
IDSs) 

FP/FN N/A 

Creditability-based 
Weighted Voting 
(CWV) 

�Reduce FP/FN 
�Reduce analyst’s 
workload 

Multiple Yes (by some 
IDSs) 

TP/FP/TN/FN Yes 

2.2 Generation method of FP/FN datasets 

In order to evaluate the detection capabilities of IDSs, the way to generate test 

trace datasets has been considered. Some researchers provided the real-world traffic 
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traces for evaluating FPs and FNs to measure the accuracy of the IDSs [13, 18]. 

As shown in Figure 1, Lin et al. designed an Active Trace Collection (ATC) [18] to 

actively extract and classify suspicious traces from real-world traffic captured in the 

NCTU Beta Site [19]. First, in the extraction module, it uses a traffic replay tool to 

replay the captured traffic to multiple IDSs. If an IDS detects specific behavior in the 

traffic, it will trigger an alert. According to the IDSs’ alerts, the ATC finds out the 

anchor packets that trigger the alerts by comparing five fields, i.e., source/destination IP 

addresses, source/destination ports, and protocols, and then processes the packet and 

connection association to extract each session into the packet traces. Second, in the 

classification module, according to the alert messages, the ATC classifies the traces 

into different categories by keywords. It defines ten categories, such as Web, File 

Transfer, Remote Access, etc. Each category uses the corresponding protocol names as 

its keywords. For example, the Web category uses HTTP as its keywords. Others can 

be referred to [18]. Up to now, the suspicious classified traces have been collected. 

 
Figure 1. Generation method of FP/FN datasets. 

Besides, the detection of IDSs may be incorrect due to FPs and FNs. Lin et al. also 

proposed a FP/FN Assessment (FPNA) [18], which analyzes the FP and FN cases and 

investigates the causes of FPs and FNs. First, it finds out potential FPs and FNs of the 

IDSs with a voting algorithm (e.g., majority voting). Next, in FP/FN analysis, it replays 
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the corresponding extracted traces based on the alerts to the IDSs. This step verifies 

whether the traces are reproducible to the original IDSs or not. Then, to confirm the 

cases which are correct FPs or FNs, the reproducible traces are manually analyzed by 

analysts. At the same time, the confirmed FP and FN cases and the causes of them are 

recorded to generate the FP/FN datasets. This work further uses the traces and the 

causes behind the FPs and FNs to investigate the creditabilities of IDSs. 

In the following paragraphs, two case studies of the FP/FN analysis are taken as 

examples to show why the benign traces are detected as malicious ones and the 

malicious traces are not detected by IDSs. The investigation of FP/FN analysis is 

illustrated with the description of activity, the corresponding signature, and the cause of 

FP/FN, which are shown in the description, signature, and cause fields in Table 2 and 

Table 3, respectively. In detail, first, the description of the malicious activity is referred 

to Common Vulnerabilities and Exposures (CVE) [20]. Second, the corresponding 

signature of the malicious activity is referred to Snort rule [1] as example if it exists. 

Third, the cause of FP/FN is explained why the FP/FN occurs. 

1) Table 2 illustrates a false positive case, “WEB-CGI csh access”, and the detail 

analysis with Wireshark [21] of packet content is shown in Figure 2. The 

execution of csh interpreter in the cgi-bin directory on a WWW site is detected by 

just matching the “/csh” content in the request URI field. It often results in FP 

because the signature design is too general and rough. 

Table 2. A false positive in FP/FN analysis. 

Description 

Perl, sh, csh, or other shell interpreters are installed in the cgi-bin directory on a WWW site, which 
allows remote attackers to execute arbitrary commands. (reference: CVE, 1999-0509) 

Signature Cause 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 
$HTTP_PORTS  (msg:"WEB-CGI csh access"; 
flow:to_server,established; uricontent:"/csh"; nocase; ...) 

GET /feeds/feed/CSharpHeadlines 
HTTP/1.1 
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Chapter 3 Problem Statement 

3.1 Terminologies 

Table 4 defines a confusion matrix to represent the types of trace datasets with 

IDSs’ detection. The rows represent the actual trace behavior such as malicious and 

benign, and the columns represent the detection alarms such as alert or non-alert. 

According to the corresponding relation between row and column elements, there are 

four types of traces, True Positive (TP), False Positive (FP), True Negative (TN), and 

False Negative (FN). TP and FP represent the IDS produces alert for malicious and 

normal activities, respectively. Similarly, TN means the IDS does not produce alert for 

a normal activity while FN does for a malicious activity. 

Table 4. Confusion matrix definition. 

 

Detected 

Alert Non-alert 

Actual 
Malicious True Positive (TP) False Negative (FN) 

Benign False Positive (FP) True Negative (TN) 

Table 5 defines the notations used in this algorithm. M  and M¬  respectively 

denote malicious and benign. Based on the IDS detection, A  and A¬  denote the 

presence or absence of an intrusion alarm, i.e., alert or non-alert, separately. Then, n 

means the number of detected traces, i.e., how many traces marked with A there are. N  

presents the number of IDSs involved in detection, and these N  IDSs are a set V . 

Moreover, whether all N  IDSs having the voting rights depends on the voting 

algorithm. According to the detection results, one of four types illustrated in Table 4 

would occur, i.e., TP, FP, TN, or FN. Besides, suppose there are different k  previous 

alert messages of the j-th IDS under the protocol P , and m j
Pk,  records these 

messages. Furthermore, a notation S  is used to present a set of these messages. 

After the records, in order to investigate the creditabilities, we use probability to model 
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the rate of type of traces of the j-th IDS under each protocol by Typej
P,rate . However, 

maybe not all IDSs are creditable enough, so two thresholds dτ  and aτ  are used to 

choose parts of IDSs with suitable creditability. The set of the chose IDSs is a subset 

of V and it is denoted as rV . dτ  is the detection threshold whereas aτ  is the 

abnormality threshold. Then, according to each IDS’s creditability, its corresponding 

weight w j
i  is assigned. d j

i  and msgj
i  are detection result and alert message of the 

j-th IDS for i-th trace. Based on the above notations and definitions, iCMD  can be 

calculated for malicious tendency of i-th trace. Finally, based on the iCMD , iDR  

represents a decision result for i-th trace, i.e., if the trace is malicious, benign, or 

unknown. 

Table 5. The notations used in Creditability-based Weighted Voting. 

Notations Descriptions 
MM ¬,  Trace behavior, i.e., malicious and benign. 

AA ¬,  Intrusion alarm, i.e., alert and non-alert. 

n  Number of detected traces. 

N  Number of IDSs. 

}...,,2,1{: NV  Set of voters, i.e., set of IDSs. 

},,,{: FNTNFPTPType  Types of the trace dataset. 

mj
Pk,  Previous alert message mk of the j-th IDS under the protocol P. 

k  Alert message type index. 
j  IDS index. 

...},,{: FTPHTTPP  Protocol type of classified traces. 

}{: ,mS j

Pk
 Set of previous alert messages. 

Typej

P,rate
 Rate of the type of trace of the j-th IDS under the protocol P. 

rV  Set of the remaining voters. A subset of V. 
Nrr ≤,  Number of elements of Vr. 

dτ  Detection threshold measured the correctness of detection. 

aτ  Abnormality threshold measured the abnormality of alert frequency. 

w j
i  Weight of the j-th IDS for i-th trace, which is assigned according to 

the creditabilities. 

d j
i  Detection result produced by the j-th IDS for i-th trace. 

msgj

i
 Alert message of the j-th IDS for i-th trace. 

i  Trace index. 

iCMD  Creditability Malicious Decision function calculated the malicious 
tendency for i-th trace with creditabilities. 

},,{: UnknownAADRi ′¬′  Decision result with voting algorithm for i-th trace. 
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3.2 Problem description 

In APP, on the one hand, the efficiency is low when alerts only come from one IDS, 

as explained in Chapter 1. On the other hand, when alerts come from multiple IDSs, the 

efficiency may also be low if APP disregards the different domain knowledge among 

multiple IDSs. Moreover, due to the different domain knowledge, different IDSs may 

have different detection results for a traffic trace. Hence, how to efficiently use these 

results to make a good decision on the processed traffic trace is a problem. 

The above description can be formulated as follows. 

Given: (1) a training dataset T , (2) N  IDSs, (3) sets of alerts produced by N  

IDSs, (4) n  corresponding processed traces. 

Suppose: (1) the weight of j-th IDS is wj , (2) the alert produced by j-th IDS for i-th 

trace is a j
i . 

Objectives: (1) model a series of weights }...,,,,{ 321 wwww N  according to T , (2) 

design a function ),( awf j
i

j
i  to make a decision on each trace. 

To maximize the number of correct decisions, the number of FPs and FNs are 

minimized and the efficiency of APP is maximized accordingly. 
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Chapter 4 Creditability-based Weighted Voting 

This chapter details the Creditability-based Weighted Voting algorithm which 

includes four components. The first component is the Creditability Modeling, which 

investigates and models the IDSs’ creditabilities according to the past experience of 

detection. Second, the Authority Selecting selects authorities of detection if they exist. 

Third, the Voter Excluding excludes voters that cannot often perform well in detection. 

Lastly, the Weighted Voting determines a trace where it belongs to. 

4.1 Overview 

 
Figure 4. Architecture of our system. 

The goal of this work is to increase the efficiency of alert post-processing when 

alerts come from multiple IDSs, that is, to increase the accuracy of the corresponding 

processed traces which actually belong to TP, FP, TN, or FN cases. Accordingly, the 

generated TP/FP/TN/FN datasets can be not only used by IDS vendors to improve 

their signature design, but also used to accumulate our knowledge of alerts. 

For this goal, as shown in Figure 4, the Active Trace Collection collects and 

classifies the suspicious traffic traces which are replayed to multiple IDSs by 

comparing the alerts produced by IDSs. Since the detection of IDSs could be incorrect, 

i.e., FP and FN, the FP/FN Analysis investigates the causes of FPs/FNs using the 

collected traces and records the confirmed TP/FP/TN/FN traces into Datasets as the 
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ground truth. Based on the Datasets and the accumulated knowledge of alerts, this 

work therefore proposes a Creditability-based Weighted Voting to make a decision on 

the suspicious traffic trace more accurately. 

Creditability-based Weighted Voting 

 
Figure 5. Architecture of Creditability-based Weighted Voting. 

The key idea of the Creditability-based Weighted Voting to increase the 

efficiency of alert post-processing is investigating the IDSs’ creditabilities and 

deciding the traces more accurately with the corresponding creditabilities. 

Hence, the Creditability-based Weighted Voting is constructed with some 

components. As shown in Figure 5, from the Datasets, the Creditability Modeling 

selects the significant types of traces to set up the Training Data and uses the 

Two-level Modeling to model the IDSs‘ corresponding creditabilities for different 

types of traces. Since each IDS could not perform well on all types of traces, we 

consider that some IDS performs well or not on some type of trace or some alert. 

Therefore, investigating the creditabilities only for all types of traces is not enough. 

However, based on the creditabilities, first, the Authority Selecting selects the IDS 

with high detection capability to be an authority if it exists. Secondly, the Voter 

Excluding excludes the voter that cannot usually detect the malicious traffic in 

detection. Third, the Weighted Voting decides the trace where it tends to, i.e., 

malicious, benign, or unknown, with proper voters and weights. 
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4.2 CM: Creditability Modeling 

Since each IDS could not perform well on each alert or each type of trace, the 

CM is designed to investigate and model the detection capabilities of IDSs for 

different types of traffic with two levels. The two-level is especially designed in terms 

of the categorization of signature definition. An alert message, the description of a 

suspicious activity in a signature, comprises both or either two factors, i.e., protocols 

and malicious types. Hence, investigating the alert can consider both two factors. 

Besides, based on the protocol, which is the most common categorization, the 

detection capability on protocol factor can also be investigated. Thus, it is reasonable 

to make use of two levels to model the creditability. As shown in Figure 5, the CM 

includes two components. One is Training Data and the other is Two-level Modeling. 

TD: Training Data 

According to the TP/FP/TN/FN traces confirmed from the FP/FN analysis, the 

CM selects the significant types of traces to set up the TD. The selection policies are 

based on the proportion of appearances in traffic and the number of corresponding 

defined signatures. If both of them are high, the CM will identify the types of traces as 

significant ones and select them into TD. 

TLM: Two-level Modeling 

Based on the TD, the TLM counts two detection capabilities for an IDS. One is 

for Alert Message level (AML) and the other is for Protocol level (PL). Just as the 

name implies, each AML’s detection capability depends on the correctness of an alert 

message and the detection capability of PL is based on some protocol. Therefore, the 

conditional probability of each element of the confusion matrix can be calculated as 

follows. 

First, in AML, the correct rate of a previous alert message analyzed by FP/FN 
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analysis can be calculated as )|( ,mMP j
Pkj  with conditional probability, 
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Second, in PL, we define the successful detection rate and successful ignorance 

rate as )|( AMPj  and )|( AMPj ¬¬  to mean the correct detected malicious traces 

and ignored benign ones, respectively. Based on (1), the successful detection rate is 

calculated as 
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where h is the number of all alert message types of j-th IDS under the protocol P. 

Besides, according to the Bayes’ theorem and Typej
 Prate, , the successful ignorance rate 

is calculated as 
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As a result, for each IDS, it has a creditability table which comprises three vectors, i.e., 

)|( ,mMP j
Pkj , )|( AMPj  and )|( AMPj ¬¬ . 

4.3 AS: Authority Selecting 

Selecting authorities with relatively low FP and FN 

Based on the investigation of detection capabilities of IDSs for different types of 

traces, the AS finds that sometimes some IDSs have much higher creditabilities than 

others. In other words, the lower FP and FN rates could result in higher creditabilities. 

Thus, comparing with other IDSs, if the creditabilities of some IDSs are high enough 

for some type of trace, the AS assumes that these IDSs can be the authorities of 
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detection and selects these IDSs to be authorities. 

The procedure of the AS includes three steps. First, for each type of trace, the AS 

sorts the FP and FN rates of every IDS from high to low respectively. Then, the AS 

separately calculates the average values L1 and L2 of FP and FN rates of the IDSs 

listed after three-quarters of all IDSs since the concept of mean in Statistics. Third, the 

IDSs will be selected to be the authorities of detection by the AS when their FP and 

FN rates are both lower than L1 and L2. 

Deciding traces by authorities if they exist 

Finally, there are three cases: no authority, one authority, or multiple authorities. 

If no authority occurs, the CWV will enter the Voter Excluding and then Weighted 

Voting. When there is one authority, the traces will be decided directly by that 

authority. Otherwise, the CWV will enter the Weighted Voting and the traces will be 

decided by the multiple authorities. 

4.4 VE: Voter Excluding 

The VE is designed to exclude the voters which cannot usually perform well in 

detection. Based on the concept, the VE excludes the voters according to two views. 

One is the TP/FP rates and the other is alert frequency. 

Excluding voters with low TP and high FP 

First, according to the TP and FP rates, the VE excludes the voters which have 

TP is less than detection threshold dτ  while FP is more than dτ . The reason is that 

some IDSs produce more incorrect detection than correct detection. The VE then 

assumes that the IDSs are not strong enough and excludes them. 

Excluding voters with abnormal alert frequency 

Second, based on the alert frequency, the VE assumes that the IDSs having the 

abnormal alert frequency are unusual. The reason is that some IDSs always produce 

alert or not on detecting the specific type of trace. For example, when processing the 
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same type of trace, some IDS does not produce any alert while others do. Moreover, 

the IDS, which has the detection function in the type of trace, does not produce any 

alert that means its corresponding signature design is doubted. Thus, when every IDS 

processes the same type of trace, if either the alert rate or the non-alert rate is more 

than aτ , the IDSs will be excluded by the VE. 

4.5 WV: Weighted Voting 

Calculating the malicious tendency 

After the VE excludes some voters, or there are multiple authorities, the WV is 

processed with proper voters. The WV assigns the weights to the corresponding voters 

according to the creditabilities. Then, when processing the traces one by one, the WV 

designs a Creditability Malicious Decision Function, CMD to calculate the degree of 

tendency towards malicious activity. For i-th trace, its CMDi is calculated as 
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In (5), the CMDi has three conditions to calculate Ti, j respectively. The first condition 

is the j-th IDS produces an alert and the corresponding alert message belongs to the 

previous alert message set. It can be detailed to AML with )|(, msgMP j
iji . Secondly, 

the j-th IDS produces an alert but the alert message does not belong to the previous 

alert message set. It can only be calculated in PL with )|( AMPj . Third, the j-th IDS 

does not produce an alert. It is calculated in PL with )|( AMPj ¬¬ . 

Making a decision with the malicious tendency 

 Finally, the WV makes a decision on i-th trace with DRi to decide the trace is 

malicious, benign or unknown. The DRi is malicious if the CMDi is more than α while 
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the DRi is benign if the CMDi is less than β. Hence, the DRi is formulated as 
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where A’ means the i-th trace is decided as malicious trace while ¬A’ means the i-th 

trace is decided as benign one. 

4.6 Example of Creditability-based Weighted Voting 

 Assume there are seven IDSs (i.e., N = 7), which detect the same traffic and 

produce the corresponding alerts. By comparing the alerts, the HTTP traces can be 

collected and are taken as examples here. After the FP/FN analysis, the TP/FP/TN/FN 

datasets can be set up. Next, the CM set up the TD according to the datasets and then 

uses the TLM to model the seven IDSs’ corresponding creditabilities respectively. It 

first calculates TPj
 HTTPrate, , FP j

 HTTPrate, , TN j
 HTTPrate, , and FN j

 HTTPrate, . Then, in AML, 

the S is set up with the correct rates of the previous alert messages which are 

calculated as )|( ,mMP j
HTTPkj . Next, in PL, it calculates the successful detection rate 

)|( AMPj  and successful ignorance rate )|( AMPj ¬¬ , which are shown in Table 6. 

 After the CM, the other three components of the procedure of the CWV can 

process with the two-level creditabilities. First, in AS, the L1 and L2 are 0 and 0.51 

separately. By comparing every IDS’s FP j
 HTTPrate,  and FN j

 HTTPrate,  with L1 and L2 

respectively, there is no authority in detection. Second, in the VE, the 3-rd IDS is 

excluded according to the TP/FP rates. The 1-th, 4-th, 5-th and 6-th IDSs are excluded 

according to the abnormal alert frequency. Hence, after the VE, the remaining voters 

are the 2-nd and the 7-th IDSs. Finally, in the WV, when processing the 87-th trace, 

the 2-nd IDS produces an alert and the alert message is “IBM Lotus Domino 

Accept-Language Buffer Overflow” which is an element of S, while the 7-th IDS does 
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not produce any alert. Besides, the creditability of the 2-nd IDS of the alert message 

in AML, )|( 2
872,87 msgMP  is 0.83. The creditability of the 7-th IDS of the non-alert 

in PL, )|(7 AMP ¬¬  is 0.80. Therefore, the CMD87 is calculated as 

(0.83+(1-0.80))/2, that is, the result of the CMD87 is 0.52. Because the value is larger 

than 0.5 (α = 0.5), the DR87 is A’ which means the 87-th trace is decided as malicious 

one. 

Table 6. Two-level creditabilities results of example run. 

Creditabilities IDS1 IDS2 IDS3 IDS4 IDS5 IDS6 IDS7 

)|( AMPj  - 0.46 0.03 - 1.00 - 0.51 

)|( AMPj ¬¬  0.71 0.78 0.52 0.71 0.75 0.71 0.80 

)|( 87,87 msgMP j
j  N/A 0.83 N/A N/A N/A N/A N/A 
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Chapter 5 Evaluation and Observation 

 In this chapter, the detection capabilities of multiple IDSs and the performance of 

the CWV are evaluated. First, the IDSs’ corresponding creditabilities of different 

types of traffic traces modeled by the CM are illustrated. Second, the Accuracy, TPR, 

TNR and Efficiency are used to evaluate the voting algorithms. 

5.1 Trace selection and experiment environment 

Trace selection 

As mentioned in Chapter 4.2, the selection policies are based on the rates of 

appearances in traffic and the rates of number of corresponding signatures. If both of 

them of some type of trace are significant, this type of trace will be selected. First, 

according to the ten categories classified by ATC [18], we investigate the traffic in 

Beta Site [19] during the period from September 1, 2010 to February 1, 2011 to 

understand the frequent appearance categories in traffic. Second, we take the rule 

version 2.9 of Snort as example to investigate the signature classification and 

distribution. The investigation result of the above policies is shown in Table 7. It 

obviously represents that Web, File Transfer, and Network are significant types. 

Moreover, Remote Access is more familiar than VoIP to us in our experience. In 

addition, the signatures in Chat are usually chat programs detection which used to be 

against corporate policy in normal traffic [1]. Furthermore, in Web, File Transfer, 

Network and Remote Access, we select the most popular protocol, respectively. 

Hence, we decide the four types of traces, i.e., HTTP, FTP, NetBIOS and TELNET. 

Table 7. Investigation result of trace selection. 

Category Web 
File 

Sharing 
Chat 

File 
Transfer 

Net- 
work  

Remote 
Access 

VoIP 
Encryp-

tion 
Email 

Strea-
ming 

% of 
traffic  

35.86 32.69 8.82 7.07 4.84 4.05 3.14 2.79 0.49 0.22 

% of 
signature 

81.78 0.14 0.57 2.13 8.80 0.66 1.41 0.00 4.48 0.04 

Experiment environment 
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 The real-world traffic is captured from the NCTU Beta Site [19], during the 

period from September 1, 2010 to February 1, 2011. It then uses a traffic replay tool 

(e.g., tcpreplay) to replay captured raw traffic to multiple IDSs. Seven IDSs are 

involved in the classification, which are shown in Table 8. Table 9 presents the 

number of four selected types of traces. The ratio of malicious traces to benign ones is 

about 4 to 6. The benign traces rate is not so expected high since we expect to avoid a 

flood of the benign traces dominating the results in this experiment. During the period, 

the two dominant types of trace are HTTP and NetBIOS. In the HTTP traffic, 39% of 

the traces are malicious, meaning HTTP applications are frequently exploited. In the 

NetBIOS traffic, 62% of the traces are malicious, meaning the vulnerabilities of 

NetBIOS are usually targeted by attacker. Here, we choose the traces collected in the 

first two months to be the training data while the traces of the latter three months to be 

the processing data. The former is as input for the CM to set up the TD, and the latter 

is as input for the CWV one by one. 

Table 8. Seven IDSs Information. 

Vendor 
name 

BroadWeb D-Link Fortinet McAfee TippingPoint Trend Micro ZyXEL 

Device 
name 

NetKeeper7K DFL-1600 
FortiGate-

110c 
M-1250 5000E TDA2 

ZyWALL 
USG 1000 

 The parameters in the CWV are set as follows. In the VE, the detection threshold 

dτ  is set 0.5 while the abnormality threshold aτ  is set 0.9. In the WV, the values of α 

and β are both set 0.5. Moreover, we discuss these parameters in Chapter 5.3. 

Table 9. Statistics of number of traffic traces. 

(a) Training data      (b) Processing data 

Type Malicious Benign Total  Type Malicious Benign Total 

HTTP 46 72 118  HTTP 57 86 143 

FTP 22 74 96  FTP 29 77 106 

NetBIOS 66 47 113  NetBIOS 87 46 133 

TELNET  4 31 35  TELNET  5 42 47 

Total 138 224 362  Total 178 251 429 
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5.2 Experiment results of investigation of creditabilities 

 In the CM evaluation, this work takes seven IDSs, which are called IDS1, 

IDS2, …, and IDS7, respectively, as examples to represent the IDSs’ corresponding 

creditabilities of different types of traffic traces in two levels. 

Protocol level 

 As mentioned in Chapter 4.2, the successful detection rate and successful 

ignorance rate are defined as )|( AMPj  and )|( AMPj ¬¬ , respectively, to 

represent the detection capabilities for PL. As shown in Table 10 (a), first, the value of 

detection rate is ‘-‘ that means uncalculated, that is, the IDS does not produce any 

alert for the type of traces. Secondly, some values of detection rate are 0.00 since the 

alerts result from common commands used, i.e., the traffic are always benign. For 

example, some alerts produced by the IDS5 for FTP traces result from FTP common 

command used. Third, some values of detection or ignorance rates are 1.00. The 

observed reason is the definition of signature for the type of traces is more precise. 

For instance, the type of alerts produced by the IDS5 for TELNET traces is only one 

and is correct in our investigation. Besides, the IDSs’ detection capabilities for 

different protocols are different. In our investigation, for HTTP, the IDS2, IDS5 and 

IDS7 have higher creditabilities. Then, for FTP, the IDS5, IDS6 and IDS7 have higher 

creditabilities. Next, for NetBIOS, the IDS1, IDS4, IDS5 and IDS6 have higher 

creditabilities. Finally, for TELNET, the IDS3 and IDS5 have higher creditabilities. 

Generally, the IDS5 achieves appreciable successful rates under each protocol. 

Alert Message level 

 As mentioned in Chapter 4.2, the correctness of a previous alert message is 

defined as )|( ,mMP j
Pkj  to represent the detection capability for AML. Table 10 (b) 

shows the top ten accurate alert messages, i.e., the alert messages have higher 
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creditabilities, in our investigation. Besides, some of them result from the same traffic 

with same suspicious activity, and therefore, these are grouped into one to represent. 

1) The first two “URL.DirectoryTraversal.Suspicious” and “HTTP: Attempt to 

Read Password File” alerts result from the same traffic with the request URI 

string “../../../../../../../etc/passwd”. The former alert results from the string “../../”. 

The latter alert results from the string “/etc/passwd”. These malicious activities 

could obtain the private information or access the files on the file system. 

2) The “FTP: MKDIR Command Used” alert results from the FTP MKD command 

used. The observed malicious activity is the MKD and CWD commands are used 

alternately, which means the intruder creates a directory, changes the working 

directory to the created directory, and then creates the same directory alternately. 

3) The “specifiers.BolinTech.DreamFTPServer.Format.String” alert results from the 

malicious FTP request containing embedded format string specifiers, i.e., “user 

%n”, “pass %n”, “retr %n” or “%n”. 

4) The “SOLARIS.TELNETD.AUTHENTICATION.EXP”, “Telnet: Login Bypass 

(General)”, and “Solaris Telnetd Authentication Bypass Vulnerability” alerts 

result from the argument injection via USER environment variable. The Solaris 

telnet daemon misinterprets "-f" sequences as valid requests to skip the 

authentication. However, the alert may be FP when the target is a non-Solaris 

telnet server. 

5) The 

“NetPathCanonicalize.SRVSVC.MicrosoftWindows.MS08-067.Buffer.Overflow” 

alert results from the RPC API NetPathCanonicalize() function exploited with a 

crafted path. The successful overflow exploit could allow a remote attacker to 

execute arbitrary code or crash the service. However, the alert may be FP when 

the path does not include the buffer overflow code. 
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6) The “IBM Lotus Domino Accept-Language Buffer Overflow” alert results from 

the long length of Accept-Language field, e.g., 100. The observed malicious 

activity is the duplicated language code appears frequently, while the alert may 

be FP when the abnormal language code does not exist. 

7) The “WEB-MISC robots.txt access” alert results from the file robots.txt accessed 

directly. The malicious activity could gather the information about the target site. 

However, the alert may be FP when some search engine’s robot checks robots.txt 

for information about the site. 

Table 10. Experiment results of investigation of creditabilities. 

(a) Protocol level – successful detection and ignorance rates for each IDS. 

Types 
 
IDSs 

HTTP  FTP NetBIOS TELNET  

Pj(M|A) Pj(¬M|¬A) Pj(M|A) Pj(¬M|¬A) Pj(M|A) Pj(¬M|¬A) Pj(M|A) Pj(¬M|¬A) 

IDS1 - 0.71 - 0.92 0.95 0.69 0.28 0.99 

IDS2 0.46 0.78 - 0.92 - 0.33 - 0.98 

IDS3 0.03 0.52 0.00 0.78 0.66 0.33 1.00 0.99 

IDS4 - 0.71 - 0.92 0.68 1.00 - 0.98 

IDS5 1.00 0.75 0.74 0.98 0.88 0.83 1.00 0.99 

IDS6 - 0.71 0.69 1.00 0.67 0.68 0.00 0.98 

IDS7 0.51 0.80 0.70 0.95 0.41 0.31 0.01 0.72 

 
(b) Alert Message level – top ten accurate alert messages. 

Rank Alert messages )|( ,mMP j
Pkj  

1 URL.DirectoryTraversal.Suspicious 1.00 

1 HTTP: Attempt to Read Password File 1.00 

1 FTP: MKDIR Command Used 1.00 

1 specifiers.BolinTech.DreamFTPServer.Format.String 1.00 

1 SOLARIS.TELNETD.AUTHENTICATION.EXP 1.00 

1 Telnet: Login Bypass (General) 1.00 

7 NetPathCanonicalize.SRVSVC.MicrosoftWindows.MS08-067.Buffer.Overflow 0.89 

8 IBM Lotus Domino Accept-Language Buffer Overflow 0.83 

9 Solaris Telnetd Authentication Bypass Vulnerability 0.80 

10 WEB-MISC robots.txt access 0.75 

5.3 Accuracy, TPR, TNR, and Efficiency of voting algorithms 
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Evaluation metrics 

Let TPtraces be the number of malicious traces which are correctly determined, 

FNtraces be the number of malicious traces which are not determined, TNtraces be the 

number of benign traces which are correctly classified, FPtraces be the number of 

benign traces which are incorrectly determined as malicious ones. 

This work uses the Accuracy, TPR, and TNR metrics [22] for the voting 

algorithm in the evaluation. The Accuracy is evaluated with the percentage of whole 

traces that are determined precisely. This is a commonly used metric for overall view 

of evaluation. 
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In detail, the TPR is evaluated with the percentage of malicious traces that are 

correctly caught as malicious ones, while the TNR is evaluated with the percentage of 

benign traces that are correctly passed as benign ones. 
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There is a tradeoff between TPR and TNR. It is required to evaluate the 

performance of voting algorithm on both TPR and TNR. Like the F1 score [23] which 

is a measure of a test's accuracy, this work defines a similar measure for the efficiency 

of voting algorithm. The Efficiency takes the harmonic mean of TPR and TNR, given 

by: 
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Higher value of Efficiency indicates that the voting algorithm performs better on not 

only TPR, but also TNR. 

Experimental evaluation results 

Improving accuracy by leveraging the domain knowledge among IDSs 
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accuracy can be 100% when the values of α and β are 0.7 and 0.1, respectively. 

However, the range between α and β is large, 0.6 (= 0.7 – 0.1), so the number of 

unknown cases is up to 55% of that of total processed traffic traces. Hence, α and β 

can be tuned according to the tradeoff between the accuracy of decided traces and the 

number of unknown traces that need to be analyzed manually. 

5.4 Differences between CWV and each IDS in percentages at FP and FN 

 Table 11 shows the percentages of FP and FN of CWV and each IDS for 

different types of traces. Some IDSs have FP and FN values with 0% and 100% since 

these IDSs do not produce alert for this type of traces. This also means these IDSs 

miss the signatures. Secondly, the FP of IDS3 is 100% because the alerts result from 

common command used, such as “FTP GET command”. Third, the FP and FN of 

IDS5 are 0%. The observed reason is the type of alerts produced by IDS5 is only one, 

and the message is “SOLARIS.TELNETD.AUTHENTICATION.EXP” that is a 

precise signature in our investigation, i.e., the creditability of the message is 1.0. 

Actually, the corresponding traces are always malicious ones in analysis. Besides, for 

NetBIOS traces, most IDSs produce many alerts that result in more FPs for each IDS, 

while for other types of traces, some IDSs produce alerts that result in more FNs. 

Table 11. Percentages of FP and FN of CWV and each IDS. 

 

HTTP  FTP NetBIOS TELNET  

FP FN FP FN FP FN FP FN 

IDS1 0 100 0 100 63.04 5.17 0 100 

IDS2 26.74 94.74 0 100 0 100 0 100 

IDS3 63.95 100 100 86.21 80.43 1.15 2.38 40.00 

IDS4 0 100 0 100 25.53 7.58 0 100 

IDS5 0 98.25 0 48.28 52.17 9.20 0 0 

IDS6 0 100 0 13.79 67.39 1.15 0 100 

IDS7 9.30 5.26 0 48.28 39.13 82.76 97.62 80.00 

CWV 2.33 7.02 0 13.79 4.35 9.20 0 0 

Furthermore, the differences between CWV and each IDS in percentages at FP 
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and FN are shown in Table 12. First, some IDSs detect better than the CWV partially 

because the value of FP or FN in percentage is negative, but no IDS can individually 

detect well in both FP and FN. Second, the CWV performs well in most cases for all 

types of traces by leveraging different detection capabilities among IDSs which are 

shown in different values of FP and FN. It is demonstrated that the average 

percentages of FP and FN reduction between CWV and each IDS are 21% and 58%. 

Table 12. Differences between CWV and each IDS in percentages at FP and FN. 

 

HTTP  FTP NetBIOS TELNET  

FP FN FP FN FP FN FP FN 

IDS1 -2.33 92.98 0 86.21 58.69 -4.08 0 100 

IDS2 24.41 87.82 0 86.21 -4.35 90.8 0 100 

IDS3 61.62 92.98 100 72.42 76.08 -8.05 2.38 40.00 

IDS4 -2.33 92.98 0 86.21 21.18 -1.62 0 100 

IDS5 -2.33 91.23 0 34.49 47.82 0 0 0 

IDS6 -2.33 92.98 0 0 63.04 -8.05 0 100 

IDS7 6.97 -1.76 0 34.49 34.78 73.56 97.62 80.00 

Average 11.95 78.44 14.29 57.15 42.46 20.37 14.29 74.29 

5.5 Case studies 

 In this section, two case studies in the experiment are taken as examples to show 

the TP case in CWV and FN in MV, and the TN case in CWV and FP in MV. 

Case study I: TP case in CWV and FN in MV 

 In this case, the alert messages and the corresponding creditabilities are shown in 

Table 13, while the trace content is illustrated in Figure 11. It is observed that the 

attacker uses the command “USER –fadm” as the argument injection via USER 

environment variable in environment option to attempt to bypass the authentication. 

More information about Telnet environment option can be found in [24]. Furthermore, 

the malicious content in hexadecimal is “ff fa 27 00 00 55 53 45 52 01 2d 66 61 64 6d” 

obviously. However, this malicious trace can be correctly determined by the CWV 

because of the high creditabilities in AML, while it is missed by the MV because only 
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Chapter 6 Conclusions and Future Works 

This work proposes the Creditability-based Weighted Voting (CWV) to reduce 

both FPs and FNs and increase the efficiency of alert post-processing with multiple 

IDSs. The CM leverages the domain knowledge among multiple IDSs by 

investigating the detection capabilities of all IDSs and models the corresponding 

creditabilities to them. From the experiment results of investigation of creditabilities, 

we demonstrate the different IDSs’ detection capabilities by their creditabilities. In 

detail, we observe that the signature design is the main factor on the correctness of 

detection. Some IDS has more specific signature that results in fewer number of alerts 

and FPs, while some IDS has more general signature that results in more number of 

alerts and FPs. On the other hands, some IDS misses the signature, leading to FNs. 

This work uses Accuracy, TPR, TNR, and defines Efficiency to evaluate two 

voting algorithms, the CWV and the MV. The CWV can achieve the accuracy and the 

efficiency up to 95% and 94%, which are much higher than the MV in comparison. 

Besides, between the CWV and each IDS, the CWV performs well in most cases for 

all types of traffic traces. It is demonstrated that the average percentages of FP and FN 

reduction between the CWV and each IDS are 21% and 58%. 

However, the CWV could make an incorrect decision in some situations. For 

example, when processing the trace which triggers the new alert of some IDS, the 

CWV only can use the corresponding creditability in PL of the IDS to determine the 

trace. The incorrect result could then occur. Besides, if some IDS significantly 

updates or modifies its signature database, which means the detection capability 

changes greatly, the corresponding creditability would be almost useless. The WV 

could make an incorrect decision on the trace. Hence, the frequency and the duration 

of updating training data are issues in the future. Furthermore, another goal in the 
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future is the automation because it could increase the productivity and practicability 

of this system. In foreground, the CWV keeps processing traffic traces one by one, 

while in background, the creditability table for each IDS is updated with considering 

the above issue to maintain the reliance on creditability. 
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