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Creditability-based Weighted Voting to Reduce Fals®ositives

and Negatives in Intrusion Detection

Student: Wei-Hsuan Tai Advisor: Dr. Ying-DanL
Department of Computer and Information Science

National Chiao Tung University

Abstract

False Positive (FP) and False Negative (FN) happevery Intrusion Detection
System (IDS). How frequently they occur is useevaluate the performance of an
IDS. A large number of FPs will degrade the perfance of the IDS. Furthermore,
FNs cannot be investigated from one IDS’s alertais] to overcome the limitation of
one IDS, a way to leverage multiple IDSs’ domaimwkiedge is used. However, due
to different detection capabilities, different IDB&y have different detection results
for a traffic trace. Hencaysing these results to make a good decision reyattie
trace’s status turns out to be challenging. Thiskwmroposes a Creditability-based
Weighted Voting (CWV) to reduce both FPs/FNs ancrease the performance of
multiple IDSs. The CWV first investigates the déime capabilities of all IDSs and
models the corresponding creditabilities to thelmer, according to the creditabilities,
it assigns the weights to IDSs and makes a decsimcerning the trace. From the
experiment results, we demonstrate the differef@sietection capabilities by their
creditabilities. In addition, we use Accuracy arfictiency to evaluate the CWV and
the majority voting (MV). The CWV achieves the a@my of 95% and the efficiency
of 94% compared to 66% and 41% of the MV. Besidet) the CWV, the average
percentages of FP/FN reduction for an IDS are 2t&058%, respectively.

Keywords: intrusion detection, false positives, false negej alert post-processing
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Chapter 1 Introduction

Intrusion Detection Systems (IDSs) usually protemiputer networks against
intrusions. A signature-based IDS is a popular @@gm nowadays. It specifies
signatures of intrusions and tries to detect malisi activities by matching these
signatures against the traffic data, called patteatching. IDS vendors need to set up
a signature database and maintain it. There are rivegor challenges in the
signature-based IDS’s defense. One is growing &adging of malicious traffic and
the other is the difficulty in the design of IDSh& former leads the signature database
maintenance difficult. For instance, rules of Siibfiare updated frequently. The latter
includes runtime limitation and specificity of sagares. Runtime limitation presents
that IDSs may not analyze the context of all atésiin real-time. For example, a
malicious activity differs only slightly from norrhactivities, so IDSs cannot detect it
with part of content. Specificity of signatures seats that the balance between general
signatures and specific ones is hard to deternfitiee signatures are too general, they
are easily matched in the payload, even thougpdlylwad is benign. On the other hand,
if the signatures are too specific, IDSs would detect malicious activities. Thus,
because of these two challengealse PositivegFPs) and-alse Negative$FNs) of
IDSs occur.

FPs and FNs are used for evaluating the performainae IDS. One IDS is often
found to be dissatisfactory with respect to eitbrelboth of a large number of FPs and
FNs. To illustrate the severity of FPs and FNs,use two views: the vendor and the
user. From the vendor’s view, a heavy workload mdlgsis happens due to a large
number of FPs while FNs occur because of no cooretipg signatures in the IDS.
From the user’s view, frequent alert messages efifferrupt the user while the FNs

means that malicious traffic intruding the protelctetworks is undetected. Thus, we



tend to reduce not only FPs, but also FNs becaose & them are severe and
non-negligible.

In order to reduce FPs and FNs, an analyst posepses, i.e., using alerts as input
and processing them to improve their accuracglatts produced by an IDS to confirm
whether the alerts are TPs or FPs [2]. Nevertheldnss observed problem is the
limitation of one IDS. This is because an analgst anly deal with the alerts which the
IDS can detect in an IDS, but cannot investigats B\the IDS. Furthermore, if there
are a large number of FPs and FNs, an analysanallyze alerts with heavy workload.
Accordingly, it is another problem in alert posbtpessing.

The problem, in fact, has been estimated that |g9% of alerts produced by an
IDS are FPs [3-4]. Moreover, according to the ateainagement [2], i.e., an analyst
post-processes all alerts for improving signatuesigh, the limitation of one IDS is
found out. To overcome the mentioned problem amatdtion of one IDS, multiple
IDSs are used because each has its own privaténdegendent signature design.
Based on different domain knowledge among IDSdfidraan be recognized by
leveraging IDSs’ detection capabilities. The adagetof this is the malicious activities
which cannot be detected by some IDS could be thetday others.

Several methods deal with alerts produced by antéD8duce the amount of FPs.
Some of them analyze alerts to recognize high-lattelck scenario for high view of
attacks [5-8], some study the causes of FPs tdifgeaot causes [4, 9, 10], and others
classify alerts to TPs or FPs for reducing FP4]2,12]. However, these methods only
consider one IDS to detect malicious traffic, seytlstill cannot evaluate FNs for the
IDS. On the other hand, for solving the conflictsdetection from multiple IDSs, a
Majority Voting(MV) algorithm [13] is proposed. MV finds potenti@Ps (P-FPs) and
potential FNs (P-FNSs) first by comparing IDSs aeft few IDSs generate alerts but

most IDSs do not when they process the same trétise traces are P-FPs of the few
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IDSs. In contrast, few IDSs do not generate alautsnost IDSs do, these are P-FNs of
the few IDSs. Next, an analyst analyzes P-FPs arNg$o verify they are indeed FPs
and FNs. However, in [14-15], authors found MV aofteads error decision. We also
find MV is not efficient enough in experiments. Tileason is MV disregards different
domain knowledge among IDSs that results in love@etages of P-FPs/P-FNs being
FPs/FNs.

In this work, to leverage different domain knowledgmong multiple IDSs,
reduce FPs and FNs, and increase the efficienajedf post-processing, we propose a
Creditability-based Weighted Votif@WYV) algorithm. For this purpose, there are two
main components of our algorithi@yeditability Modeling(CM) andWeighted Voting
(WV). First, the CM identifies IDSs’ detection cdgiéies of different types of traffic
traces by investigating past detection experiencdetermine IDSs’ corresponding
creditabilities. To investigate the detection caliiéds on both or either two factors
comprised an alert, i.e., protocols and malicioyes, the creditabilities are therefore
constructed in two level®rotocol levelandAlert Message leveFor instance, “HTTP”
is a protocol in Protocol level. “HTTP: Attempt Read Password File” is an alert
message of HTTP protocol in Alert Message levelcoBd, according to the
creditabilities, we assign the weights for weighteding to decide the traffic trace
malicious or benign in WV. Thus, it would resultmot only reducing FPs, but also
increasing TPs. In other words, it could increakks &nd reduce FNs.

The rest of this paper is organized as follows.@#1a2 presents the background
and related works. Chapter 3 states terminologiespaoblem statements. Chapter 4
describes the design and solution ideas of ourrighgo. Chapter 5 displays the
evaluation of our works. Finally, Chapter 6 condsithis work and discusses the future

works.



Chapter 2 Background

This chapter describes alert post-processing anéléted methods first, and then
introduces the generation method of FP/FN datasets.
2.1 Methods of alert post-processing

If there are a large number of FPs and FNs, arysimalay have a heavy workload,
i.e., he or she needs a long time to analyze threcoess of alerts. Accordingly, for
reducing the number of FPs and FNs, a method,dcallt post-processing (APP), is
proposed. APP uses alerts as an input and proctssasto improve their accuracy.
Several researchers [2][4-12] proposed the mettmd=sduce the number of FPs from
an IDS. These methods can be classified into tba¢egories, i.e., alert correlation,
alert clustering, alert classification, and illagad systematically as follows.

First, alert correlation [5-8] analyzes alerts Bcagnizing high-level attack
scenario with higher view of attacks and makegelatedalerts be an attack graph.
For example, Ning et al. [5] presented an alertedation approach correlating alerts
based on pre-conditions and post-conditions. Twartalare correlated when the
pre-condition of a later attack is satisfied by plost-condition of an earlier attack. This
approach offered a more condensed view on the isedssues raised by an IDS.
Unfortunately, Sadoddin and Ghorbani [8] investghthat alert correlation may not
have a significant effect in reducing the numbetiotdl alerts, even the number of FPs.
This is because the goal of alert correlation @vjaling a higher view of attacks. It is
different from the goal of reducing the number d#IsFand FNs even if the alert
correlation may sometimes reduce the number of FPs.

Second, alert clustering [4, 9, 10] studies theseauwof FPs and identifies root
causes that makes an IDS alerts. It clusters #resabith similar root causes together.

For instance, Julisch [10] defined six attributeisdn alert, i.e., source and destination



IP addresses, source and destination ports, gstand timestamps. The alerts with
same six attributes are categorized to the samgpgalled alert cluster. Thus, the
alerts in the same alert cluster, they may havedh®e root cause. According to the root
causes, a system administrator may reduce the muwhB®s of an IDS.

Third, alert classification [2, 11, 12] classifiekerts to TPs and FPs for reducing
the number of FPs of an IDS. For example, the Adaptearner for Alert
Classification (ALAC) was proposed [12], and it wveasadaptive alert classifier based
on the feedback of an intrusion detection analydtraachine-learning technique. Also,
it had a recommender mode and an agent mode. Tinerfavas in which all alerts are
labeled to TP/FP and passed to the analyst wteléatter was in which some alerts are
processed automatically. Intuitively, because efdgbal of ALAC, it could reduce the
number of FPs of the IDS. Although the agent medeices the analyst’'s workload, the
recommender mode would still lead a heavy worklwsithe analyst.

However, the efficiency of APP is low when alenmgyocome from an IDS. This is
because, as mentioned before, if there is onlyibBSe APP only can process FP cases
and cannot investigate FN ones. Hence, alert @tioel, clustering, and classification
cannot reduce the number of FNs due to the limimtatif one IDS. Accordingly, the
detection with multiple IDSs are recently noticdébr instance, Chen et al. [13]
presented a particular method of APP, Majority Mgtalgorithm (MV), to deal with the
alerts produced by multiple IDSs and reduce thebmrmof FPs and FNs. The idea of
MV is solving the conflicts of the detection of rtiple IDSs. It finds FPs and FNs by
comparing IDSs’ alerts. If few IDSs produce aléntsn specific traffic traces, the trace
is likely to be an FP case of the few IDSs. Ondtteer hand, if few IDSs do not
produce alerts, it is likely to be an FN case @& taw IDSs. However, Parham [15]
presented that majority voting is not absolutelyrect in many cases, and it would

often lead to error decision. Furthermore, the teason of the inefficiency of MV is
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disregarding different domain knowledge among rpldtiDSs.

Although some related works, used multiple IDSshsas the sensor fusion
architecture (SFA), they focused on how to modedl @mhance their architectures, not
APP. For example, Thomas and Balakrishnan [16-1fressed the problem of
optimizing the performance of the SFA. In practieeneural network learner was
designed in the SFA in order to determine the wemfheach IDS based on the
reliability of that IDS in detecting a certain atkaHowever, this neural network learner
is a black box and authors did not concretely neeniow to calculate the weights.

In this work, by leveraging different domain knoddgee among multiple IDSs,
Creditability-based Weighted Voting (CWV) algoritireduces both the number of FPs
and FNs, and increases the efficiency of APP. C\WiMomly investigates the detection
creditabilities of multiple IDSs to overcome theaiiation of one IDS, but also reduces
the number of FPs and FNs to decrease the heakoadrof analyst. According to the
goals and methods of the above works, as summariZEable 1, this work will focus
on the comparison of MV and CWV and evaluate tfieiehcy of two algorithms.

Table 1. Comparison of methods of alert post-preiogs

Number FNs o
Approach Goal of IDSs | investigation Output Creditability

Alert correlation *Merge alerts for | One N/A Attack graphs| N/A
[5-8] a high-level

view of attack
Alert clustering e|ldentify root One N/A Alert clusters | N/A
[4,9, 10] causes of alerts
Alert classification| *Reduce FP One N/A TP/FP N/A
[2, 11, 12] *Reduce analyst’s

workload
Majority Voting *Reduce FP/FN | Multiple | Yes (by some | FP/FN N/A
(MV) [13] *Reduce analyst’s IDSs)

workload
Creditability-based *Reduce FP/FN | Multiple | Yes (by some | TP/FP/TN/FN | Yes
Weighted Voting | *Reduce analyst's IDSs)
(CWV) workload

2.2 Generation method of FP/FN datasets

In order to evaluate the detection capabilitiesDf$s, the way to generate test

trace datasets has been considered. Some ressapcbeided the real-world traffic
6



traces for evaluating FPs and FNs to measure theaxy of the IDSs [13, 18].

As shown in Figure 1, Lin et al. designed an Acfivace Collection (ATC) [18] to
actively extract and classify suspicious tracesnfreal-world traffic captured in the
NCTU Beta Site [19]. First, in the extraction maoeluit uses a traffic replay tool to
replay the captured traffic to multiple IDSs. If HDS detects specific behavior in the
traffic, it will trigger an alert.According to the IDSs’ alerts, the ATC finds oueth
anchor packets that trigger the alerts by compdivegields, i.e., source/destination IP
addresses, source/destination ports, and protamadsthen processes the packet and
connection association to extract each sessiontir@gacket traces. Second, in the
classification module, according to the alert mgesathe ATC classifies the traces
into different categories by keywords. It defines tcategories, such &8eh File
Transfer Remote Accesstc. Each category uses the corresponding pratacoes as
its keywords. For example, the Web category usesRH3s its keywords. Others can

be referred to [18]. Up to now, the suspicioussifésd traces have been collected.

Alert Pre-processing Alert Post-processing Trace Datasets
77777777777777777777 ‘ e 1
FP/FN Assessment || Datasets |
Alert Comparison > || |
g Majority Voting
v : NIl
Active Trace Collection L | ‘
FP/FN Analysis | \_/
‘ \
Extraction Module Trace Verification RE |
Classification Module | Manual Analysis SN |
| |
|| |

Figure 1. Generation method of FP/FN datasets.

Besides, the detection of IDSs may be incorrecttdd#ds and FNs. Lin et al. also
proposed a FP/FN Assessment (FPNA) [18], whichyaeslthe FP and FN cases and
investigates the causes of FPs and FNs. Firshds fout potential FPs and FNs of the

IDSs with a voting algorithm (e.g., majority votingNext, in FP/FN analysis, it replays



the corresponding extracted traces based on thes #&bethe IDSs. This step verifies

whether the traces are reproducible to the origiD&ls or not. Then, to confirm the

cases which are correct FPs or FNs, the reprodutiiétes are manually analyzed by

analysts. At the same time, the confirmed FP and&3¢s and the causes of them are
recorded to generate the FP/FN datasets. This Wwotker uses the traces and the

causes behind the FPs and FNs to investigate ¢agabilities of IDSs.

In the following paragraphs, two case studies effR/FN analysis are taken as
examples to show why the benign traces are deteatethalicious ones and the
malicious traces are not detected by IDSs. Thesimyation of FP/FN analysis is
illustrated with the description of activity, thercesponding signature, and the cause of
FP/EN, which are shown in the description, sigrgtand cause fields in Table 2 and
Table 3, respectively. In detail, first, the degtian of the malicious activity is referred
to Common Vulnerabilities and Exposures (CVE) [2Bgcond, the corresponding
signature of the malicious activity is referredSoort rule [1] as example if it exists.
Third, the cause of FP/FN is explained why the INPdEcurs.

1) Table 2 illustrates a false positive case, “WEB-Q@SHh access”, and the detail
analysis with Wireshark [21] of packet content lwn in Figure 2. The
execution of csh interpreter in the cgi-bin diregton a WWW site is detected by
just matching the “/csh” content in the request WiRld. It often results in FP
because the signature design is too general amgthrou

Table 2. A false positive in FP/FN analysis.

Description

Perl, sh, csh, or other shell interpreters arallest in the cgi-bin directory on a WWW site, which
allows remote attackers to execute arbitrary contmafreference: CVE, 1999-0509)

Signature Cause

alert tcp SEXTERNAL_NET any -> $HTTP_SERVERS | GET /feeds/feed/CSharpHeadlines
$HTTP_PORTS (msg:"WEB-CGI csh access"; HTTP/1.1
flow:to_server,established; uricontent:"/csh”; reea..)




No.. Time Source Destination Protocol  Info

30.176636 140.113.252.100 65.55.11.209 HTTP GET /feeds/feed/CSharpHeadlines HTTP/1.1
40.180130 140.113.252.100 65.55.11.209 TCP 36590 > http [ACK] Sea=1l Ack=1l Win=64240
< i, |
- Hypertext Transfer Protocol
= GET /feeds/feed/CSharpHeadlines HTTP/1.1\r\n
= [Expert Info (Chat/Sequence): GET /feeds/feed/CSharpHeadlines HTTP/1.1\r\n]
Request Method: GET
Request URI: /feeds/feed/CSharpHeadlines
Request Version: HTTP/1.1

0000 00 Oe 38 a4 c6 80 00 1b 0d ec 21 cO 08 00 45 00 ee8eiive oules Bl

0010 00 94 2b b8 40 00 7e 06 fa cd 8c 71 fc 64 41 37 L.+.@.~. ...q.dA7
0020 Ob dl 8e ee 00 50 f7 30 f8 48 fa le fe 36 50 18 ..... P.0 .H...6P.
0030 fa f0 84 e3 00 00 VAR NNV EFINFLTECINCTNCYIVE ...... GE T /feeds|

(LMo 66 65 65 64 2f 43 53 68 61 72 70 48 65 61 64 /Teed/CS harpHead
(L] 6c 69 6e 65 73 20 48 54 54 50 2f 31 2e 31 0d 0a lines HT TP/1.1..

Figure 2. A false positive case study in FP/FN analysis - WEB-CGI csh access.

2) Table 3 illustrates a false negative case, “SQL Worm propagation attempt”, and the
detail analysis of packet content is shown in Figure 3. The SQL Worm would
result in buffer overflow in the Microsoft Windows server service. The worm
loads Kernel32.dll and WS2 32.dll and then calls GetTickCount to continuously
send 376 bytes UDP packet of exploit and propagation code across port 1434 until
the SQL Server process is shut down. However, it sometimes results in FN since
some IDSs miss the signature to detect it.

Table 3. A false negative in FP/FN analysis.

Description

Buffer overflow in the Server Service in Microsoft Windows 2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers, including anonymous users, to execute arbitrary code via a crafted
RPC message. (reference: CVE, 2002-0649)

Signature Cause

alert udp SEXTERNAL NET any -> $HOME NET 1434 Signature content doesn’t exist.
(msg:"SQL Worm propagation attempt"; flow:to_server;
content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B 81 F1
01]"; fast_pattern:only; content:"sock"; content:"send"; ...)

No. Time Source Destination . Protocol Info

Data: 040101010101010101010101010101010101010101010101...
[Length: 376]
78 b4 04 f7 05 04 01 01 01

01 01 01 01 01
01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01
01 01 01 c9 b0 42
01 01 01 70 ae 42
90 90 68
50 e2 fd
6C 68 65
74 68 69

68 33 32
51 68 73 6f 63
be 18 10 ae 42
8d 45 f0 50 ff
3d 55 8b ec 51
31 ¢9 51 51 50

attempt.
9




Chapter 3 Problem Statement

3.1 Terminologies

Table 4 defines a confusion matrix to representtypes of trace datasets with
IDSs’ detection. The rows represent the actuaktiaehavior such as malicious and
benign, and the columns represent the detectiaomalauch as alert or non-alert.
According to the corresponding relation between amd column elements, there are
four types of traceslrue Positive(TP), False Positivg FP), True NegativgTN), and
False NegativdFN). TP and FP represent the IDS produces abertnialicious and
normal activities, respectively. Similarly, TN maathe IDS does not produce alert for
a normal activity while FN does for a maliciousiaity.

Table 4. Confusion matrix definition.

Detected
Alert Non-alert
Malicious True Positive (TP) False Negative (FN)
Actual Benign False Positive (FP) True Negative (TN)

Table 5 defines the notations used in this algorittM and =M respectively
denote malicious and benign. Based on the IDS tietecA and -A denote the
presence or absence of an intrusion alarm, i.ert at non-alert, separately. Then,
means the number of detected traces, i.e., how nacgs marked witA there are.N
presents the number of IDSs involved in detectaond theseN IDSs are a seV .
Moreover, whether allN IDSs having the voting rights depends on the ygptin
algorithm. According to the detection results, afidour types illustrated in Table 4

would occur, i.e., TP, FP, TN, or FN. Besides, figgpthere are differenk previous

alert messages of theth IDS under the protocoP, and m}, records these

messages. Furthermore, a notatiBnis used to present a set of these messages.

After the records, in order to investigate the tedallities, we use probability to model
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the rate of type of traces of tligh IDS under each protocol b1]ype;i However,

e
maybe not all IDSs are creditable enough, so twestiolds .« and . are used to
choose parts of IDSs with suitable creditabilitiieTset of the chose IDSs is a subset
of V and it is denoted a¥:. m is the detection threshold whereas is the

abnormality threshold. Then, according to each $&x®éditability, its corresponding
weight v/ is assigned.d! and msgj are detection result and alert message of the

j-th IDS fori-th trace. Based on the above notations and defisit CMDi can be

calculated for malicious tendency bth trace. Finally, based on theéMDi, DR

represents a decision result feth trace, i.e., if the trace is malicious, benigm,

unknown.

Table 5. The notations used in Creditability-baéédghted Voting.

Notations Descriptions

M,-M Trace behavior, i.e., malicious and benign.

A-A Intrusion alarm, i.e., alert and non-alert.

n Number of detected traces.

N Number of IDSs.

V:{12,...,N} Set of voters, i.e., set of IDSs.

Type {TP, FP, TN, FN} Types of the trace dataset.

Me Previous alert messagg of thej-th IDS under the protocél.
k Alert message type index.

j

IDS index.

P: {HTTP, FTP, ...}

Protocol type of classified traces.

S{m, .}

Set of previous alert messages.

TypémeP Rate of the type of trace of tli¢h IDS under the protoc®.
Ve Set of the remaining voters. A subsetof
r,r<N Number of elements of,.
Ty Detection threshold measured the correctness ettien.
A Abnormality threshold measured the abnormalityleftdrequency.
. Weight of thej-th IDS fori-th trace, which is assigned according|to
W the creditabilities.
d/ Detection result produced by thh IDS fori-th trace.
msg Alert message of thigth IDS fori-th trace.
i Trace index.
CMD. Creditability Malicious Decision function calculatehe malicious

tendency foi-th trace with creditabilities.

DR: {A', - A, Unknown

Decision result with voting algorithm feith trace.

11



3.2 Problem description

In APP, on the one hand, the efficiency is low whkants only come from one IDS,
as explained in Chapter 1. On the other hand, \aleats come from multiple IDSs, the
efficiency may also be low if APP disregards thiéedént domain knowledge among
multiple IDSs. Moreover, due to the different dom&nowledge, different IDSs may
have different detection results for a traffic g#a¢lence, how to efficiently use these
results to make a good decision on the procesa#it tirace is a problem.

The above description can be formulated as follows.
Given: (1) a training datasel, (2) N IDSs, (3) sets of alerts produced by
IDSs, (4) n corresponding processed traces.
Suppose: (1) the weight pth IDS is w', (2) the alert produced kyth IDS fori-th
trace is g/ .

Objectives: (1) model a series of weigHt&’,w?,w*,....,w" agcording toT, (2)

design a functionf, (w',a/) to make a decision on each trace.

To maximize the number of correct decisions, thenlmer of FPs and FNs are

minimized and the efficiency of APP is maximized@dlingly.
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Chapter 4 Creditability-based Weighted Voting

This chapter details the Creditability-based Weaghvoting algorithm which
includes four components. The first component esQGheditability Modeling,which
investigates and models the IDSs’ creditabilitiesoading to the past experience of
detection. Second, theuthority Selectingelects authorities of detection if they exist.
Third, theVoter Excludingexcludes voters that cannot often perform wetletection.
Lastly, theWeighted Votingletermines a trace where it belongs to.

4.1 Overview

Alert Pre-processing Alert Post-processing Trace Datasets

- - - - - - -

Datasets

[
N
: )
Alert Comparison > |
Creditability-based L
Weighted Voting \ T
|
. \
|
|
\
|
|

Y

FP/EN Analysis

\

Figure 4. Architecture of our system.

The goal of this work is to increase the efficierdyalert post-processing when
alerts come from multiple IDSs, that is, to inceedise accuracy of the corresponding
processed traces which actually belong to TP, RR,0F FN cases. Accordingly, the
generated TP/FP/TN/FN datasets can be not only bgd®S vendors to improve
their signature design, but also used to accumolat&nowledge of alerts.

For this goal, as shown in Figure 4, the Activecér&ollection collects and
classifies the suspicious traffic traces which agplayed to multiple IDSs by
comparing the alerts produced by IDSs. Since thectlen of IDSs could be incorrect,
i.e., FP and FN, the FP/FN Analysis investigates ¢huses of FPs/FNs using the

collected traces and records the confirmed TP/FHFNNraces into Datasets as the
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ground truth. Based on the Datasets and the aceat®duknowledge of alerts, this
work therefore proposesGreditability-based Weighted Votirig make a decision on
the suspicious traffic trace more accurately.

Creditability-based Weighted Voting

Creditability-based Weighted Voting

Alerts

—> Creditability Modeling — Alithority Selecting
. 1| Decided traces
Traces Toe-love: Modclice y (for datasets)
—> . EEEE——
1 Voter Excluding

Training '
Datasets Data

» L»|  Weighted Voting

lDecided traces
(for analysis)

Figure 5. Architecture of Creditability-based Wetggh \oting.
The key idea of theCreditability-based Weighted Votingp increase the

efficiency of alert post-processing is investiggtithe IDSs’ creditabilities and
deciding the traces more accurately with the cpording creditabilities.

Hence, theCreditability-based Weighted Votings constructed with some
components. As shown in Figure 5, from the DatagbtsCreditability Modeling
selects the significant types of traces to set hg Training Data and uses the
Two-level Modelingto model the IDSs*' corresponding creditabilities tifferent
types of traces. Since each IDS could not perforefi wn all types of traces, we
consider that some IDS performs well or not on saype of trace or some alert.
Therefore, investigating the creditabilities ondr fll types of traces is not enough.
However, based on the creditabilities, first, thathority Selectingselects the IDS
with high detection capability to be an authorityiti exists. Secondly, th&oter
Excluding excludes the voter that cannot usually detect rttadicious traffic in
detection. Third, theWeighted Votingdecides the trace where it tends to, i.e.,

malicious, benign, or unknown, with proper votemnd aveights.
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4.2 CM: Creditability Modeling

Since each IDS could not perform well on each aler¢ach type of trace, the
CM is designed to investigate and model the detectiapabilities of IDSs for
different types of traffic with two levels. The twevel is especially designed in terms
of the categorization of signature definition. Alera message, the description of a
suspicious activity in a signature, comprises hmtleither two factors, i.e., protocols
and malicious types. Hence, investigating the atart consider both two factors.
Besides, based on the protocol, which is the maoshnoon categorization, the
detection capability on protocol factor can alsarbeestigated. Thus, it is reasonable
to make use of two levels to model the creditabiits shown in Figure 5, the CM
includes two components. OneTisining Dataand the other i$wo-level Modeling
TD: Training Data

According to the TP/FP/TN/FN traces confirmed frtéme FP/FN analysis, the
CM selects the significant types of traces to gethe TD. The selection policies are
based on the proportion of appearances in trafict the number of corresponding
defined signatures. If both of them are high, tiv @ill identify the types of traces as
significant ones and select them into TD.
TLM: Two-level Modeling

Based on the TD, the TLM counts two detection cdpigls for an IDS. One is
for Alert Message leve]AML) and the other is foProtocol level(PL). Just as the
name implies, each AML's detection capability deggeon the correctness of an alert
message and the detection capability of PL is basesbme protocol. Therefore, the
conditional probability of each element of the ambn matrix can be calculated as
follows.

First, in AML, the correct rate of a previous alereéssage analyzed by FP/FN
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analysis can be calculated &(M |mj ) with conditional probability,

C(mlng)

Pi(M |mj ) =———,
J “F t(m|J<,P)

jOL N, @

where t(m},) and c(m,) are the total number and the correct numbepgf. .

Second, in PL, we define the successful detectd® and successful ignorance
rate as Pi(M | A) and Pj(-M |-A) to mean the correct detected malicious traces
and ignored benign ones, respectively. Based ontlf&) successful detection rate is
calculated as

Zh:C(mIL,P)

P (M [A) =Pi(M [mip,mbp,....mip) = 5——, jO[L N], @)
kZzlt(m’k,p)

whereh is the number of all alert message typeptbfIDS under the protocél.

Besides, according to the Bayes’ theorem a'rgqbé

ate,P !

the successful ignorance rate

is calculated as

P(—' M ) EI-Nrjate,P
P(_' M ) EI—Nrjate,P + P(M ) D:Nrjate,P

As a result, for each IDS, it has a creditabilaiple which comprises three vectors, i.e.,

Pi(~M |- A) =

. JOMLN]. ©)

Pi(M [mis), PI(M|A) and P(=M |-A).

4.3 AS: Authority Selecting
Selecting authorities with relatively low FP and FN

Based on the investigation of detection capabidlit€IDSs for different types of
traces, the AS finds that sometimes some IDSs haweh higher creditabilities than
others. In other words, the lower FP and FN rategccresult in higher creditabilities.
Thus, comparing with other IDSs, if the credital®b of some IDSs are high enough

for some type of trace, the AS assumes that thBSs Ican be the authorities of
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detection and selects these IDSs to be authorities.

The procedure of the AS includes three steps.,Foseach type of trace, the AS
sorts the FP and FN rates of every IDS from higlote respectively. Then, the AS
separately calculates the average valugard L, of FP and FN rates of the IDSs
listed after three-quarters of all IDSs since theaept of mean in Statistics. Third, the
IDSs will be selected to be the authorities of diéb@ by the AS when their FP and
FN rates are both lower than &nd L.

Deciding traces by authorities if they exist

Finally, there are three cases: no authority, ankaity, or multiple authorities.
If no authority occurs, the CWV will enter the Voteéxcluding and then Weighted
Voting. When there is one authority, the tracesl wé decided directly by that
authority. Otherwise, the CWV will enter the Weigtit\Voting and the traces will be
decided by the multiple authorities.

4.4 VE: Voter Excluding

The VE is designed to exclude the voters which oamsually perform well in
detection. Based on the concept, the VE excludesalters according to two views.
One is the TP/FP rates and the other is alert é&necy
Excluding voters with low TP and high FP

First, according to the TP and FP rates, the VHuebes the voters which have
TP is less than detection threshadd while FP is more tharra. The reason is that
some IDSs produce more incorrect detection thamecbretection. The VE then
assumes that the IDSs are not strong enough ahedescdhem.

Excluding voters with abnormal alert frequency

Second, based on the alert frequency, the VE asstimaé the IDSs having the

abnormal alert frequency are unusual. The reaséimaissome IDSs always produce

alert or not on detecting the specific type of éxaléor example, when processing the
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same type of trace, some IDS does not produce lanyvéhile others do. Moreover,
the IDS, which has the detection function in theetyf trace, does not produce any
alert that means its corresponding signature dasigoubted. Thus, when every IDS
processes the same type of trace, if either the i@t or the non-alert rate is more
than ra, the IDSs will be excluded by the VE.
4.5 WV: Weighted Voting
Calculating the malicious tendency

After the VE excludes some voters, or there aretiplelauthorities, the WV is
processed with proper voters. The WV assigns thghtseto the corresponding voters
according to the creditabilities. Then, when preogsthe traces one by one, the WV
designs &reditability Malicious Decision FunctiQrCMD to calculate the degree of
tendency towards malicious activity. Heth trace, itsCMD; is calculated as

P.i(M |msd), if (di=A) O(msg S)
T.i= P(M|A), if (d=ADO(msdOS) , jOV,i0OLn], 4)
1-P (=M [=A), if (d/=-A)

CMDm,j):%jEzNTi,i, 0L ). )

In (5), theCMD; has three conditions to calculdg respectively. The first condition

is thej-th IDS produces an alert and the corresponding alessage belongs to the
previous alert message set. It can be detailedvtb with P, (M |msd). Secondly,

thej-th IDS produces an alert but the alert messags dotbelong to the previous
alert message set. It can only be calculated i Pj(M | A). Third, thej-th IDS
does not produce an alert. It is calculated in RbwP; (=M |- A).
Making a decision with the malicious tendency

Finally, the WV makes a decision oith trace withDR, to decide the trace is

malicious, benign or unknowithe DR, is malicious if theCMD; is more thamx while
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theDR, is benign if theCMD,; is less thaif. Hence, thé®R, is formulated as

A, if CMD (Ti,j)>a
DR =4-A, if CMD(Ti,))<g, i0Ln],0<a,6<lB<a, (6)
Unknown otherwise

whereA’ means theé-th trace is decided as malicious trace whié\’ means the-th
trace is decided as benign one.
4.6 Example of Creditability-based Weighted Voting

Assume there are seven IDSs (iM.z= 7), which detect the same traffic and
produce the corresponding alerts. By comparingalkets, the HTTP traces can be
collected and are taken as examples here. AftdfRHEN analysis, the TP/FP/TN/FN
datasets can be set up. Next, the CM set up thacEbrding to the datasets and then

uses the TLM to model the seven IDSs’ correspondneglitabilities respectively. It

ﬁrSt CaICU|ateSTPrjate,HTTPl FPrjate,HTTPl TNljate,HTTPl and FNrjate,HTTP' Then, in AML’

the S is set up with the correct rates of the previolestanessages which are
calculated asP;(M | m/. ) - Next, in PL, it calculates the successful detectiate

Pi(M | A) and successful ignorance rag(-M |-A), which are shown in Table 6.
After the CM, the other three components of thecedure of the CWV can

process with the two-level creditabilities. First,AS, the 3 and L, are 0 and 0.51
separately. By comparing every IDS[Pc e and FN e e With L1 and L

respectively, there is no authority in detectioec&d, in the VE, the 3-rd IDS is
excluded according to the TP/FP rates. The 1-th, 8-th and 6-th IDSs are excluded
according to the abnormal alert frequency. Hentfter ¢he VE, the remaining voters
are the 2-nd and the 7-th IDSs. Finally, in the WiMen processing the 87-th trace,
the 2-nd IDS produces an alert and the alert messagIBM Lotus Domino

Accept-Language Buffer Overflow” which is an elerhehS while the 7-th IDS does
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not produce any alert. Besides, the creditabilftyhe 2-nd IDS of the alert message
in AML, Ps72(M |ms§7) is 0.83. The creditability of the 7-th IDS of then-alert

in PL, P7(-M|[-A) is 0.80. Therefore, theCMDg; is calculated as
(0.83+(1-0.80))/2, that is, the result of lG&Dg; is 0.52. Because the value is larger

than 0.5 ¢ = 0.5), theDRg; is A” which means the 87-th trace is decided as makciou

one.
Table 6. Two-level creditabilities results of exdenpun.
Creditabilities IDS1 IDS2 IDS3 IDS4 IDS5 IDS6 IDS7
P(M | A) - 0.46 0.03 - 1.00 - 0.51
Pi(=M [-A) 0.71 0.78 0.52 0.71 0.75 0.71 0.80
Ps7. (M |msd,) N/A 0.83 N/A N/A N/A N/A N/A
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Chapter 5 Evaluation and Observation

In this chapter, the detection capabilities oftiple IDSs and the performance of
the CWV are evaluated. First, the IDSs’ correspogdtreditabilities of different
types of traffic traces modeled by the CM are tHaed. Second, the Accuracy, TPR,
TNR and Efficiency are used to evaluate the voéilggrithms.

5.1 Trace selection and experiment environment
Trace selection

As mentioned in Chapter 4.2, the selection poli@es based on the rates of
appearances in traffic and the rates of numbepoksponding signatures. If both of
them of some type of trace are significant, thigetyf trace will be selected. First,
according to the ten categories classified by AL8],[we investigate the traffic in
Beta Site [19] during the period from September2@10 to February 1, 2011 to
understand the frequent appearance categoriesfiic.trSecond, we take the rule
version 2.9 of Snort as example to investigate $ignature classification and
distribution. The investigation result of the abgwalicies is shown in Table 7. It
obviously represents that Web, File Transfer, aretwdrk are significant types.
Moreover, Remote Access is more familiar than VaPus in our experience. In
addition, the signatures in Chat are usually clhagiams detection which used to be
against corporate policy in normal traffic [1]. Ehgrmore, in Web, File Transfer,
Network and Remote Access, we select the most poguiotocol, respectively.
Hence, we decide the four types of traces, i.eTPJFTP, NetBIOS and TELNET.

Table 7. Investigation result of trace selection.

File File Net- Remote Encryp- . Strea-
Category web Sharing Chat Transfer work Access VoIP tion Email ming
0,
tf)a?f]icc 35.86 32.69 8.82 7.07 4.84 4.05 3.14 2.79 0.49 0.p2
0,
/o of 81.78 0.14 0.57 2.13 8.80 0.66 1.41 0.0(¢ 4.48 0.p4
signature

Experiment environment
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The real-world traffic is captured from the NCTWetB Site [19], during the

period from September 1, 2010 to February 1, 2@Glthen uses a traffic replay tool

(e.g., tcpreplay) to replay captured raw traffic nwltiple IDSs. Seven IDSs are

involved in the classification, which are shown Table 8. Table 9 presents the

number of four selected types of traces. The @timalicious traces to benign ones is

about 4 to 6. The benign traces rate is not soaegédiigh since we expect to avoid a

flood of the benign traces dominating the resuitthis experiment. During the period,

the two dominant types of trace are HTTP and NefBID the HTTP traffic, 39% of

the traces are malicious, meaning HTTP applicatamesfrequently exploited. In the

NetBIOS traffic, 62% of the traces are maliciousgaming the vulnerabilities of

NetBIOS are usually targeted by attacker. Hereckhaose the traces collected in the

first two months to be the training data while treeces of the latter three months to be

the processing data. The former is as input foiGheto set up the TD, and the latter

is as input for the CWV one by one.

Table 8. Seven IDSs Information.

Xgnmdeor BroadWeb D-Link Fortinet McAfee TippingPoint Trend Micro ZyXEL
Device FortiGate- ZyWALL
name NetKeeper7K| DFL-1600 110c M-1250 5000E TDA2 USG 1000

The parameters in the CWV are set as followshénME, the detection threshold

1« is set 0.5 while the abnormality threshatd is set 0.9. In the WV, the valuesof

andg are both set 0.5. Moreover, we discuss these deasnin Chapter 5.3.

Table 9. Statistics of number of traffic traces.

(a) Training data

(b) Processing data

Type Malicious | Benign Total Type Malicious | Benign Total
HTTP 46 72 118 HTTP 57 86 143
FTP 22 74 96 FTP 29 77 106
NetBIOS 66 47 113 NetBIOS 87 46 133
TELNET 4 31 35 TELNET 5 42 47
Total 138 224 362 Total 178 251 429
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5.2 Experiment results of investigation of creditabities

In the CM evaluation, this work takes seven ID#&jich are called IDS1,
IDS2, ..., and IDS7, respectively, as examples toesgt the IDSs’ corresponding
creditabilities of different types of traffic traxe two levels.
Protocol level

As mentioned in Chapter 4.2, the successful deteatate and successful
ignorance rate are defined aB(M |A) and Pi(=M |=A), respectively, to
represent the detection capabilities for PL. Asagho Table 10 (a), first, the value of
detection rate is ‘-* that means uncalculated, thathe IDS does not produce any
alert for the type of traces. Secondly, some vabfegetection rate are 0.00 since the
alerts result from common commands used, i.e.trdféic are always benign. For
example, some alerts produced by the IDS5 for Faées result from FTP common
command used. Third, some values of detection worance rates are 1.00. The
observed reason is the definition of signaturetfier type of traces is more precise.
For instance, the type of alerts produced by th®S@or TELNET traces is only one
and is correct in our investigation. Besides, th&d’ detection capabilities for
different protocols are different. In our investiga, for HTTP, the IDS2, IDS5 and
IDS7 have higher creditabilities. Then, for FTR tBS5, IDS6 and IDS7 have higher
creditabilities. Next, for NetBIOS, the IDS1, IDSH)S5 and IDS6 have higher
creditabilities. Finally, for TELNET, the IDS3 an®S5 have higher creditabilities.
Generally, the IDS5 achieves appreciable successtfes under each protocol.
Alert Message level

As mentioned in Chapter 4.2, the correctness pfexious alert message is
defined asP;(M |m},) to represent the detection capability for AML. [Eafh0 (b)
shows the top ten accurate alert messages, i®.aldrt messages have higher

23



creditabilities, in our investigation. Besides, soaf them result from the same traffic

with same suspicious activity, and therefore, tregsegrouped into one to represent.

1) The first two “URL.DirectoryTraversal.Suspicious’hd “HTTP: Attempt to
Read Password File” alerts result from the samificdrevith the request URI
string “../..[..1..1..]..]..letc/passwd”. The formedert results from the string “../../".
The latter alert results from the string “/etc/peds These malicious activities
could obtain the private information or accessfiles on the file system.

2) The “FTP: MKDIR Command Used” alert results frone thTP MKD command
used. The observed malicious activity is the MKD &WD commands are used
alternately, which means the intruder creates ectiiry, changes the working
directory to the created directory, and then cretite same directory alternately.

3) The “specifiers.BolinTech.DreamFTPServer.Forman§tralert results from the
malicious FTP request containing embedded fornratgsspecifiers, i.e., “user
%n”, “pass %n”, “retr %n” or “%n".

4) The “SOLARIS.TELNETD.AUTHENTICATION.EXP”, “TelnetLogin Bypass
(General)”, and “Solaris Telnetd Authentication Bgp Vulnerability” alerts
result from the argument injection via USER envimamt variable. The Solaris
telnet daemon misinterprets "-f* sequences as vediguests to skip the
authentication. However, the alert may be FP winentarget is a non-Solaris
telnet server.

5) The
“NetPathCanonicalize.SRVSVC.MicrosoftWindows.MS@B7®Buffer.Overflow”
alert results from the RPC API NetPathCanonicalia@iction exploited with a
crafted path. The successful overflow exploit coaldw a remote attacker to
execute arbitrary code or crash the service. Howéhe alert may be FP when

the path does not include the buffer overflow code.
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6)

The “IBM Lotus Domino Accept-Language Buffer Ovesil’ alert results from

the long length of Accept-Language field, e.g., .1T8e observed malicious

activity is the duplicated language code appeaguiently, while the alert may

be FP when the abnormal language code does not exis

7) The "WEB-MISC robots.txt access” alert results frtre file robots.txt accessed
directly. The malicious activity could gather timarmation about the target site.
However, the alert may be FP when some search @sagobot checks robots.txt
for information about the site.

Table 10. Experiment results of investigation aditabilities.
(a) Protocol level — successful detection and ignoraates for each IDS.
pes HTTP FTP NetBIOS TELNET
IDSSN\] PMIA) | P(=M|=-A) | P(MIA) | P(=M[=A) | P(MIA) | P(=M]|=A) | P(MIA) | Pi(-M[-A)
IDS1 - 0.71 - 0.92 0.95 0.69 0.28 0.99
IDS2 0.46 0.78 - 0.92 - 0.33 - 0.98
IDS3 0.03 0.52 0.00 0.78 0.66 0.33 1.0D 0.99
IDS4 - 0.71 - 0.92 0.68 1.00 - 0.98
IDS5 1.00 0.75 0.74 0.98 0.88 0.83 1.00 0.99
IDS6 - 0.71 0.69 1.00 0.67 0.68 0.0(¢ 0.98
IDS7 0.51 0.80 0.70 0.95 0.41 0.31 0.0L 0.72
(b) Alert Message level — top ten accurate alert messag
Rank | Alert messages Pi(M [m.»)
1 URL.DirectoryTraversal.Suspicious 1.00
1 HTTP: Attempt to Read Password File 1.00
1 FTP: MKDIR Command Used 1.00
1 specifiers.BolinTech.DreamFTPServer.Format.String 1.00
1 | SOLARIS.TELNETD.AUTHENTICATION.EXP 1.00
1 Telnet: Login Bypass (General) 1.00
7 NetPathCanonicalize.SRVSVC.MicrosoftWindows. M3~ Buffer.Overflow 0.89
8 IBM Lotus Domino Accept-Language Buffer Overflow 0.83
9 Solaris Telnetd Authentication Bypass Vulnerapili 0.80
10 | WEB-MISC robots.txt access 0.75

5.3 Accuracy, TPR, TNR, and Efficiency of voting ajorithms
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Evaluation metrics

Let TPyaces be the number of malicious traces which are ctgretetermined,
FNiaces be the number of malicious traces which are negrdened, TNyaces be the
number of benign traces which are correctly cles$ifFPyaces be the number of
benign traces which are incorrectly determined akamus ones.

This work uses theAccuracy TPR and TNR metrics [22] for the voting
algorithm in the evaluation. Th&ccuracyis evaluated with the percentage of whole
traces that are determined precisely. This is anconty used metric for overall view

of evaluation.

races+ races
Accuracy= L T x100%.
T Ptraces+ F Ptraces+ T Ntraces+ F Ntraces

In detail, theTPRis evaluated with the percentage of maliciousesaihat are
correctly caught as malicious ones, while TiéRis evaluated with the percentage of

benign traces that are correctly passed as bemigs. o

TPR=— TP 00, TNR= - TN=ees g 00,

T Ptraces+ F Ntraces T Ntraces+ F Ptraces

There is a tradeoff betweehPR and TNR It is required to evaluate the
performance of voting algorithm on bofiPRandTNR Like the F1 score [23] which
is a measure of a test's accuracy, this work defingimilar measure for the efficiency

of voting algorithm. Thefficiencytakes the harmonic mean BPRandTNR given
by:
Efficienc —#HOO%
ST S
TPR TNR

Higher value ofEfficiencyindicates that the voting algorithm performs kette not
only TPR but alsoTNR
Experimental evaluation results

Improving accuracy by leveraging the domain knowlede among IDSs
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Figure 6 shows the whole accuracy of CWV and MV. It is observed that each
accuracy of CWYV is higher than that of MV. The total accuracy of CWV and MV are
95% and 66%, while the average accuracy of them are 96% and 71%. It is observed
that the CWV is improved by about 1.4 times of percentage as the MV. The result
demonstrates that the weights of IDSs should be different for leveraging the different

domain knowledge among IDSs when multiple IDSs involve detection.
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Figure 6. Accuracy of the voting algorithms.

Increasing both TPR and TNR with two-level creditability modeling

Figure 7 and Figure 8 compare the TPR and TNR of CWV with MV. The results
mainly demonstrate the effect on two-level creditability modeling. First, the average
TPR of CWV and MV are 93% and 14% that means the FN rate of the former is
lower than the latter. The observed reason is the FNs of some IDS could be avoided
by leveraging other IDSs’ correct detection with corresponding creditabilities. Second,
the average TNR of CWV and MV are 98% and 93% that means the FP rate of the
former is lower than the latter. The main reason is the FPs of some IDS could be
filtered with the creditabilities especially in AML. Third, in the CWV, the TNR are
higher than the TPR since the correctness of alert message itself is investigated in
AML. Thus, alert message with frequent FP would be filtered. Lastly, the TPR and

TNR of MV for HTTP, FTP, and TELNET are 0% and 100%, respectively. In this
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case, the reason is only few IDSs produce alerts, which means most IDSs occur FNs
or the few ones occur FPs. No matter which situation it is, the MV decides the result
directly from IDSs with the same weight, that is, may ignore some IDSs which have
noticeable creditabilities, could result in insignificant results, especially most of them

are FNs.
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Figure 7. TPR of the voting algorithms.
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Figure 8. TNR of the voting algorithms.
Figure 9 shows the efficiency of voting algorithms. The efficiency of MV is 41%,

while that of CWV is as high as 94%. The CWV can maintain about 2.3 times of
percentage as the MV on efficiency. This means the CWV can maintain both TPR and

TNR well.
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Figure 9. Efficiency of the voting algorithms.

Discussion of important parameters in CWV

In the VE, the detection threshold = 1is set 0.5 that means the halved correct
detection, i.e., the probability of intuition is one over two. Based on this value, we
experiment with various abnormality threshold values from 0.6 to 1.0 and the results
are shown in Figure 10. The values, smaller than 0.5, are not used in this experiment
because they result in no involved voters. It does not make sense when there are no
voters in a voting. From Figure 10, we can observe that when the abnormality
threshold is 0.9, the CWYV has the highest efficiency. Therefore, we use this value in

all experiments of this thesis.
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Figure 10. Efficiency under various abnormality thresholds of CWV.

Similarly, in the WV, we change a and £ from 0.1 to 0.9 and find that the
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accuracy can be 100% when the valuesxand g are 0.7 and 0.1, respectively.
However, the range betweenandf is large, 0.6 (= 0.7 — 0.1), so the number of
unknown cases is up to 55% of that of total proeggsaffic traces. Hence, andp
can be tuned according to the tradeoff betweeraticaracy of decided traces and the
number of unknown traces that need to be analyzediaily.
5.4 Differences between CWV and each IDS in perceages at FP and FN

Table 11 shows the percentages of FP and FN of GAWY each IDS for
different types of traces. Some IDSs have FP anddides with 0% and 100% since
these IDSs do not produce alert for this type atds. This also means these IDSs
miss the signatures. Secondly, the FP of IDS3 @8¢d because the alerts result from
common command used, such as “FTP GET commandtd,Tthe FP and FN of
IDS5 are 0%. The observed reason is the type dsgteoduced by IDS5 is only one,
and the message is “SOLARIS.TELNETD.AUTHENTICATI@XP” that is a
precise signature in our investigation, i.e., tmedgability of the message is 1.0.
Actually, the corresponding traces are always n@algones in analysis. Besides, for
NetBIOS traces, most IDSs produce many alertsrésatlt in more FPs for each IDS,
while for other types of traces, some IDSs prodalegs that result in more FNs.

Table 11. Percentages of FP and FN of CWV and E28h

HTTP FTP NetBIOS TELNET
FP FN FP FN FP FN FP FN

IDS1 0 100 0 100 63.04 5.17 0 100
IDS2 26.74 94.74 0 100 0 100 0 100
IDS3 63.95 100 100 86.21 80.43 1.15 2.38 40.00
IDS4 0 100 0 100 25.53 7.58 0 100
IDS5 0 98.25 0 48.28 52.17 9.20 0 0
IDS6 0 100 0 13.79 67.39 1.15 0 100
IDS7 9.30 5.26 0 48.28 39.13 82.7¢ 97.6p 80.00
cwv 2.33 7.02 0 13.79 4.35 9.20 0 0

Furthermore, the differences between CWV and eB&ih percentages at FP
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and FN are shown in Table 12. First, some IDSsctiétetter than the CWV partially
because the value of FP or FN in percentage istivegaut no IDS can individually
detect well in both FP and FN. Second, the CWVqreré well in most cases for all
types of traces by leveraging different detectiapabilities among IDSs which are
shown in different values of FP and FN. It is destoated that the average
percentages of FP and FN reduction between CW\ganl IDS are 21% and 58%.

Table 12. Differences between CWV and each IDSnegntages at FP and FN.

HTTP FTP NetBIOS TELNET
FP FN FP FN FP FN FP FN

IDS1 -2.33 92.98 0 86.21 58.69 -4.08 0 104

IDS2 24.41 87.82 0 86.21 -4.35 90.8 0 104

IDS3 61.62 92.98 100 72.42 76.08 -8.0% 2.38 40.00

IDS4 -2.33 92.98 0 86.21 21.18 -1.62 0 104

IDS5 -2.33 91.23 0 34.49 47.82 0 0 0

IDS6 -2.33 92.98 0 0 63.04 -8.05 0 100

IDS7 6.97 -1.76 0 34.49 34.78 73.5¢ 97.62 80.00
Average | 11.95 78.44 14.29 57.15 42.44 20.3y 14.29 74.29

5.5 Case studies

In this section, two case studies in the expertraes taken as examples to show
the TP case in CWV and FN in MV, and the TN caséWV and FP in MV.
Case study I: TP case in CWV and FN in MV

In this case, the alert messages and the corréspareditabilities are shown in
Table 13, while the trace content is illustratedFigure 11. It is observed that the
attacker uses the command “USER —fadm” as the agunmjection via USER
environment variable in environment option to ageno bypass the authentication.
More information about Telnet environment option && found in [24]. Furthermore,
the malicious content in hexadecimal is “ff fa Zr @ 55 53 45 52 01 2d 66 61 64 6d”
obviously. However, this malicious trace can berextty determined by the CWV

because of the high creditabilities in AML, whited missed by the MV because only
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few voters can detect it.

Table 13. Alert messages and corresponding creditabilities in case study I.

msg| P.;(M | msg))
SOLARIS.TELNETD.AUTHENTICATION.EXP 1.00
Solaris Telnetd Authentication Bypass Vulnerability 0.80

No.. Time Source Destination Protocol Info

8 0.477378 207.188.161.41 140.113.229.126 TELNET Telnet Data ...
9 0.478186 140.113.229.126 207.188.161.41 TELNET Telnet Data ...

= Telnet
Command: Will Negotiate About Window Size
@ Suboption Begin: Negotiate About Window Size
Command: Suboption End
command: Will Terminal Type
@ Suboption Begin: Terminal Type
Command: Suboption End

=fSuboption Begin: New Environment Option
option data

Command: Suboption End

Command: Won't Suppress Go Ahead

0000 00 12 01 c3 2c cO 00 24 dc 4b 8d ce 08 00 45 00 ....,.. $ .K....E.

0010 00 59 36 e5 40 00 2e 06 32 e4 cf bc al 29 8c 71  .Y6.@... 2....).q
0020 e5 7e de 9 00 17 €6 16 Tb 25 26 cd eb 7d 50 18  .~...... .%&..}P.
0030 5 6¢c d6 bb 00 00 ff fb 1f ff fa 1f 00 50 00 19  .T...... ..... s
0040 ff fo ff fb 18 ff fa 18 00 76 74 31 30 30 ff fO ........ .vt100. .
il I T Ta 27 00 00 55 53 45 52 01 2d 66 GLEMEMMM " .. USER.-fa
0060 [FWF ff fO ff fc 03 . ....

Figure 11. Trace content in case study I.

Case study II: TN case in CWYV and FP in MV

In this case, the alert messages and the corresponding creditabilities are shown in
Table 14, while the trace content is illustrated in Figure 12. It is observed that the
signature designs are not specific enough. Hence, the general signature is easily
matched in the payload even though the payload is benign. Obviously, logon/login
failure is general that often occurs in normal activities. It is demonstrated that the
corresponding creditabilities are low in our investigation. Therefore, this benign trace
can be correctly determined as benign one by the CWYV, while it is incorrectly
classified to malicious one by the MV because most voters detect it.

Table 14. Alert messages and corresponding creditabilities in case study II.

msg, P.,(M | msg))
netbios: SMB.Login.Failure 0.26
SMB: Windows Logon Failure 0.12
EXPLOIT Server Service Remote Code attack 0.62
NETBIOS-SS: NULL Credentials Login 0.50
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140.113.247.199 140.114.230.35 SMB Session Setup AndX Request,
140.114.230.35 140.113.247.199 SMB Session Setup AndX Response,
140.113.247.199 140.114.230.35 SMB Session Setup AndX Request,
140.114.230.35 140.113.247.199 SMB Session Setup AndX Response
« [ ]
@ Ethernet II, Src: JuniperN_4b:8d:ce (00:24:dc:4b:8d:ce), Dst: Cisco_c3:2c:c0 (00:12:01:c3:2c:c0)
= Internet Protocol, Src: 140.114.230.35 (140.114.230.35), Dst: 140.113.247.199 (140.113.247.199)
@ Transmission Control Protocol, Src Port: microsoft-ds (445), Dst Port: 59676 (59676), Seq: 339,
= NetBIOS Session Service
= SMB (Server Message Block Protocol)
= SMB Header

Server Component: SMB

Response to: 8

[Time from request: 0.002484000 seconds]

SMB Command: Session Setup AndX (0x73)

[T Status: STATUS LGN FATLUREJ(0XC000006)

» Flags: 0x98

Figure 12. Trace content in case study II.
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Chapter 6 Conclusions and Future Works

This work proposes the Creditability-based Weighteting (CWV) to reduce
both FPs and FNs and increase the efficiency at alest-processing with multiple
IDSs. The CM leverages the domain knowledge amongitipte IDSs by
investigating the detection capabilities of all ©&nd models the corresponding
creditabilities to them. From the experiment reswit investigation of creditabilities,
we demonstrate the different IDSs’ detection cdjiss by their creditabilities. In
detail, we observe that the signature design isrihan factor on the correctness of
detection. Some IDS has more specific signaturerésalts in fewer number of alerts
and FPs, while some IDS has more general sign#tateresults in more number of
alerts and FPs. On the other hands, some IDS ntissesgnature, leading to FNs.

This work uses Accuracy, TPR, TNR, and definescigficy to evaluate two
voting algorithms, the CWV and the MV. The CWV cachieve the accuracy and the
efficiency up to 95% and 94%, which are much high@n the MV in comparison.
Besides, between the CWV and each IDS, the CW\bped well in most cases for
all types of traffic traces. It is demonstrated tih@ average percentages of FP and FN
reduction between the CWV and each IDS are 21%58#6l

However, the CWV could make an incorrect decisiorsome situations. For
example, when processing the trace which triggeesnew alert of some IDS, the
CWV only can use the corresponding creditabilityPin of the IDS to determine the
trace. The incorrect result could then occur. Besidf some IDS significantly
updates or modifies its signature database, whielans the detection capability
changes greatly, the corresponding creditabilityudddbe almost useless. The WV
could make an incorrect decision on the trace. Hetie frequency and the duration

of updating training data are issues in the futéathermore, another goal in the
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future is the automation because it could increhseproductivity and practicability
of this system. In foreground, the CWV keeps preicggstraffic traces one by one,
while in background, the creditability table forceaDS is updated with considering

the above issue to maintain the reliance on crieiita
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