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False Positive (FP) and False Negative (FN) happen to every Intrusion Detection System (IDS). How
frequently they occur is used to evaluate the performance of an IDS. A large number of FPs will degrade
the performance of the IDS. Furthermore, FNs cannot be investigated from one IDS’s alerts. Thus, to
overcome the limitation of one IDS, a way to leverage multiple IDSs’ domain knowledge is used. However,
due to different detection capabilities, different IDSs may have different detection results for a traffic trace.
Hence, using these results to make a good decision regarding the trace’s status turns out to be challenging.
This work proposes a Creditability-based Weighted Voting (CWYV) to reduce both FPs/FNs and increase the
performance of multiple IDSs. The CWV first investigates the detection capabilities of all IDSs and models
the corresponding creditabilities to them. Then, according to the creditabilities, it assigns the weights to
IDSs and makes a decision concerning the trace. From the experiment results, we demonstrate the
different IDSs’ detection capabilities by their creditabilities. In addition, we use Accuracy and Efficiency to
evaluate the CWV and the majority voting (MV). The CWV achieves the accuracy of 95% and the efficiency
of 94% compared to 66% and 41% of the MV. Besides, with the CWV, the average percentages of FP/FN
reduction for an IDS are 21% and 58%, respectively.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols
General Terms: Design, Algorithms, Performance, Security

Additional Key Words and Phrases: intrusion detection, false positives, false negatives, alert post-
processing

1. INTRODUCTION

Intrusion Detection Systems (IDSs) usually protect computer networks against
intrusions. A signature-based IDS is a popular approach nowadays. It specifies
signatures of intrusions and tries to detect malicious activities by matching these
signatures against the traffic data, called pattern matching. IDS vendors need to set
up a signature database and maintain it. There are two major challenges in the
signature-based IDS’s defense. One is growing and changing of malicious traffic and
the other is the difficulty in the design of IDS. The former leads the signature
database maintenance difficult. For instance, rules of Snort [Rule of Snort 2010] are
updated frequently. The latter includes runtime limitation and specificity of
signatures. Runtime limitation presents that IDSs may not analyze the context of all
activities in real-time. For example, a malicious activity differs only slightly from
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normal activities, so IDSs cannot detect it with part of content. Specificity of
signatures presents that the balance between general signatures and specific ones is
hard to determine. If the signatures are too general, they are easily matched in the
payload, even though the payload is benign. On the other hand, if the signatures are
too specific, IDSs would not detect malicious activities. Thus, because of these two
challenges, False Positives (FPs) and False Negatives (FNs) of IDSs occur.

FPs and FNs are used for evaluating the performance of an IDS. One IDS is often
found to be dissatisfactory with respect to either or both of a large number of FPs and
FNs. To illustrate the severity of FPs and FNs, we use two views: the vendor and the
user. From the vendor’s view, a heavy workload of analysis happens due to a large
number of FPs while FNs occur because of no corresponding signatures in the IDS.
From the user’s view, frequent alert messages of FPs interrupt the user while the
FNs means that malicious traffic intruding the protected networks is undetected.
Thus, we tend to reduce not only FPs, but also FNs because both of them are severe
and non-negligible.

In order to reduce FPs and FNs, an analyst post-processes, i.e., using alerts as
input and processing them to improve their accuracy, all alerts produced by an IDS
to confirm whether the alerts are TPs or FPs [Pietraszek 2006]. Nevertheless, the
observed problem is the limitation of one IDS. This is because an analyst can only
deal with the alerts which the IDS can detect in an IDS, but cannot investigate FNs
of the IDS. Furthermore, if there are a large number of FPs and FNs, an analyst will
analyze alerts with heavy workload. Accordingly, it is another problem in alert post-
processing.

The problem, in fact, has been estimated that up to 99% of alerts produced by an
IDS are FPs [Axelsson 2000; Julisch 2003]. Moreover, according to the alert
management [Pietraszek 2006], i.e., an analyst post-processes all alerts for improving
signature design, the limitation of one IDS is found out. To overcome the mentioned
problem and limitation of one IDS, multiple IDSs are used because each has its own
private and independent signature design. Based on different domain knowledge
among IDSs, traffic can be recognized by leveraging IDSs’ detection capabilities. The
advantage of this is the malicious activities which cannot be detected by some IDS
could be detected by others.

Several methods deal with alerts produced by an IDS to reduce the amount of FPs.
Some of them analyze alerts to recognize high-level attack scenario for high view of
attacks [Ning and Xu 2003; Ning et al. 2002; Ning et al. 2004; Sadoddin and
Ghorbani 2006], some study the causes of FPs to identify root causes [Julisch 2003;
Julisch 2001; Julisch 2003], and others classify alerts to TPs or FPs for reducing FPs
[Pietraszek 2006; Pietraszek 2004; Pietraszek and Tanner 2005]. However, these
methods only consider one IDS to detect malicious traffic, so they still cannot
evaluate FNs for the IDS. On the other hand, for solving the conflicts of detection
from multiple IDSs, a Majority Voting (MV) algorithm [Chen et al. 2009] is proposed.
MYV finds potential FPs (P-FPs) and potential FNs (P-FNs) first by comparing IDSs
alerts. If few IDSs generate alerts but most IDSs do not when they process the same
traffic, these traces are P-FPs of the few IDSs. In contrast, few IDSs do not generate
alerts but most IDSs do, these are P-FNs of the few IDSs. Next, an analyst analyzes
P-FPs and P-FNs to verify they are indeed FPs and FNs. However, in [Latif-
Shabgahi et al. 2004; Parham 2002], authors found MV often leads error decision. We
also find MV is not efficient enough in experiments. The reason is MV disregards
different domain knowledge among IDSs that results in low percentages of P-FPs/P-
FNs being FPs/FNs.

In this work, to leverage different domain knowledge among multiple IDSs,
reduce FPs and FNs, and increase the efficiency of alert post-processing, we propose
a Creditability-based Weighted Voting (CWV) algorithm. For this purpose, there are



two main components of our algorithm, Creditability Modeling (CM) and Weighted
Voting (WV). First, the CM identifies IDSs’ detection capabilities of different types of
traffic traces by investigating past detection experience to determine IDSs’
corresponding creditabilities. To investigate the detection capabilities on both or
either two factors comprised an alert, i.e., protocols and malicious types, the
creditabilities are therefore constructed in two levels, Protocol level and Alert
Message level. For instance, “HTTP” 1s a protocol in Protocol level. “HTTP: Attempt to
Read Password File” is an alert message of HTTP protocol in Alert Message level.
Second, according to the creditabilities, we assign the weights for weighted voting to
decide the traffic trace malicious or benign in WV. Thus, it would result in not only
reducing FPs, but also increasing TPs. In other words, it could increase TNs and
reduce FNs.

The rest of this paper is organized as follows. Section 2 presents the background
and related works. Section 3 states terminologies and problem statements. Section 4
describes the design and solution ideas of our algorithm. Section 5 displays the
evaluation of our works. Finally, Section 6 concludes this work and discusses the
future works.

2. BACKGROUND

This section describes alert post-processing and its related methods first, and then
introduces the generation method of FP/FN datasets.

2.1 Methods of Alert Post-processing

If there are a large number of FPs and FNs, an analyst may have a heavy workload,
1.e., he or she needs a long time to analyze the correctness of alerts. Accordingly, for
reducing the number of FPs and FNs, a method, called alert post-processing (APP), is
proposed. APP uses alerts as an input and processes them to improve their accuracy.
Several researchers [Julisch 2003; Julisch 2001; Julisch 2003; Ning and Xu 2003;
Ning et al. 2002; Ning et al. 2004; Pietraszek 2006; Pietraszek 2004; Pietraszek and
Tanner 2005; Sadoddin and Ghorbani 2006] proposed the methods to reduce the
number of FPs from an IDS. These methods can be classified into three categories,
l.e., alert correlation, alert -clustering, alert -classification, and illustrated
systematically as follows.

First, alert correlation [Ning and Xu 2003; Ning et al. 2002; Ning et al. 2004;
Sadoddin and Ghorbani 2006] analyzes alerts by recognizing high-level attack
scenario with higher view of attacks and makes correlated alerts be an attack graph.
For example, Ning et al. [Ning et al. 2002] presented an alert correlation approach
correlating alerts based on pre-conditions and post-conditions. Two alerts are
correlated when the pre-condition of a later attack is satisfied by the post-condition of
an earlier attack. This approach offered a more condensed view on the security issues
raised by an IDS. Unfortunately, Sadoddin and Ghorbani [Sadoddin and Ghorbani
2006] investigated that alert correlation may not have a significant effect in reducing
the number of total alerts, even the number of FPs. This is because the goal of alert
correlation is providing a higher view of attacks. It is different from the goal of
reducing the number of FPs and FNs even if the alert correlation may sometimes
reduce the number of FPs.

Second, alert clustering [Julisch 2003; Julisch 2001; Julisch 2003] studies the
causes of FPs and identifies root causes that makes an IDS alerts. It clusters the
alerts with similar root causes together. For instance, Julisch [Julisch 2001] defined
six attributes for an alert, i.e., source and destination IP addresses, source and
destination ports, alert types, and timestamps. The alerts with same six attributes
are categorized to the same group, called alert cluster. Thus, the alerts in the same



alert cluster, they may have the same root cause. According to the root causes, a
system administrator may reduce the number of FPs of an IDS.

Third, alert classification [Pietraszek 2006; Pietraszek 2004; Pietraszek and
Tanner 2005] classifies alerts to TPs and FPs for reducing the number of FPs of an
IDS. For example, the Adaptive Learner for Alert Classification (ALAC) was
proposed [Pietraszek 2004], and it was an adaptive alert classifier based on the
feedback of an intrusion detection analyst and machine-learning technique. Also, it
had a recommender mode and an agent mode. The former was in which all alerts are
labeled to TP/FP and passed to the analyst while the latter was in which some alerts
are processed automatically. Intuitively, because of the goal of ALAC, it could reduce
the number of FPs of the IDS. Although the agent mode reduces the analyst’s
workload, the recommender mode would still lead a heavy workload to the analyst.

However, the efficiency of APP is low when alerts only come from an IDS. This is
because, as mentioned before, if there is only one IDS, APP only can process FP cases
and cannot investigate FN ones. Hence, alert correlation, clustering, and
classification cannot reduce the number of FNs due to the limitation of one IDS.
Accordingly, the detection with multiple IDSs are recently noticed. For instance,
Chen et al. [Chen et al. 2009] presented a particular method of APP, Majority Voting
algorithm (MYV), to deal with the alerts produced by multiple IDSs and reduce the
number of FPs and FNs. The idea of MV is solving the conflicts of the detection of
multiple IDSs. It finds FPs and FNs by comparing IDSs’ alerts. If few IDSs produce
alerts from specific traffic traces, the trace is likely to be an FP case of the few IDSs.
On the other hand, if few IDSs do not produce alerts, it is likely to be an FN case of
the few IDSs. However, Parham [Parham 2002] presented that majority voting is not
absolutely correct in many cases, and it would often lead to error decision.
Furthermore, the key reason of the inefficiency of MV is disregarding different
domain knowledge among multiple IDSs.

Although some related works, used multiple IDSs such as the sensor fusion
architecture (SFA), they focused on how to model and enhance their architectures,
not APP. For example, Thomas and Balakrishnan [Thomas and Balakrishnan 2008;
Thomas and Balakrishnan 2009] addressed the problem of optimizing the
performance of the SFA. In practice, a neural network learner was designed in the
SFA in order to determine the weight of each IDS based on the reliability of that IDS
in detecting a certain attack. However, this neural network learner is a black box and
authors did not concretely mention how to calculate the weights.

In this work, by leveraging different domain knowledge among multiple IDSs,
Creditability-based Weighted Voting (CWV) algorithm reduces both the number of
FPs and FNs, and increases the efficiency of APP. CWV not only investigates the
detection creditabilities of multiple IDSs to overcome the limitation of one IDS, but
also reduces the number of FPs and FNs to decrease the heavy workload of analyst.
According to the goals and methods of the above works, as summarized in Table I,
this work will focus on the comparison of MV and CWV and evaluate the efficiency of
two algorithms.



Table I. Comparison of Methods of Alert Post-processing

Approach Goal Number of FNs Output Creditability
IDSs investigation
Alert *Merge alerts for a One N/A Attack N/A
correlation high-level view of graphs
attack
Alert clustering eIdentify root causes One N/A Alert clusters | N/A
of alerts
Alert *Reduce FP One N/A TP/FP N/A
classification *Reduce analyst’s
workload
Majority Voting | *Reduce FP/FN Multiple Yes (by some | FP/FN N/A
MV) *Reduce analyst’s IDSs)
workload
Creditability- *Reduce FP/FN Multiple Yes (by some | TP/FP/TN/FN | Yes
based Weighted | *Reduce analyst’s IDSs)
Voting (CWV) workload

2.2 Generation Methods of FP/FN Datasets

In order to evaluate the detection capabilities of IDSs, the way to generate test trace
datasets has been considered. Some researchers provided the real-world traffic traces
for evaluating FPs and FNs to measure the accuracy of the IDSs [Chen et al. 2009;
Lin et al. 2010].

As shown in Figure 1, Lin et al. designed an Active Trace Collection (ATC) [Lin et
al. 2010] to actively extract and classify suspicious traces from real-world traffic
captured in the NCTU Beta Site [Lin et al. 2010]. First, in the extraction module, it
uses a traffic replay tool to replay the captured traffic to multiple IDSs. If an IDS
detects specific behavior in the traffic, it will trigger an alert. According to the IDSs’
alerts, the ATC finds out the anchor packets that trigger the alerts by comparing five
fields, i.e., source/destination IP addresses, source/destination ports, and protocols,
and then processes the packet and connection association to extract each session into
the packet traces. Second, in the classification module, according to the alert
messages, the ATC classifies the traces into different categories by keywords. It
defines ten categories, such as Web, File Transfer, Remote Access, etc. Each category
uses the corresponding protocol names as its keywords. For example, the Web
category uses HTTP as its keywords. Others can be referred to [Lin et al. 2010]. Up
to now, the suspicious classified traces have been collected.

Besides, the detection of IDSs may be incorrect due to FPs and FNs. Lin et al. also
proposed a FP/FN Assessment (FPNA) [Lin et al. 2010], which analyzes the FP and
FN cases and investigates the causes of FPs and FNs. First, it finds out potential FPs
and FNs of the IDSs with a voting algorithm (e.g., majority voting). Next, in FP/FN
analysis, it replays the corresponding extracted traces based on the alerts to the IDSs.
This step verifies whether the traces are reproducible to the original IDSs or not.
Then, to confirm the cases which are correct FPs or FNs, the reproducible traces are
manually analyzed by analysts. At the same time, the confirmed FP and FN cases
and the causes of them are recorded to generate the FP/FN datasets. This work
further uses the traces and the causes behind the FPs and FNs to investigate the
creditabilities of IDSs.
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Fig. 1. Generation method of FP/FN datasets.

In the following paragraphs, two case studies of the FP/FN analysis are taken as
examples to show why the benign traces are detected as malicious ones and the
malicious traces are not detected by IDSs. The investigation of FP/FN analysis is
illustrated with the description of activity, the corresponding signature, and the
cause of FP/FN, which are shown in the description, signature, and cause fields in
Table II and Table III, respectively. In detail, first, the description of the malicious
activity is referred to Common Vulnerabilities and Exposures (CVE) [Common
Vulnerabilities and Exposures 1999]. Second, the corresponding signature of the
malicious activity is referred to Snort rule [Rule of Snort 2010] as example if it exists.
Third, the cause of FP/FN is explained why the FP/FN occurs.

(1) Table II illustrates a false positive case, “WEB-CGI csh access”, and the detail
analysis with Wireshark [Wireshark 1998] of packet content is shown in Figure 2.
The execution of csh interpreter in the cgi-bin directory on a WWW site is detected
by just matching the “/csh” content in the request URI field. It often results in FP
because the signature design is too general and rough.

Table II. A False Positive in FP/FN Analysis

Description

Perl, sh, csh, or other shell interpreters are installed in the cgi-bin directory on a WWW site, which allows
remote attackers to execute arbitrary commands. (reference: CVE, 1999-0509)

Signature Cause
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS GET /feeds/feed/CSharpHeadlines
$HTTP_PORTS (msg:"WEB-CGI csh access"; HTTP/1.1
flow:to_server,established; uricontent:"/csh"; nocase; ...)

No.. Time Source Destination Protocol Info

30.176636 140.113.252.100 65.55.11.209 HTTP GET /feeds/feed/CSharpHeadlines HTTP/1.1

40.180130 140.113.252.100 65.55.11.209 TCP 36590 > http [ACK] Seq=1 Ack=1 Win=64240

= Hypertext Transfer Protocol

= GET /feeds/feed/CsharpHeadlines HTTP/1.1\r\n
[Expert Info (Chat/Sequence): GET /feeds/feed/CSharpHeadlines HTTP/1.1\r\n]
Request Method: GET
Request URI: /feeds/feed/CsharpHeadlines
Request Version: HTTP/1.1

0000 00 Oe 38 a4 c6 80 00 1b 0d ec 21 cO 08 00 45 00 .8..... LLILLLE.

0010 00 94 2b b8 40 00 7e 06 fa cd 8c 71 fc 64 41 37 Lo+.@.~. ...q.dA7
0020 Ob dl 8e ee 00 50 f7 30 f8 48 fa le fe 36 50 18 ..... P.0 .H 6P

0030 fa fO 84 e3 00 00 [N I TNINE ... GE T /Teeds|
TRl 66 65 65 64 2f 43 53 68 61 72 70 48 65 61 64JMM/Teed/Cs harpHead
Wt Mlsc 69 6e 65 73 20 48 54 54 50 2f 31 2e 31 Od Oajlllines HT TP/1.1..

Fig. 2. A false positive case study in FP/FN analysis - WEB-CGI csh access.




(2) Table III illustrates a false negative case, “SQL Worm propagation attempt”, and
the detail analysis of packet content is shown in Figure 3. The SQL Worm would
result in buffer overflow in the Microsoft Windows server service. The worm loads
Kernel32.dll and WS2_32.d1l and then calls GetTickCount to continuously send
376 bytes UDP packet of exploit and propagation code across port 1434 until the
SQL Server process is shut down. However, it sometimes results in FN since some
IDSs miss the signature to detect it.

Table Ill. A False Negative in FP/FN Analysis

Description

Buffer overflow in the Server Service in Microsoft Windows 2000 SP4, XP SP1 and SP2, and Server 2003
SP1 allows remote attackers, including anonymous users, to execute arbitrary code via a crafted RPC
message. (reference: CVE, 2002-0649)

Signature Cause

alert udp $EXTERNAL_NET any -> $SHOME_NET 1434 Signature content doesn’t exist.
(msg:"SQL Worm propagation attempt"; flow:to_server;
content:" |04 |"; depth:1; content:"|81 F1 03 01 04 9B 81 F1
01]"; fast_pattern:only; content:"sock"; content:"send"; ...)

No. Time Source Destination . Protocol Info

2 0.000379 218.30.22.82 140.113.120.180 UDP Source port: excw Destination port:

3 0.000405 218.30.22.82 140.113.120.180UDP Source port: excw Destination port: ms-sal-m
< ]

i

@ User Datagram Protocol, Src Port: excw (1271), [Dst Port: ms-sgl-m (1434

Data: 040101010101010101010101010101010101010101010101. ..

[Length: 376]

attempt.

3. PROBLEM STATEMENT
3.1 Terminologies

Table IV defines a confusion matrix to represent the types of trace datasets with
IDSs’ detection. The rows represent the actual trace behavior such as malicious and
benign, and the columns represent the detection alarms such as alert or non-alert.
According to the corresponding relation between row and column elements, there are
four types of traces, True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). TP and FP represent the IDS produces alert for malicious and
normal activities, respectively. Similarly, TN means the IDS does not produce alert
for a normal activity while FN does for a malicious activity.

Table IV. Confusion Matrix Definition

Detected
Alert Non-alert
Malicious True Positive (TP) False Negative (FN)
Benign False Positive (FP) True Negative (TN)

Actual

Table V defines the notations used in this algorithm. M and -M respectively
denote malicious and benign. Based on the IDS detection, A and -=A denote the




presence or absence of an intrusion alarm, i.e., alert or non-alert, separately. Then, n
means the number of detected traces, i.e., how many traces marked with A there are.
N presents the number of IDSs involved in detection, and these N IDSs are a set V .
Moreover, whether all N IDSs having the voting rights depends on the voting
algorithm. According to the detection results, one of four types illustrated in Table IV
would occur, i.e., TP, FP, TN, or FN. Besides, suppose there are different K previous
alert messages of the j-th IDS under the protocol P, and m., records these messages.
Furthermore, a notation S is used to present a set of these messages. After the
records, in order to investigate the creditabilities, we use probability to model the
rate of type of traces of the j-th IDS under each protocol by Typefatevp. However, maybe
not all IDSs are creditable enough, so two thresholds = and 7 are used to choose
parts of IDSs with suitable creditability. The set of the chose IDSs is a subset of V
and it is denoted as Vi. & is the detection threshold whereas # is the abnormality
threshold. Then, according to each IDS’s creditability, its corresponding weight /' is
assigned. d/ and msg/ are detection result and alert message of the j-th IDS for i-th
trace. Based on the above notations and definitions, CMD: can be calculated for
malicious tendency of i-th trace. Finally, based on the CMD:, DR represents a
decision result for i-th trace, i.e., if the trace is malicious, benign, or unknown.

Table V. The Notations Used in Creditability-based Weighted Voting

Notations Descriptions

M,-M Trace behavior, i.e., malicious and benign.

A=A Intrusion alarm, i.e., alert and non-alert.

n Number of detected traces.

N Number of IDSs.

Vi{L2..,N} Set of voters, i.e., set of IDSs.

Type:{TP, FP, TN, FN} Types of the trace dataset.

mip Previous alert message my. of the j-th IDS under the protocol P.

k Alert message type index.

i IDS index.

P:{HTTP, FTP, ...} Protocol type of classified traces.

S mi_p} Set of previous alert messages.

TYPE 4o Rate of the type of trace of the j-th IDS under the protocol P.

Vi Set of the remaining voters. A subset of V.

r,r<N Number of elements of V..

& Detection threshold measured the correctness of detection.

T Abnormality threshold measured the abnormality of alert frequency.
wi Weight of t.he Jj-th IDS for i-th trace, which is assigned according to the

' creditabilities.

d} Detection result produced by the j-th IDS for i-th trace.

msg; Alert message of the j-th IDS for i-th trace.

i Trace index.

CMD: Creditability' Malicious. Decisif)n .f’gr}ction calculated the malicious

tendency for i-th trace with creditabilities.
DRi:{ A, = A',Unknown} Decision result with voting algorithm for i-th trace.

3.2 Problem Description

In APP, on the one hand, the efficiency is low when alerts only come from one IDS, as
explained in Section 1. On the other hand, when alerts come from multiple IDSs, the
efficiency may also be low if APP disregards the different domain knowledge among
multiple IDSs. Moreover, due to the different domain knowledge, different IDSs may




have different detection results for a traffic trace. Hence, how to efficiently use these
results to make a good decision on the processed traffic trace is a problem.
The above description can be formulated as follows.

Given: (1) a training dataset T, (2) N IDSs, (3) sets of alerts produced by N IDSs,
(4) n corresponding processed traces.

Suppose: (1) the weight of j-th IDS is /', (2) the alert produced by j-th IDS for i-th
traceis g’ .

Objectives: (1) model a series of weights {w',w’,w’,...,w'} according to T, (2)
design a function f, (w',a/) to make a decision on each trace.

To maximize the number of correct decisions, the number of FPs and FNs are
minimized and the efficiency of APP is maximized accordingly.

4. CREDITABILITY-BASED WEIGHTED VOTING

This section details the Creditability-based Weighted Voting algorithm which
includes four components. The first component is the Creditability Modeling, which
investigates and models the IDSs’ creditabilities according to the past experience of
detection. Second, the Authority Selecting selects authorities of detection if they exist.
Third, the Voter Excluding excludes voters that cannot often perform well in
detection. Lastly, the Weighted Voting determines a trace where it belongs to.

4.1 Overview

The goal of this work is to increase the efficiency of alert post-processing when alerts
come from multiple IDSs, that is, to increase the accuracy of the corresponding
processed traces which actually belong to TP, FP, TN, or FN cases. Accordingly, the
generated TP/FP/TN/FN datasets can be not only used by IDS vendors to improve
their signature design, but also used to accumulate our knowledge of alerts.

| L FP/EN Analysis

A

Alert Pre-processing Alert Post-processing Trace Datasets

******************* by
| | Datasets |

|
Alert Comparison > | ‘ ‘
Creditability-based L \
Weighted Voting o |
v I |
Active Trace Collection + } | }

\

\ | |
L |
\ | |
|

Fig. 4. Architecture of our system.

For this goal, as shown in Figure 4, the Active Trace Collection collects and
classifies the suspicious traffic traces which are replayed to multiple IDSs by
comparing the alerts produced by IDSs. Since the detection of IDSs could be incorrect,
i.e., FP and FN, the FP/FN Analysis investigates the causes of FPs/FNs using the
collected traces and records the confirmed TP/FP/TN/FN traces into Datasets as the
ground truth. Based on the Datasets and the accumulated knowledge of alerts, this
work therefore proposes a Creditability-based Weighted Voting to make a decision on
the suspicious traffic trace more accurately.



4.1.1. Creditability-based Weighted Voting.  The key idea of the Creditability-based
Weighted Voting to increase the efficiency of alert post-processing is investigating the
IDS¢’ creditabilities and deciding the traces more accurately with the corresponding
creditabilities.

Creditability-based Weighted Voting
Alerts
— Creditability Modeling . Authority Selecting
. . 1 Decided traces
Traces Two-level Modeling 1] (for datasets)
-1 Voter Excluding
() ¥
Datasets Data
kH L Weighted Voting
l Decided traces
(for analysis)

Fig. 5. Architecture of Creditability-based Weighted Voting.

Hence, the Creditability-based Weighted Voting 1is constructed with some
components. As shown in Figure 5, from the Datasets, the Creditability Modeling
selects the significant types of traces to set up the Training Data and uses the Two-
level Modeling to model the IDSs corresponding creditabilities for different types of
traces. Since each IDS could not perform well on all types of traces, we consider that
some IDS performs well or not on some type of trace or some alert. Therefore,
investigating the creditabilities only for all types of traces is not enough. However,
based on the creditabilities, first, the Authority Selecting selects the IDS with high
detection capability to be an authority if it exists. Secondly, the Voter Excluding
excludes the voter that cannot usually detect the malicious traffic in detection. Third,
the Weighted Voting decides the trace where it tends to, i.e., malicious, benign, or
unknown, with proper voters and weights.

4.2 CM: Creditability Modeling

Since each IDS could not perform well on each alert or each type of trace, the CM is
designed to investigate and model the detection capabilities of IDSs for different
types of traffic with two levels. The two-level is especially designed in terms of the
categorization of signature definition. An alert message, the description of a
suspicious activity in a signature, comprises both or either two factors, i.e., protocols
and malicious types. Hence, investigating the alert can consider both two factors.
Besides, based on the protocol, which is the most common categorization, the
detection capability on protocol factor can also be investigated. Thus, it is reasonable
to make use of two levels to model the creditability. As shown in Figure 5, the CM
includes two components. One is Training Data and the other is Two-level Modeling.

4.2.1. TD: Training Data. ~ According to the TP/FP/TN/FN traces confirmed from the
FP/FN analysis, the CM selects the significant types of traces to set up the TD. The
selection policies are based on the proportion of appearances in traffic and the
number of corresponding defined signatures. If both of them are high, the CM will
identify the types of traces as significant ones and select them into TD.

4.2.2. TLM: Two-level Modeling.  Based on the TD, the TLM counts two detection
capabilities for an IDS. One is for Alert Message level (AML) and the other is for
Protocol level (PL). Just as the name implies, each AML’s detection capability



depends on the correctness of an alert message and the detection capability of PL is
based on some protocol. Therefore, the conditional probability of each element of the
confusion matrix can be calculated as follows.

First, in AML, the correct rate of a previous alert message analyzed by FP/FN
analysis can be calculated as Pi(M |ml,) with conditional probability,

P(M |m¢.p):f((%fp)), JOIL NI, M

where t(m.,) and c(ml,) are the total number and the correct number of m, .
Second, in PL, we define the successful detection rate and successful ignorance
rate as P(M |A) and Pi(=M |=A) to mean the correct detected malicious traces and

ignored benign ones, respectively. Based on (1), the successful detection rate is
calculated as
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where A is the number of all alert message types of j-th IDS under the protocol P.
Besides, according to the Bayes’ theorem and Type the successful ignorance rate

ae, P 7

is calculated as
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P(_' M ) lj—Nrjae‘ pt P(M ) B:Nrjae‘ P

P(=M|-A) = » JO[LN]. ©)

As a result, for each IDS, it has a creditability table which comprises three vectors,
ie, P(M |ms), Pi(M|A) and Pi(=-M |-A).

4.3 AS: Authority Selecting

4.3.1. Selecting authorities with relatively low FP and FN.  Based on the investigation of
detection capabilities of IDSs for different types of traces, the AS finds that
sometimes some IDSs have much higher creditabilities than others. In other words,
the lower FP and FN rates could result in higher creditabilities. Thus, comparing
with other IDSs, if the creditabilities of some IDSs are high enough for some type of
trace, the AS assumes that these IDSs can be the authorities of detection and selects
these IDSs to be authorities.

The procedure of the AS includes three steps. First, for each type of trace, the AS
sorts the FP and FN rates of every IDS from high to low respectively. Then, the AS
separately calculates the average values L1 and Lz of FP and FN rates of the IDSs
listed after three-quarters of all IDSs since the concept of mean in Statistics. Third,
the IDSs will be selected to be the authorities of detection by the AS when their FP
and FN rates are both lower than Li and Ls.

4.3.2. Deciding traces by authorities if they exist.  Finally, there are three cases: no
authority, one authority, or multiple authorities. If no authority occurs, the CWV will
enter the Voter Excluding and then Weighted Voting. When there is one authority,
the traces will be decided directly by that authority. Otherwise, the CWV will enter
the Weighted Voting and the traces will be decided by the multiple authorities.



4.4 VE: Voter Excluding

The VE is designed to exclude the voters which cannot usually perform well in
detection. Based on the concept, the VE excludes the voters according to two views.
One is the TP/FP rates and the other is alert frequency.

4.4.1. Excluding voters with low TP and high FP.  First, according to the TP and FP
rates, the VE excludes the voters which have TP is less than detection threshold T
while FP is more than 7d. The reason is that some IDSs produce more incorrect
detection than correct detection. The VE then assumes that the IDSs are not strong
enough and excludes them.

4.4.2. Excluding voters with abnormal alert frequency.  Second, based on the alert
frequency, the VE assumes that the IDSs having the abnormal alert frequency are
unusual. The reason is that some IDSs always produce alert or not on detecting the
specific type of trace. For example, when processing the same type of trace, some IDS
does not produce any alert while others do. Moreover, the IDS, which has the
detection function in the type of trace, does not produce any alert that means its
corresponding signature design is doubted. Thus, when every IDS processes the same
type of trace, if either the alert rate or the non-alert rate is more than 7a, the IDSs
will be excluded by the VE.

4.5 WV: Weighted Voting

4.5.1. Calculating the malicious tendency.  After the VE excludes some voters, or there
are multiple authorities, the WV is processed with proper voters. The WV assigns the
weights to the corresponding voters according to the creditabilities. Then, when
processing the traces one by one, the WV designs a Creditability Malicious Decision
Function, CMD to calculate the degree of tendency towards malicious activity. For i-
th trace, its CMD; is calculated as

P.i(M |msg)), if (d/ =A)O(msg/09S)
T.i=<PR(M|A), Iif (di":A)D(msngS) , 0OV, id[n], (@)
1-P (=M |-A), if (d!=-A)

CMDi(Ti,j):?l%Ti,j, oL, )

In (5), the CMD; has three conditions to calculate Ti ;j respectively. The first
condition is the j-th IDS produces an alert and the corresponding alert message
belongs to the previous alert message set. It can be detailed to AML with
P.i(M |msg) . Secondly, the j-th IDS produces an alert but the alert message does not

belong to the previous alert message set. It can only be calculated in PL with
Pi(M | A). Third, the j-th IDS does not produce an alert. It is calculated in PL with

Pi(~M |-A).

4.5.2. Making a decision with the malicious tendency.  Finally, the WV makes a decision
on i-th trace with DR; to decide the trace is malicious, benign or unknown. The DR; is
malicious if the CMD; is more than a while the DR; is benign if the CMD:; is less than
. Hence, the DR; is formulated as



A, if CMDi(Ti.,))>a
DR =<{-A, if CMDi(Ti.;)) <, i[Ln],0<a,B<lpB<a, (6)
Unknown, otherwise

where A’ means the i-th trace is decided as malicious trace while = A’ means the i-th
trace is decided as benign one.

4.6 Example of Creditability-based Weighted Voting

Assume there are seven IDSs (i.e., N = 7), which detect the same traffic and produce
the corresponding alerts. By comparing the alerts, the HTTP traces can be collected
and are taken as examples here. After the FP/FN analysis, the TP/FP/TN/FN
datasets can be set up. Next, the CM set up the TD according to the datasets and
then uses the TLM to model the seven IDSs’ corresponding creditabilities
respectively. It first calculates TPlLeures FPleumes TNixenme, aNd FNlenrme - Then, in

AML, the S is set up with the correct rates of the previous alert messages which are
calculated as Pi(M |mim) . Next, in PL, it calculates the successful detection rate
Pi(M | A) and successful ignorance rate P(=M |- A), which are shown in Table VI.

After the CM, the other three components of the procedure of the CWV can
process with the two-level creditabilities. First, in AS, the .1 and Le are 0 and 0.51
separately. By comparing every IDS’s FPleure and FNlLeure with Li and Le
respectively, there is no authority in detection. Second, in the VE, the 3-rd IDS is
excluded according to the TP/FP rates. The 1-th, 4-th, 5-th and 6-th IDSs are
excluded according to the abnormal alert frequency. Hence, after the VE, the
remaining voters are the 2-nd and the 7-th IDSs. Finally, in the WV, when
processing the 87-th trace, the 2-nd IDS produces an alert and the alert message is
“IBM Lotus Domino Accept-Language Buffer Overflow” which is an element of S,
while the 7-th IDS does not produce any alert. Besides, the creditability of the 2-nd
IDS of the alert message in AML, Pe2(M |msg) is 0.83. The creditability of the 7-th
IDS of the non-alert in PL, P;(=M |=A) is 0.80. Therefore, the CMDs7 is calculated as

(0.83+(1-0.80))/2, that is, the result of the CMDs7 is 0.52. Because the value is larger
than 0.5 (a = 0.5), the DRs7 is A’ which means the 87-th trace is decided as malicious
one.

Table VI. Two-level Creditabilities Results of Example Run

Creditabilities IDS1 IDS2 IDS3 IDS4 IDS5 1DS6 IDS7
Pi(M | A) - 0.46 0.03 - 1.00 - 0.51
Pi(=M |-A) 0.71 0.78 0.52 0.71 0.75 0.71 0.80
Ps7,i(M | msg),) N/A 0.83 N/A N/A N/A N/A N/A

5. EVALUATION AND OBSERVATION

In this section, the detection capabilities of multiple IDSs and the performance of the
CWYV are evaluated. First, the IDSs’ corresponding creditabilities of different types of
traffic traces modeled by the CM are illustrated. Second, the Accuracy, TPR, TNR
and Efficiency are used to evaluate the voting algorithms.

5.1 Trace Selection and Experiment Environment

5.1.1. Trace selection. As mentioned in Section 4.2, the selection policies are based
on the rates of appearances in traffic and the rates of number of corresponding
signatures. If both of them of some type of trace are significant, this type of trace will
be selected. First, according to the ten categories classified by ATC [Lin et al. 2010],




we investigate the traffic in Beta Site [Lin et al. 2010] during the period from
September 1, 2010 to February 1, 2011 to understand the frequent appearance
categories in traffic. Second, we take the rule version 2.9 of Snort as example to
investigate the signature classification and distribution. The investigation result of
the above policies is shown in Table VII. It obviously represents that Web, File
Transfer, and Network are significant types. Moreover, Remote Access is more
familiar than VoIP to us in our experience. In addition, the signatures in Chat are
usually chat programs detection which used to be against corporate policy in normal
traffic [Rule of Snort 2010]. Furthermore, in Web, File Transfer, Network and
Remote Access, we select the most popular protocol, respectively. Hence, we decide
the four types of traces, i.e., HT'TP, FTP, NetBIOS and TELNET.

Table VII. Investigation Result of Trace Selection

File File Net- | Remote Encryp- . | Strea-
Category Web Sharing Chat Transfer | work | Access VoIP tion Email ming
0,
% Of 35.86 32.69 8.82 7.07 4.84 4.05 3.14 2.79 0.49 0.22
traffic
0,
. % of 81.78 0.14 0.57 2.13 8.80 0.66 1.41 0.00 4.48 0.04
signature

5.1.2. Experiment environment.  The real-world traffic is captured from the NCTU
Beta Site [Lin et al. 2010], during the period from September 1, 2010 to February 1,
2011. It then uses a traffic replay tool (e.g., tcpreplay) to replay captured raw traffic
to multiple IDSs. Seven IDSs are involved in the classification, which are shown in
Table VIII. Table IX presents the number of four selected types of traces. The ratio of
malicious traces to benign ones is about 4 to 6. The benign traces rate is not so
expected high since we expect to avoid a flood of the benign traces dominating the
results in this experiment. During the period, the two dominant types of trace are
HTTP and NetBIOS. In the HTTP traffic, 39% of the traces are malicious, meaning
HTTP applications are frequently exploited. In the NetBIOS traffic, 62% of the traces
are malicious, meaning the vulnerabilities of NetBIOS are usually targeted by
attacker. Here, we choose the traces collected in the first two months to be the
training data while the traces of the latter three months to be the processing data.
The former is as input for the CM to set up the TD, and the latter is as input for the
CWYV one by one.

Table VIII. Seven IDSs Information

Vendor | b dWeb | D-Link Fortinet | McAfee | 1PPing- Trend ZyXEL
name Point Micro

Device | NetKeeper FortiGate- ZyWALL
name 7K DFL-1600 110¢ M-1250 5000E TDA2 USG 1000

The parameters in the CWV are set as follows. In the VE, the detection threshold
T is set 0.5 while the abnormality threshold 7a is set 0.9. In the WV, the values of a
and g are both set 0.5. Moreover, we discuss these parameters in Section 5.3.

Table IX. Statistics of Number of Traffic Traces

(a) Training data (b) Processing data
Type Malicious Benign Total Type Malicious Benign Total
HTTP 46 72 118 HTTP 57 86 143
FTP 22 74 96 FTP 29 77 106
NetBIOS 66 47 113 NetBIOS 87 46 133
TELNET 4 31 35 TELNET 5 42 47
Total 138 224 362 Total 178 251 429




5.2 Experiment Results of Investigation of Creditabilities

In the CM evaluation, this work takes seven IDSs, which are called IDS1, IDS2, ...,
and IDS7, respectively, as examples to represent the IDSs corresponding
creditabilities of different types of traffic traces in two levels.

5.2.1. Protocol level.  As mentioned in Section 4.2, the successful detection rate and
successful ignorance rate are defined as Pj(M |A) and P,(-M |-A), respectively, to

represent the detection capabilities for PL. As shown in Table X (a), first, the value of
detection rate is ‘-‘ that means uncalculated, that is, the IDS does not produce any
alert for the type of traces. Secondly, some values of detection rate are 0.00 since the
alerts result from common commands used, i.e., the traffic are always benign. For
example, some alerts produced by the IDS5 for FTP traces result from FTP common
command used. Third, some values of detection or ignorance rates are 1.00. The
observed reason is the definition of signature for the type of traces is more precise.
For instance, the type of alerts produced by the IDS5 for TELNET traces is only one
and is correct in our investigation. Besides, the IDSs’ detection capabilities for
different protocols are different. In our investigation, for HTTP, the IDS2, IDS5 and
IDS7 have higher creditabilities. Then, for FTP, the IDS5, IDS6 and IDS7 have
higher creditabilities. Next, for NetBIOS, the IDS1, IDS4, IDS5 and IDS6 have
higher creditabilities. Finally, for TELNET, the IDS3 and IDS5 have higher
creditabilities. Generally, the IDS5 achieves appreciable successful rates under each
protocol.

5.2.2. Alert Message level. As mentioned in Section 4.2, the correctness of a
previous alert message is defined as Pi((M |m.,) to represent the detection capability

for AML. Table X (b) shows the top ten accurate alert messages, i.e., the alert
messages have higher creditabilities, in our investigation. Besides, some of them
result from the same traffic with same suspicious activity, and therefore, these are
grouped into one to represent.

(1) The first two “URL.DirectoryTraversal.Suspicious” and “HTTP: Attempt to Read
Password File” alerts result from the same traffic with the request URI string
“Aod.od.d. 0. ] Jetc/passwd”. The former alert results from the string “../../”. The
latter alert results from the string “/etc/passwd”. These malicious activities could
obtain the private information or access the files on the file system.

(2) The “FTP: MKDIR Command Used” alert results from the FTP MKD command
used. The observed malicious activity is the MKD and CWD commands are used
alternately, which means the intruder creates a directory, changes the working
directory to the created directory, and then creates the same directory alternately.

(3) The “specifiers.BolinTech.DreamFTPServer.Format.String” alert results from the
malicious FTP request containing embedded format string specifiers, i.e.,

”» o«

“user %n”, “pass %n”, “retr %n” or “%n”.

(4) The “SOLARIS.TELNETD.AUTHENTICATION.EXP”, “Telnet: Login Bypass
(General)”, and “Solaris Telnetd Authentication Bypass Vulnerability” alerts
result from the argument injection via USER environment variable. The Solaris
telnet daemon misinterprets "-f' sequences as valid requests to skip the
authentication. However, the alert may be FP when the target is a non-Solaris
telnet server.

b) The “NetPathCanonicalize.SRVSVC.MicrosoftWindows.MS08-
067.Buffer.Overflow” alert results from the RPC API NetPathCanonicalize()
function exploited with a crafted path. The successful overflow exploit could allow
a remote attacker to execute arbitrary code or crash the service. However, the
alert may be FP when the path does not include the buffer overflow code.



(6) The “IBM Lotus Domino Accept-Language Buffer Overflow” alert results from the
long length of Accept-Language field, e.g., 100. The observed malicious activity is
the duplicated language code appears frequently, while the alert may be FP when
the abnormal language code does not exist.

(7) The “WEB-MISC robots.txt access” alert results from the file robots.txt accessed
directly. The malicious activity could gather the information about the target site.
However, the alert may be FP when some search engine’s robot checks robots.txt
for information about the site.

Table X. Experiment Results of Investigation of Creditabilities
(a) Protocol level - successful detection and ignorance rates for each IDS

pes HTTP FTP NetBIOS TELNET
| PMIA) | P(=M|-4) | P(MIA) | P(-MI|-A) | PMIA) | P(~M|=4) | P(MIA) | P(-M|-A)
IDS1 - 0.71 - 0.92 0.95 0.69 0.28 0.99
IDS2 0.46 0.78 - 0.92 - 0.33 - 0.98
IDS3 0.03 0.52 0.00 0.78 0.66 0.33 1.00 0.99
IDS4 - 0.71 - 0.92 0.68 1.00 - 0.98
IDS5 1.00 0.75 0.74 0.98 0.88 0.83 1.00 0.99
IDS6 - 0.71 0.69 1.00 0.67 0.68 0.00 0.98
IDS7 0.51 0.80 0.70 0.95 0.41 0.31 0.01 0.72

(b) Alert Message level — top ten accurate alert messages

Rank | Alert messages Pi(M [mfp)
1 URL.DirectoryTraversal.Suspicious 1.00
1 HTTP: Attempt to Read Password File 1.00
1 FTP: MKDIR Command Used 1.00
1 specifiers.BolinTech.Dream FTPServer.Format.String 1.00
1 SOLARIS.TELNETD.AUTHENTICATION.EXP 1.00
1 Telnet: Login Bypass (General) 1.00
7 NetPathCanonicalize.SRVSVC.Microsoft Windows.MS08-067.Buffer.Overflow 0.89
8 IBM Lotus Domino Accept-Language Buffer Overflow 0.83
9 Solaris Telnetd Authentication Bypass Vulnerability 0.80
10 WEB-MISC robots.txt access 0.75

5.3 Accuracy, TPR, TNR, and Efficiency of Voting Algorithms

5.3.1. Evaluation metrics.  Let TPiraces be the number of malicious traces which are
correctly determined, FNiaces be the number of malicious traces which are not
determined, TNiraces be the number of benign traces which are correctly classified,
FPiraces be the number of benign traces which are incorrectly determined as malicious
ones.

This work uses the Accuracy, TPR, and TNR metrics [Wu and Banzhaf 2010] for
the voting algorithm in the evaluation. The Accuracy is evaluated with the
percentage of whole traces that are determined precisely. This is a commonly used
metric for overall view of evaluation.

ACCuraCy — TPIraceS + TN!raoS x 100% )

TP(raoS + F Plraces +TNIraceS + F Nlraces

In detail, the TPR is evaluated with the percentage of malicious traces that are
correctly caught as malicious ones, while the TINR is evaluated with the percentage
of benign traces that are correctly passed as benign ones.

TPR:TP&xlOO%, TNR:TN&xloo%.
TPII’a(ES+ FNlraoa TNII’a(ES+ FPlraos




There i1s a tradeoff between TPR and TNR. It is required to evaluate the
performance of voting algorithm on both TPR and TNR. Like the F1 score
[Rijsbergen 1979] which is a measure of a test's accuracy, this work defines a similar

measure for the efficiency of voting algorithm. The Efficiency takes the harmonic
mean of TPR and TNR, given by:

Efficiencyzl—21><100%.

TPR TNR

Higher value of Efficiency indicates that the voting algorithm performs better on not
only TPR, but also TNR.

5.3.2. Experimental evaluation results.  Figure 6 shows the whole accuracy of CWV
and MV. It is observed that each accuracy of CWV is higher than that of MV. The
total accuracy of CWV and MV are 95% and 66%, while the average accuracy of them
are 96% and 71%. It is observed that the CWV is improved by about 1.4 times of
percentage as the MV. The result demonstrates that the weights of IDSs should be
different for leveraging the different domain knowledge among IDSs when multiple
IDSs involve detection.
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Fig. 6. Accuracy of the voting algorithms.

Figure 7 and Figure 8 compare the TPR and TNR of CWV with MV. The results
mainly demonstrate the effect on two-level creditability modeling. First, the average
TPR of CWV and MV are 93% and 14% that means the FN rate of the former is lower
than the latter. The observed reason is the FNs of some IDS could be avoided by
leveraging other IDSs’ correct detection with corresponding creditabilities. Second,
the average TNR of CWV and MV are 98% and 93% that means the FP rate of the
former is lower than the latter. The main reason is the FPs of some IDS could be
filtered with the creditabilities especially in AML. Third, in the CWV, the TNR are
higher than the TPR since the correctness of alert message itself is investigated in
AML. Thus, alert message with frequent FP would be filtered. Lastly, the TPR and
TNR of MV for HTTP, FTP, and TELNET are 0% and 100%, respectively. In this case,
the reason is only few IDSs produce alerts, which means most IDSs occur FNs or the
few ones occur FPs. No matter which situation it is, the MV decides the result
directly from IDSs with the same weight, that is, may ignore some IDSs which have



noticeable creditabilities, could result in insignificant results, especially most of them
are FNs.
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Fig. 7. TPR of the voting algorithms.
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Fig. 8. TNR of the voting algorithms.

Figure 9 shows the efficiency of voting algorithms. The efficiency of MV is 41%,
while that of CWV is as high as 94%. The CWV can maintain about 2.3 times of
percentage as the MV on efficiency. This means the CWV can maintain both TPR and
TNR well.



100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Efficiency (%)

41%

Voting Algorithms

5.3.3. Discussion of important parameters in CWV.

Fig. 9. Efficiency of the voting algorithms.

In the VE, the detection threshold

7o is set 0.5 that means the halved correct detection, i.e., the probability of intuition
is one over two. Based on this value, we experiment with various abnormality
threshold values from 0.6 to 1.0 and the results are shown in Figure 10. The values,
smaller than 0.5, are not used in this experiment because they result in no involved
voters. It does not make sense when there are no voters in a voting. From Figure 10,
we can observe that when the abnormality threshold is 0.9, the CWV has the highest
efficiency. Therefore, we use this value in all experiments of this thesis.
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Fig. 10. Efficiency under various abnormality thresholds of CWV.

Similarly, in the WV, we change a and £ from 0.1 to 0.9 and find that the accuracy
can be 100% when the values of a and £ are 0.7 and 0.1, respectively. However, the
range between a and £ is large, 0.6 (= 0.7 — 0.1), so the number of unknown cases is
up to 55% of that of total processed traffic traces. Hence, a and f can be tuned
according to the tradeoff between the accuracy of decided traces and the number of
unknown traces that need to be analyzed manually.



5.4 Differences between CWV and Each IDS in Percentages at FP and FN

Table XI shows the percentages of FP and FN of CWV and each IDS for different
types of traces. Some IDSs have FP and FN values with 0% and 100% since these
IDSs do not produce alert for this type of traces. This also means these IDSs miss the
signatures. Secondly, the FP of IDS3 is 100% because the alerts result from common
command used, such as “FTP GET command”. Third, the FP and FN of IDS5 are 0%.
The observed reason is the type of alerts produced by IDS5 is only one, and the
message is “SOLARIS.TELNETD.AUTHENTICATION.EXP” that is a precise
signature in our investigation, i.e., the creditability of the message is 1.0. Actually,
the corresponding traces are always malicious ones in analysis. Besides, for NetBIOS
traces, most IDSs produce many alerts that result in more FPs for each IDS, while
for other types of traces, some IDSs produce alerts that result in more FNs.

Table XI. Percentages of FP and FN of CWV and Each IDS

HTTP FTP NetBIOS TELNET

FP FN FP FN FP FN FP FN
IDS1 0 100 0 100 63.04 5.17 0 100
IDS2 26.74 94.74 0 100 0 100 0 100
IDS3 63.95 100 100 86.21 80.43 1.15 2.38 40.00
IDS4 0 100 0 100 25.53 7.58 0 100
IDS5 0 98.25 0 48.28 52.17 9.20 0 0
IDS6 0 100 0 13.79 67.39 1.15 0 100
IDS7 9.30 5.26 0 48.28 39.13 82.76 97.62 80.00
CWV 2.33 7.02 0 13.79 4.35 9.20 0 0

Furthermore, the differences between CWV and each IDS in percentages at FP
and FN are shown in Table XII. First, some IDSs detect better than the CWV
partially because the value of FP or FN in percentage is negative, but no IDS can
individually detect well in both FP and FN. Second, the CWV performs well in most
cases for all types of traces by leveraging different detection capabilities among IDSs
which are shown in different values of FP and FN. It is demonstrated that the
average percentages of FP and FN reduction between CWV and each IDS are 21%
and 58%.

Table XII. Differences between CWYV and Each IDS in Percentages at FP and FN

HTTP FTP NetBIOS TELNET

FP FN FP FN FP FN FP FN
IDS1 -2.33 92.98 0 86.21 58.69 -4.08 0 100
IDS2 24.41 87.82 0 86.21 -4.35 90.8 0 100
IDS3 61.62 92.98 100 72.42 76.08 -8.05 2.38 40.00
IDS4 -2.33 92.98 0 86.21 21.18 -1.62 0 100
IDS5 -2.33 91.23 0 34.49 47.82 0 0 0
IDS6 -2.33 92.98 0 0 63.04 -8.05 0 100
IDS7 6.97 -1.76 0 34.49 34.78 73.56 97.62 80.00
Average 11.95 78.44 14.29 57.15 42.46 20.37 14.29 74.29

5.5 Case studies

In this section, two case studies in the experiment are taken as examples to show the
TP case in CWV and FN in MV, and the TN case in CWV and FP in MV.

5.5.1. Case study I: TP case in CWV and FN in MV. In this case, the alert messages
and the corresponding creditabilities are shown in Table XIII, while the trace content
is 1llustrated in Figure 11. It is observed that the attacker uses the command “USER
—fadm” as the argument injection via USER environment variable in environment
option to attempt to bypass the authentication. More information about Telnet
environment option can be found in [Alexander 1994]. Furthermore, the malicious




content in hexadecimal is “ff fa 27 00 00 55 53 45 52 01 2d 66 61 64 6d” obviously.
However, this malicious trace can be correctly determined by the CWV because of the
high creditabilities in AML, while it is missed by the MV because only few voters can
detect it.

Table XIII. Alert Messages and Corresponding Creditabilities in Case Study |

msg; Pi.i(M |msg))
SOLARIS.TELNETD.AUTHENTICATION.EXP 1.00
Solaris Telnetd Authentication Bypass Vulnerability 0.80

No.. Time Source Destination Protocol Info

8 0.477378 207.188.161.41 140.113.229.126 TELNET Telnet Data ...

90.478186 140.113.229.126 207.188.161.41 TELNET Telnet Data ...

i
= Telnet
Command: Will Negotiate About Window Size
= Suboption Begin: Negotiate About Window Size
Command: Suboption End
Command: will Terminal Type
= Suboption Begin: Terminal Type
Command: Suboption End

=fSuboption Begin: New Environment Option
Option data

: Suboption End

:_Won't Supbress Go_Ahead

0000 00 12 Ol c3 2c c0 00 24 dc 4b 8d ce 08 00 45 00
0010 00 59 36 e5 40 00 2e 06 32 e4 cf bc al 29 8c 71
0020 e5 7e de 9 00 17 e6 16 fb 25 26 cd eb 7d 50 18
0030 c5 6¢ d6 bb 00 00 ff fb 1f ff fa 1f 00 50 00 19
0040 ff fo ff fb 18 ff fa 18 00 76 74 31 30 30 ff fO
(LIl iy WY@ fa 27 00 00 55 53 45 52 Q1 2d 66 61
0060 [FHEE ff fo ff fc 03

Fig. 11. Trace content in case study I.

5.5.2. Case study II: TN case in CWV and FP in MV. In this case, the alert messages
and the corresponding creditabilities are shown in Table XIV, while the trace content
is illustrated in Figure 12. It is observed that the signature designs are not specific
enough. Hence, the general signature is easily matched in the payload even though
the payload is benign. Obviously, logon/login failure is general that often occurs in
normal activities. It is demonstrated that the corresponding creditabilities are low in
our investigation. Therefore, this benign trace can be correctly determined as benign
one by the CWV, while it is incorrectly classified to malicious one by the MV because
most voters detect it.

Table XIV. Alert Messages and Corresponding Creditabilities in Case Study Il

msg] Pii(M | msg/)
netbios: SMB.Login.Failure 0.26
SMB: Windows Logon Failure 0.12
EXPLOIT Server Service Remote Code attack 0.62
NETBIOS-SS: NULL Credentials Login 0.50




No.. Time Source Destination Protocol Info

30.477378 207.188.161.41 140.113.229.126 TELNET Telnet Data ...

90.478186 140.113.229.126 207.188.161.41 TELNET Telnet Data ...

= Telnet
command: will Negotiate About Window Size
= Suboption Begin: Negotiate About window Size
command: Suboption End
command: will Terminal Type
= Suboption Begin: Terminal Type
command: Suboption End

=fSuboption Begin: New Environment Option
Option data

command: Suboption End

command: Won't Suppress Go Ahead

0000 00 12 01 c3 2c cO 00 24 dc 4b 8d ce 08 00 45 00
0010 00 59 36 e5 40 00 2e 06 32 e4 cf bc al 29 8c 71
0020 e5 7e de 9 00 17 e6 16 fb 25 26 cd eb 7d 50 18
0030 c5 6¢ d6 bb 00 00 Ff fb 1f ff fa 1f 00 50 00 19
0040 ff fO ff fb 18 ff fa 18 00 76 74 31 30 30 ff f0O

[idR "W YBTT Ta 27 00 00 55 53 45 52 OL 2d 66 61
0060 ff 0 ff fc 03

Fig. 12. Trace content in case study II.

6. CONCLUSIONS AND FUTURE WORKS

This work proposes the Creditability-based Weighted Voting (CWV) to reduce both
FPs and FNs and increase the efficiency of alert post-processing with multiple IDSs.
The CM leverages the domain knowledge among multiple IDSs by investigating the
detection capabilities of all IDSs and models the corresponding creditabilities to them.
From the experiment results of investigation of creditabilities, we demonstrate the
different IDSs’ detection capabilities by their creditabilities. In detail, we observe
that the signature design is the main factor on the correctness of detection. Some IDS
has more specific signature that results in fewer number of alerts and FPs, while
some IDS has more general signature that results in more number of alerts and FPs.
On the other hands, some IDS misses the signature, leading to FNs.

This work uses Accuracy, TPR, TNR, and defines Efficiency to evaluate two voting
algorithms, the CWV and the MV. The CWV can achieve the accuracy and the
efficiency up to 95% and 94%, which are much higher than the MV in comparison.
Besides, between the CWV and each IDS, the CWV performs well in most cases for
all types of traffic traces. It is demonstrated that the average percentages of FP and
FN reduction between the CWV and each IDS are 21% and 58%.

However, the CWV could make an incorrect decision in some situations. For
example, when processing the trace which triggers the new alert of some IDS, the
CWYV only can use the corresponding creditability in PL of the IDS to determine the
trace. The incorrect result could then occur. Besides, if some IDS significantly
updates or modifies its signature database, which means the detection capability
changes greatly, the corresponding creditability would be almost useless. The WV
could make an incorrect decision on the trace. Hence, the frequency and the duration
of updating training data are issues in the future. Furthermore, another goal in the
future is the automation because it could increase the productivity and practicability
of this system. In foreground, the CWV keeps processing traffic traces one by one,
while in background, the creditability table for each IDS is updated with considering
the above issue to maintain the reliance on creditability.
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