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False Positive (FP) and False Negative (FN) happen to every Intrusion Detection System (IDS). How 

frequently they occur is used to evaluate the performance of an IDS. A large number of FPs will degrade 

the performance of the IDS. Furthermore, FNs cannot be investigated from one IDS’s alerts. Thus, to 

overcome the limitation of one IDS, a way to leverage multiple IDSs’ domain knowledge is used. However, 

due to different detection capabilities, different IDSs may have different detection results for a traffic trace. 

Hence, using these results to make a good decision regarding the trace’s status turns out to be challenging. 

This work proposes a Creditability-based Weighted Voting (CWV) to reduce both FPs/FNs and increase the 

performance of multiple IDSs. The CWV first investigates the detection capabilities of all IDSs and models 

the corresponding creditabilities to them. Then, according to the creditabilities, it assigns the weights to 

IDSs and makes a decision concerning the trace. From the experiment results, we demonstrate the 

different IDSs’ detection capabilities by their creditabilities. In addition, we use Accuracy and Efficiency to 

evaluate the CWV and the majority voting (MV). The CWV achieves the accuracy of 95% and the efficiency 

of 94% compared to 66% and 41% of the MV. Besides, with the CWV, the average percentages of FP/FN 
reduction for an IDS are 21% and 58%, respectively.  

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols 

General Terms: Design, Algorithms, Performance, Security 

Additional Key Words and Phrases: intrusion detection, false positives, false negatives, alert post-

processing 

1. INTRODUCTION 

Intrusion Detection Systems (IDSs) usually protect computer networks against 

intrusions. A signature-based IDS is a popular approach nowadays. It specifies 

signatures of intrusions and tries to detect malicious activities by matching these 

signatures against the traffic data, called pattern matching. IDS vendors need to set 

up a signature database and maintain it. There are two major challenges in the 

signature-based IDS’s defense. One is growing and changing of malicious traffic and 

the other is the difficulty in the design of IDS. The former leads the signature 

database maintenance difficult. For instance, rules of Snort [Rule of Snort 2010] are 

updated frequently. The latter includes runtime limitation and specificity of 

signatures. Runtime limitation presents that IDSs may not analyze the context of all 

activities in real-time. For example, a malicious activity differs only slightly from 
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normal activities, so IDSs cannot detect it with part of content. Specificity of 

signatures presents that the balance between general signatures and specific ones is 

hard to determine. If the signatures are too general, they are easily matched in the 

payload, even though the payload is benign. On the other hand, if the signatures are 

too specific, IDSs would not detect malicious activities. Thus, because of these two 

challenges, False Positives (FPs) and False Negatives (FNs) of IDSs occur. 

FPs and FNs are used for evaluating the performance of an IDS. One IDS is often 

found to be dissatisfactory with respect to either or both of a large number of FPs and 

FNs. To illustrate the severity of FPs and FNs, we use two views: the vendor and the 

user. From the vendor’s view, a heavy workload of analysis happens due to a large 

number of FPs while FNs occur because of no corresponding signatures in the IDS. 

From the user’s view, frequent alert messages of FPs interrupt the user while the 

FNs means that malicious traffic intruding the protected networks is undetected. 

Thus, we tend to reduce not only FPs, but also FNs because both of them are severe 

and non-negligible. 

In order to reduce FPs and FNs, an analyst post-processes, i.e., using alerts as 

input and processing them to improve their accuracy, all alerts produced by an IDS 

to confirm whether the alerts are TPs or FPs [Pietraszek 2006]. Nevertheless, the 

observed problem is the limitation of one IDS. This is because an analyst can only 

deal with the alerts which the IDS can detect in an IDS, but cannot investigate FNs 

of the IDS. Furthermore, if there are a large number of FPs and FNs, an analyst will 

analyze alerts with heavy workload. Accordingly, it is another problem in alert post-

processing. 

The problem, in fact, has been estimated that up to 99% of alerts produced by an 

IDS are FPs [Axelsson 2000; Julisch 2003]. Moreover, according to the alert 

management [Pietraszek 2006], i.e., an analyst post-processes all alerts for improving 

signature design, the limitation of one IDS is found out. To overcome the mentioned 

problem and limitation of one IDS, multiple IDSs are used because each has its own 

private and independent signature design. Based on different domain knowledge 

among IDSs, traffic can be recognized by leveraging IDSs’ detection capabilities. The 

advantage of this is the malicious activities which cannot be detected by some IDS 

could be detected by others. 

Several methods deal with alerts produced by an IDS to reduce the amount of FPs. 

Some of them analyze alerts to recognize high-level attack scenario for high view of 

attacks [Ning and Xu 2003; Ning et al. 2002; Ning et al. 2004; Sadoddin and 

Ghorbani 2006], some study the causes of FPs to identify root causes [Julisch 2003; 

Julisch 2001; Julisch 2003], and others classify alerts to TPs or FPs for reducing FPs 

[Pietraszek 2006; Pietraszek 2004; Pietraszek and Tanner 2005]. However, these 

methods only consider one IDS to detect malicious traffic, so they still cannot 

evaluate FNs for the IDS. On the other hand, for solving the conflicts of detection 

from multiple IDSs, a Majority Voting (MV) algorithm [Chen et al. 2009] is proposed. 

MV finds potential FPs (P-FPs) and potential FNs (P-FNs) first by comparing IDSs 

alerts. If few IDSs generate alerts but most IDSs do not when they process the same 

traffic, these traces are P-FPs of the few IDSs. In contrast, few IDSs do not generate 

alerts but most IDSs do, these are P-FNs of the few IDSs. Next, an analyst analyzes 

P-FPs and P-FNs to verify they are indeed FPs and FNs. However, in [Latif-

Shabgahi et al. 2004; Parham 2002], authors found MV often leads error decision. We 

also find MV is not efficient enough in experiments. The reason is MV disregards 

different domain knowledge among IDSs that results in low percentages of P-FPs/P-

FNs being FPs/FNs. 

In this work, to leverage different domain knowledge among multiple IDSs, 

reduce FPs and FNs, and increase the efficiency of alert post-processing, we propose 

a Creditability-based Weighted Voting (CWV) algorithm. For this purpose, there are 



two main components of our algorithm, Creditability Modeling (CM) and Weighted 

Voting (WV). First, the CM identifies IDSs’ detection capabilities of different types of 

traffic traces by investigating past detection experience to determine IDSs’ 

corresponding creditabilities. To investigate the detection capabilities on both or 

either two factors comprised an alert, i.e., protocols and malicious types, the 

creditabilities are therefore constructed in two levels, Protocol level and Alert 

Message level. For instance, “HTTP” is a protocol in Protocol level. “HTTP: Attempt to 

Read Password File” is an alert message of HTTP protocol in Alert Message level. 

Second, according to the creditabilities, we assign the weights for weighted voting to 

decide the traffic trace malicious or benign in WV. Thus, it would result in not only 

reducing FPs, but also increasing TPs. In other words, it could increase TNs and 

reduce FNs. 

The rest of this paper is organized as follows. Section 2 presents the background 

and related works. Section 3 states terminologies and problem statements. Section 4 

describes the design and solution ideas of our algorithm. Section 5 displays the 

evaluation of our works. Finally, Section 6 concludes this work and discusses the 

future works. 

2. BACKGROUND 

This section describes alert post-processing and its related methods first, and then 

introduces the generation method of FP/FN datasets. 

2.1 Methods of Alert Post-processing 

If there are a large number of FPs and FNs, an analyst may have a heavy workload, 

i.e., he or she needs a long time to analyze the correctness of alerts. Accordingly, for 

reducing the number of FPs and FNs, a method, called alert post-processing (APP), is 

proposed. APP uses alerts as an input and processes them to improve their accuracy. 

Several researchers [Julisch 2003; Julisch 2001; Julisch 2003; Ning and Xu 2003; 

Ning et al. 2002; Ning et al. 2004; Pietraszek 2006; Pietraszek 2004; Pietraszek and 

Tanner 2005; Sadoddin and Ghorbani 2006] proposed the methods to reduce the 

number of FPs from an IDS. These methods can be classified into three categories, 

i.e., alert correlation, alert clustering, alert classification, and illustrated 

systematically as follows. 

First, alert correlation [Ning and Xu 2003; Ning et al. 2002; Ning et al. 2004; 

Sadoddin and Ghorbani 2006] analyzes alerts by recognizing high-level attack 

scenario with higher view of attacks and makes correlated alerts be an attack graph. 

For example, Ning et al. [Ning et al. 2002] presented an alert correlation approach 

correlating alerts based on pre-conditions and post-conditions. Two alerts are 

correlated when the pre-condition of a later attack is satisfied by the post-condition of 

an earlier attack. This approach offered a more condensed view on the security issues 

raised by an IDS. Unfortunately, Sadoddin and Ghorbani [Sadoddin and Ghorbani 

2006] investigated that alert correlation may not have a significant effect in reducing 

the number of total alerts, even the number of FPs. This is because the goal of alert 

correlation is providing a higher view of attacks. It is different from the goal of 

reducing the number of FPs and FNs even if the alert correlation may sometimes 

reduce the number of FPs. 

Second, alert clustering [Julisch 2003; Julisch 2001; Julisch 2003] studies the 

causes of FPs and identifies root causes that makes an IDS alerts. It clusters the 

alerts with similar root causes together. For instance, Julisch [Julisch 2001] defined 

six attributes for an alert, i.e., source and destination IP addresses, source and 

destination ports, alert types, and timestamps. The alerts with same six attributes 

are categorized to the same group, called alert cluster. Thus, the alerts in the same 



alert cluster, they may have the same root cause. According to the root causes, a 

system administrator may reduce the number of FPs of an IDS. 

Third, alert classification [Pietraszek 2006; Pietraszek 2004; Pietraszek and 

Tanner 2005] classifies alerts to TPs and FPs for reducing the number of FPs of an 

IDS. For example, the Adaptive Learner for Alert Classification (ALAC) was 

proposed [Pietraszek 2004], and it was an adaptive alert classifier based on the 

feedback of an intrusion detection analyst and machine-learning technique. Also, it 

had a recommender mode and an agent mode. The former was in which all alerts are 

labeled to TP/FP and passed to the analyst while the latter was in which some alerts 

are processed automatically. Intuitively, because of the goal of ALAC, it could reduce 

the number of FPs of the IDS. Although the agent mode reduces the analyst’s 

workload, the recommender mode would still lead a heavy workload to the analyst. 

However, the efficiency of APP is low when alerts only come from an IDS. This is 

because, as mentioned before, if there is only one IDS, APP only can process FP cases 

and cannot investigate FN ones. Hence, alert correlation, clustering, and 

classification cannot reduce the number of FNs due to the limitation of one IDS. 

Accordingly, the detection with multiple IDSs are recently noticed. For instance, 

Chen et al. [Chen et al. 2009] presented a particular method of APP, Majority Voting 

algorithm (MV), to deal with the alerts produced by multiple IDSs and reduce the 

number of FPs and FNs. The idea of MV is solving the conflicts of the detection of 

multiple IDSs. It finds FPs and FNs by comparing IDSs’ alerts. If few IDSs produce 

alerts from specific traffic traces, the trace is likely to be an FP case of the few IDSs. 

On the other hand, if few IDSs do not produce alerts, it is likely to be an FN case of 

the few IDSs. However, Parham [Parham 2002] presented that majority voting is not 

absolutely correct in many cases, and it would often lead to error decision. 

Furthermore, the key reason of the inefficiency of MV is disregarding different 

domain knowledge among multiple IDSs. 

Although some related works, used multiple IDSs such as the sensor fusion 

architecture (SFA), they focused on how to model and enhance their architectures, 

not APP. For example, Thomas and Balakrishnan [Thomas and Balakrishnan 2008; 

Thomas and Balakrishnan 2009] addressed the problem of optimizing the 

performance of the SFA. In practice, a neural network learner was designed in the 

SFA in order to determine the weight of each IDS based on the reliability of that IDS 

in detecting a certain attack. However, this neural network learner is a black box and 

authors did not concretely mention how to calculate the weights. 

In this work, by leveraging different domain knowledge among multiple IDSs, 

Creditability-based Weighted Voting (CWV) algorithm reduces both the number of 

FPs and FNs, and increases the efficiency of APP. CWV not only investigates the 

detection creditabilities of multiple IDSs to overcome the limitation of one IDS, but 

also reduces the number of FPs and FNs to decrease the heavy workload of analyst. 

According to the goals and methods of the above works, as summarized in Table I, 

this work will focus on the comparison of MV and CWV and evaluate the efficiency of 

two algorithms. 

 

 

 

 

 

 

 

 

 

 



 
Table I. Comparison of Methods of Alert Post-processing 

Approach Goal Number of 

IDSs 

FNs 

investigation 

Output Creditability 

Alert 

correlation 

�Merge alerts for a 

high-level view of 

attack 

One N/A Attack 

graphs 

N/A 

Alert clustering �Identify root causes 

of alerts 

One N/A Alert clusters N/A 

Alert 

classification 

�Reduce FP 

�Reduce analyst’s 

workload 

One N/A TP/FP N/A 

Majority Voting 

(MV) 

�Reduce FP/FN 

�Reduce analyst’s 

workload 

Multiple Yes (by some 

IDSs) 

FP/FN N/A 

Creditability-

based Weighted 

Voting (CWV) 

�Reduce FP/FN 

�Reduce analyst’s 

workload 

Multiple Yes (by some 

IDSs) 

TP/FP/TN/FN Yes 

2.2 Generation Methods of FP/FN Datasets 

In order to evaluate the detection capabilities of IDSs, the way to generate test trace 

datasets has been considered. Some researchers provided the real-world traffic traces 

for evaluating FPs and FNs to measure the accuracy of the IDSs [Chen et al. 2009; 

Lin et al. 2010]. 

As shown in Figure 1, Lin et al. designed an Active Trace Collection (ATC) [Lin et 

al. 2010] to actively extract and classify suspicious traces from real-world traffic 

captured in the NCTU Beta Site [Lin et al. 2010]. First, in the extraction module, it 

uses a traffic replay tool to replay the captured traffic to multiple IDSs. If an IDS 

detects specific behavior in the traffic, it will trigger an alert. According to the IDSs’ 

alerts, the ATC finds out the anchor packets that trigger the alerts by comparing five 

fields, i.e., source/destination IP addresses, source/destination ports, and protocols, 

and then processes the packet and connection association to extract each session into 

the packet traces. Second, in the classification module, according to the alert 

messages, the ATC classifies the traces into different categories by keywords. It 

defines ten categories, such as Web, File Transfer, Remote Access, etc. Each category 

uses the corresponding protocol names as its keywords. For example, the Web 

category uses HTTP as its keywords. Others can be referred to [Lin et al. 2010]. Up 

to now, the suspicious classified traces have been collected. 

Besides, the detection of IDSs may be incorrect due to FPs and FNs. Lin et al. also 

proposed a FP/FN Assessment (FPNA) [Lin et al. 2010], which analyzes the FP and 

FN cases and investigates the causes of FPs and FNs. First, it finds out potential FPs 

and FNs of the IDSs with a voting algorithm (e.g., majority voting). Next, in FP/FN 

analysis, it replays the corresponding extracted traces based on the alerts to the IDSs. 

This step verifies whether the traces are reproducible to the original IDSs or not. 

Then, to confirm the cases which are correct FPs or FNs, the reproducible traces are 

manually analyzed by analysts. At the same time, the confirmed FP and FN cases 

and the causes of them are recorded to generate the FP/FN datasets. This work 

further uses the traces and the causes behind the FPs and FNs to investigate the 

creditabilities of IDSs. 

 



 
Fig. 1. Generation method of FP/FN datasets. 

 

In the following paragraphs, two case studies of the FP/FN analysis are taken as 

examples to show why the benign traces are detected as malicious ones and the 

malicious traces are not detected by IDSs. The investigation of FP/FN analysis is 

illustrated with the description of activity, the corresponding signature, and the 

cause of FP/FN, which are shown in the description, signature, and cause fields in 

Table II and Table III, respectively. In detail, first, the description of the malicious 

activity is referred to Common Vulnerabilities and Exposures (CVE) [Common 

Vulnerabilities and Exposures 1999]. Second, the corresponding signature of the 

malicious activity is referred to Snort rule [Rule of Snort 2010] as example if it exists. 

Third, the cause of FP/FN is explained why the FP/FN occurs. 

 

(1) Table II illustrates a false positive case, “WEB-CGI csh access”, and the detail 

analysis with Wireshark [Wireshark 1998] of packet content is shown in Figure 2. 

The execution of csh interpreter in the cgi-bin directory on a WWW site is detected 

by just matching the “/csh” content in the request URI field. It often results in FP 

because the signature design is too general and rough. 

 
Table II. A False Positive in FP/FN Analysis 

Description 

Perl, sh, csh, or other shell interpreters are installed in the cgi-bin directory on a WWW site, which allows 

remote attackers to execute arbitrary commands. (reference: CVE, 1999-0509) 
Signature Cause 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 

$HTTP_PORTS  (msg:"WEB-CGI csh access"; 

flow:to_server,established; uricontent:"/csh"; nocase; ...) 

GET /feeds/feed/CSharpHeadlines 

HTTP/1.1 

 

 
Fig. 2. A false positive case study in FP/FN analysis - WEB-CGI csh access. 

 

 



(2) Table III illustrates a false negative case, “SQL Worm propagation attempt”, and 

the detail analysis of packet content is shown in Figure 3. The SQL Worm would 

result in buffer overflow in the Microsoft Windows server service. The worm loads 

Kernel32.dll and WS2_32.dll and then calls GetTickCount to continuously send 

376 bytes UDP packet of exploit and propagation code across port 1434 until the 

SQL Server process is shut down. However, it sometimes results in FN since some 

IDSs miss the signature to detect it. 

 
Table III. A False Negative in FP/FN Analysis 

Description 

Buffer overflow in the Server Service in Microsoft Windows 2000 SP4, XP SP1 and SP2, and Server 2003 

SP1 allows remote attackers, including anonymous users, to execute arbitrary code via a crafted RPC 

message. (reference: CVE, 2002-0649) 
Signature Cause 

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 

(msg:"SQL Worm propagation attempt"; flow:to_server; 

content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B 81 F1 

01|"; fast_pattern:only; content:"sock"; content:"send"; …) 

Signature content doesn’t exist. 

 

 
Fig. 3. A false negative case study in FP/FN analysis - SQL Worm propagation 

attempt. 

 

3. PROBLEM STATEMENT 
3.1 Terminologies 

Table IV defines a confusion matrix to represent the types of trace datasets with 

IDSs’ detection. The rows represent the actual trace behavior such as malicious and 

benign, and the columns represent the detection alarms such as alert or non-alert. 

According to the corresponding relation between row and column elements, there are 

four types of traces, True Positive (TP), False Positive (FP), True Negative (TN), and 

False Negative (FN). TP and FP represent the IDS produces alert for malicious and 

normal activities, respectively. Similarly, TN means the IDS does not produce alert 

for a normal activity while FN does for a malicious activity. 

 
Table IV. Confusion Matrix Definition 

 Detected 

Alert Non-alert 

Actual 
Malicious True Positive (TP) False Negative (FN) 

Benign False Positive (FP) True Negative (TN) 

 

Table V defines the notations used in this algorithm. M  and M¬  respectively 

denote malicious and benign. Based on the IDS detection, A
 
and A¬  denote the 



presence or absence of an intrusion alarm, i.e., alert or non-alert, separately. Then, n 

means the number of detected traces, i.e., how many traces marked with A there are. 

N  presents the number of IDSs involved in detection, and these N  IDSs are a set V . 

Moreover, whether all N  IDSs having the voting rights depends on the voting 

algorithm. According to the detection results, one of four types illustrated in Table IV 

would occur, i.e., TP, FP, TN, or FN. Besides, suppose there are different k  previous 

alert messages of the j-th IDS under the protocol P , and m j
Pk ,  records these messages. 

Furthermore, a notation S  is used to present a set of these messages. After the 

records, in order to investigate the creditabilities, we use probability to model the 

rate of type of traces of the j-th IDS under each protocol by Type j

P,rate . However, maybe 

not all IDSs are creditable enough, so two thresholds dτ  and aτ  are used to choose 

parts of IDSs with suitable creditability. The set of the chose IDSs is a subset of V 

and it is denoted as rV . dτ  is the detection threshold whereas aτ  is the abnormality 

threshold. Then, according to each IDS’s creditability, its corresponding weight w j
i  is 

assigned. d j
i  and msg j

i
 are detection result and alert message of the j-th IDS for i-th 

trace. Based on the above notations and definitions, iCMD  can be calculated for 

malicious tendency of i-th trace. Finally, based on the iCMD , iDR  represents a 

decision result for i-th trace, i.e., if the trace is malicious, benign, or unknown. 

 
Table V. The Notations Used in Creditability-based Weighted Voting 

Notations Descriptions 

MM ¬,  Trace behavior, i.e., malicious and benign. 

AA ¬,  Intrusion alarm, i.e., alert and non-alert. 

n  Number of detected traces. 

N  Number of IDSs. 

}...,,2,1{: NV  Set of voters, i.e., set of IDSs. 

},,,{: FNTNFPTPType  Types of the trace dataset. 

m j
Pk ,  Previous alert message mk of the j-th IDS under the protocol P. 

k  Alert message type index. 

j  IDS index. 

...},,{: FTPHTTPP  Protocol type of classified traces. 

}{: ,mS j
Pk  Set of previous alert messages. 

Type j
P,rate  Rate of the type of trace of the j-th IDS under the protocol P. 

rV  Set of the remaining voters. A subset of V. 

Nrr ≤,  Number of elements of Vr. 

dτ  Detection threshold measured the correctness of detection. 
aτ  Abnormality threshold measured the abnormality of alert frequency. 

w j
i  

Weight of the j-th IDS for i-th trace, which is assigned according to the 

creditabilities. 

d j
i  Detection result produced by the j-th IDS for i-th trace. 

msg j
i

 Alert message of the j-th IDS for i-th trace. 

i  Trace index. 

iCMD  
Creditability Malicious Decision function calculated the malicious 

tendency for i-th trace with creditabilities. 

},,{: UnknownAADR i ′¬′  Decision result with voting algorithm for i-th trace. 

3.2 Problem Description 

In APP, on the one hand, the efficiency is low when alerts only come from one IDS, as 

explained in Section 1. On the other hand, when alerts come from multiple IDSs, the 

efficiency may also be low if APP disregards the different domain knowledge among 

multiple IDSs. Moreover, due to the different domain knowledge, different IDSs may 



have different detection results for a traffic trace. Hence, how to efficiently use these 

results to make a good decision on the processed traffic trace is a problem. 

The above description can be formulated as follows. 

 

Given: (1) a training dataset T , (2) N  IDSs, (3) sets of alerts produced by N  IDSs, 

(4) n  corresponding processed traces. 

Suppose: (1) the weight of j-th IDS is w j , (2) the alert produced by j-th IDS for i-th 

trace is a j
i . 

Objectives: (1) model a series of weights }...,,,,{ 321 wwww N  according to T , (2) 

design a function ),( awf j
i

j
i  to make a decision on each trace. 

 

To maximize the number of correct decisions, the number of FPs and FNs are 

minimized and the efficiency of APP is maximized accordingly. 

4. CREDITABILITY-BASED WEIGHTED VOTING 

This section details the Creditability-based Weighted Voting algorithm which 

includes four components. The first component is the Creditability Modeling, which 

investigates and models the IDSs’ creditabilities according to the past experience of 

detection. Second, the Authority Selecting selects authorities of detection if they exist. 

Third, the Voter Excluding excludes voters that cannot often perform well in 

detection. Lastly, the Weighted Voting determines a trace where it belongs to. 

4.1 Overview 

The goal of this work is to increase the efficiency of alert post-processing when alerts 

come from multiple IDSs, that is, to increase the accuracy of the corresponding 

processed traces which actually belong to TP, FP, TN, or FN cases. Accordingly, the 

generated TP/FP/TN/FN datasets can be not only used by IDS vendors to improve 

their signature design, but also used to accumulate our knowledge of alerts. 

 

 
Fig. 4. Architecture of our system. 

 

For this goal, as shown in Figure 4, the Active Trace Collection collects and 

classifies the suspicious traffic traces which are replayed to multiple IDSs by 

comparing the alerts produced by IDSs. Since the detection of IDSs could be incorrect, 

i.e., FP and FN, the FP/FN Analysis investigates the causes of FPs/FNs using the 

collected traces and records the confirmed TP/FP/TN/FN traces into Datasets as the 

ground truth. Based on the Datasets and the accumulated knowledge of alerts, this 

work therefore proposes a Creditability-based Weighted Voting to make a decision on 

the suspicious traffic trace more accurately. 



4.1.1. Creditability-based Weighted Voting.  The key idea of the Creditability-based 

Weighted Voting to increase the efficiency of alert post-processing is investigating the 

IDSs’ creditabilities and deciding the traces more accurately with the corresponding 

creditabilities. 

 

 
Fig. 5. Architecture of Creditability-based Weighted Voting. 

 

Hence, the Creditability-based Weighted Voting is constructed with some 

components. As shown in Figure 5, from the Datasets, the Creditability Modeling 

selects the significant types of traces to set up the Training Data and uses the Two-

level Modeling to model the IDSs‘ corresponding creditabilities for different types of 

traces. Since each IDS could not perform well on all types of traces, we consider that 

some IDS performs well or not on some type of trace or some alert. Therefore, 

investigating the creditabilities only for all types of traces is not enough. However, 

based on the creditabilities, first, the Authority Selecting selects the IDS with high 

detection capability to be an authority if it exists. Secondly, the Voter Excluding 

excludes the voter that cannot usually detect the malicious traffic in detection. Third, 

the Weighted Voting decides the trace where it tends to, i.e., malicious, benign, or 

unknown, with proper voters and weights. 

4.2 CM: Creditability Modeling 

Since each IDS could not perform well on each alert or each type of trace, the CM is 

designed to investigate and model the detection capabilities of IDSs for different 

types of traffic with two levels. The two-level is especially designed in terms of the 

categorization of signature definition. An alert message, the description of a 

suspicious activity in a signature, comprises both or either two factors, i.e., protocols 

and malicious types. Hence, investigating the alert can consider both two factors. 

Besides, based on the protocol, which is the most common categorization, the 

detection capability on protocol factor can also be investigated. Thus, it is reasonable 

to make use of two levels to model the creditability. As shown in Figure 5, the CM 

includes two components. One is Training Data and the other is Two-level Modeling. 

4.2.1. TD: Training Data.  According to the TP/FP/TN/FN traces confirmed from the 

FP/FN analysis, the CM selects the significant types of traces to set up the TD. The 

selection policies are based on the proportion of appearances in traffic and the 

number of corresponding defined signatures. If both of them are high, the CM will 

identify the types of traces as significant ones and select them into TD. 

4.2.2. TLM: Two-level Modeling.  Based on the TD, the TLM counts two detection 

capabilities for an IDS. One is for Alert Message level (AML) and the other is for 

Protocol level (PL). Just as the name implies, each AML’s detection capability 



depends on the correctness of an alert message and the detection capability of PL is 

based on some protocol. Therefore, the conditional probability of each element of the 

confusion matrix can be calculated as follows. 

First, in AML, the correct rate of a previous alert message analyzed by FP/FN 

analysis can be calculated as )|( ,mMP j
Pkj  with conditional probability, 
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Second, in PL, we define the successful detection rate and successful ignorance 

rate as )|( AMPj  and )|( AMPj ¬¬  to mean the correct detected malicious traces and 

ignored benign ones, respectively. Based on (1), the successful detection rate is 

calculated as 
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where h is the number of all alert message types of j-th IDS under the protocol P. 

Besides, according to the Bayes’ theorem and Type j

 Prate, , the successful ignorance rate 

is calculated as 
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As a result, for each IDS, it has a creditability table which comprises three vectors, 

i.e., )|( ,mMP j
Pkj , )|( AMPj  and )|( AMPj ¬¬ . 

4.3 AS: Authority Selecting 

4.3.1. Selecting authorities with relatively low FP and FN.  Based on the investigation of 

detection capabilities of IDSs for different types of traces, the AS finds that 

sometimes some IDSs have much higher creditabilities than others. In other words, 

the lower FP and FN rates could result in higher creditabilities. Thus, comparing 

with other IDSs, if the creditabilities of some IDSs are high enough for some type of 

trace, the AS assumes that these IDSs can be the authorities of detection and selects 

these IDSs to be authorities. 

The procedure of the AS includes three steps. First, for each type of trace, the AS 

sorts the FP and FN rates of every IDS from high to low respectively. Then, the AS 

separately calculates the average values L1 and L2 of FP and FN rates of the IDSs 

listed after three-quarters of all IDSs since the concept of mean in Statistics. Third, 

the IDSs will be selected to be the authorities of detection by the AS when their FP 

and FN rates are both lower than L1 and L2. 

4.3.2. Deciding traces by authorities if they exist.  Finally, there are three cases: no 

authority, one authority, or multiple authorities. If no authority occurs, the CWV will 

enter the Voter Excluding and then Weighted Voting. When there is one authority, 

the traces will be decided directly by that authority. Otherwise, the CWV will enter 

the Weighted Voting and the traces will be decided by the multiple authorities. 



4.4 VE: Voter Excluding 

The VE is designed to exclude the voters which cannot usually perform well in 

detection. Based on the concept, the VE excludes the voters according to two views. 

One is the TP/FP rates and the other is alert frequency. 

4.4.1. Excluding voters with low TP and high FP.  First, according to the TP and FP 

rates, the VE excludes the voters which have TP is less than detection threshold dτ  

while FP is more than dτ . The reason is that some IDSs produce more incorrect 

detection than correct detection. The VE then assumes that the IDSs are not strong 

enough and excludes them. 

4.4.2. Excluding voters with abnormal alert frequency.  Second, based on the alert 

frequency, the VE assumes that the IDSs having the abnormal alert frequency are 

unusual. The reason is that some IDSs always produce alert or not on detecting the 

specific type of trace. For example, when processing the same type of trace, some IDS 

does not produce any alert while others do. Moreover, the IDS, which has the 

detection function in the type of trace, does not produce any alert that means its 

corresponding signature design is doubted. Thus, when every IDS processes the same 

type of trace, if either the alert rate or the non-alert rate is more than aτ , the IDSs 

will be excluded by the VE. 

4.5 WV: Weighted Voting 

4.5.1. Calculating the malicious tendency.  After the VE excludes some voters, or there 

are multiple authorities, the WV is processed with proper voters. The WV assigns the 

weights to the corresponding voters according to the creditabilities. Then, when 

processing the traces one by one, the WV designs a Creditability Malicious Decision 

Function, CMD to calculate the degree of tendency towards malicious activity. For i-

th trace, its CMDi is calculated as 
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In (5), the CMDi has three conditions to calculate Ti, j respectively. The first 

condition is the j-th IDS produces an alert and the corresponding alert message 

belongs to the previous alert message set. It can be detailed to AML with 

)|(, msgMP j

i
ji . Secondly, the j-th IDS produces an alert but the alert message does not 

belong to the previous alert message set. It can only be calculated in PL with 

)|( AMPj . Third, the j-th IDS does not produce an alert. It is calculated in PL with 

)|( AMPj ¬¬ . 

4.5.2. Making a decision with the malicious tendency.  Finally, the WV makes a decision 

on i-th trace with DRi to decide the trace is malicious, benign or unknown. The DRi is 

malicious if the CMDi is more than α while the DRi is benign if the CMDi is less than 

β. Hence, the DRi is formulated as 
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where A’ means the i-th trace is decided as malicious trace while ¬A’ means the i-th 

trace is decided as benign one. 

4.6 Example of Creditability-based Weighted Voting 

Assume there are seven IDSs (i.e., N = 7), which detect the same traffic and produce 

the corresponding alerts. By comparing the alerts, the HTTP traces can be collected 

and are taken as examples here. After the FP/FN analysis, the TP/FP/TN/FN 

datasets can be set up. Next, the CM set up the TD according to the datasets and 

then uses the TLM to model the seven IDSs’ corresponding creditabilities 

respectively. It first calculates TP j
 HTTPrate, , FP j

 HTTPrate, , TN j
 HTTPrate, , and FN j

 HTTPrate, . Then, in 

AML, the S is set up with the correct rates of the previous alert messages which are 

calculated as )|( ,mMP j
HTTPkj . Next, in PL, it calculates the successful detection rate 

)|( AMPj  and successful ignorance rate )|( AMPj ¬¬ , which are shown in Table VI. 

After the CM, the other three components of the procedure of the CWV can 

process with the two-level creditabilities. First, in AS, the L1 and L2 are 0 and 0.51 

separately. By comparing every IDS’s FP j
 HTTPrate,  and FN j

 HTTPrate,  with L1 and L2 

respectively, there is no authority in detection. Second, in the VE, the 3-rd IDS is 

excluded according to the TP/FP rates. The 1-th, 4-th, 5-th and 6-th IDSs are 

excluded according to the abnormal alert frequency. Hence, after the VE, the 

remaining voters are the 2-nd and the 7-th IDSs. Finally, in the WV, when 

processing the 87-th trace, the 2-nd IDS produces an alert and the alert message is 

“IBM Lotus Domino Accept-Language Buffer Overflow” which is an element of S, 

while the 7-th IDS does not produce any alert. Besides, the creditability of the 2-nd 

IDS of the alert message in AML, )|( 2

872,87 msgMP  is 0.83. The creditability of the 7-th 

IDS of the non-alert in PL, )|(7 AMP ¬¬  is 0.80. Therefore, the CMD87 is calculated as 

(0.83+(1-0.80))/2, that is, the result of the CMD87 is 0.52. Because the value is larger 

than 0.5 (α = 0.5), the DR87 is A’ which means the 87-th trace is decided as malicious 

one. 

 
Table VI. Two-level Creditabilities Results of Example Run 

Creditabilities IDS1 IDS2 IDS3 IDS4 IDS5 IDS6 IDS7 

)|( AMPj  - 0.46 0.03 - 1.00 - 0.51 

)|( AMPj ¬¬  0.71 0.78 0.52 0.71 0.75 0.71 0.80 

)|( 87,87 msgMP j
j  N/A 0.83 N/A N/A N/A N/A N/A 

5. EVALUATION AND OBSERVATION 

In this section, the detection capabilities of multiple IDSs and the performance of the 

CWV are evaluated. First, the IDSs’ corresponding creditabilities of different types of 

traffic traces modeled by the CM are illustrated. Second, the Accuracy, TPR, TNR 

and Efficiency are used to evaluate the voting algorithms. 

5.1 Trace Selection and Experiment Environment 

5.1.1. Trace selection.  As mentioned in Section 4.2, the selection policies are based 

on the rates of appearances in traffic and the rates of number of corresponding 

signatures. If both of them of some type of trace are significant, this type of trace will 

be selected. First, according to the ten categories classified by ATC [Lin et al. 2010], 



we investigate the traffic in Beta Site [Lin et al. 2010] during the period from 

September 1, 2010 to February 1, 2011 to understand the frequent appearance 

categories in traffic. Second, we take the rule version 2.9 of Snort as example to 

investigate the signature classification and distribution. The investigation result of 

the above policies is shown in Table VII. It obviously represents that Web, File 

Transfer, and Network are significant types. Moreover, Remote Access is more 

familiar than VoIP to us in our experience. In addition, the signatures in Chat are 

usually chat programs detection which used to be against corporate policy in normal 

traffic [Rule of Snort 2010]. Furthermore, in Web, File Transfer, Network and 

Remote Access, we select the most popular protocol, respectively. Hence, we decide 

the four types of traces, i.e., HTTP, FTP, NetBIOS and TELNET. 

 
Table VII. Investigation Result of Trace Selection 

Category Web 
File 

Sharing 
Chat 

File 

Transfer 

Net- 

work 

Remote 

Access 
VoIP 

Encryp-

tion 
Email 

Strea-

ming 

% of 

traffic 
35.86 32.69 8.82 7.07 4.84 4.05 3.14 2.79 0.49 0.22 

% of 

signature 
81.78 0.14 0.57 2.13 8.80 0.66 1.41 0.00 4.48 0.04 

5.1.2. Experiment environment.  The real-world traffic is captured from the NCTU 

Beta Site [Lin et al. 2010], during the period from September 1, 2010 to February 1, 

2011. It then uses a traffic replay tool (e.g., tcpreplay) to replay captured raw traffic 

to multiple IDSs. Seven IDSs are involved in the classification, which are shown in 

Table VIII. Table IX presents the number of four selected types of traces. The ratio of 

malicious traces to benign ones is about 4 to 6. The benign traces rate is not so 

expected high since we expect to avoid a flood of the benign traces dominating the 

results in this experiment. During the period, the two dominant types of trace are 

HTTP and NetBIOS. In the HTTP traffic, 39% of the traces are malicious, meaning 

HTTP applications are frequently exploited. In the NetBIOS traffic, 62% of the traces 

are malicious, meaning the vulnerabilities of NetBIOS are usually targeted by 

attacker. Here, we choose the traces collected in the first two months to be the 

training data while the traces of the latter three months to be the processing data. 

The former is as input for the CM to set up the TD, and the latter is as input for the 

CWV one by one. 

 
Table VIII. Seven IDSs Information 

Vendor 

name 
BroadWeb D-Link Fortinet McAfee 

Tipping-

Point 

Trend 

Micro 
ZyXEL 

Device 

name 

NetKeeper

7K 
DFL-1600 

FortiGate-

110c 
M-1250 5000E TDA2 

ZyWALL 

USG 1000 

 

The parameters in the CWV are set as follows. In the VE, the detection threshold 

dτ  is set 0.5 while the abnormality threshold aτ  is set 0.9. In the WV, the values of α 

and β are both set 0.5. Moreover, we discuss these parameters in Section 5.3. 

 
Table IX. Statistics of Number of Traffic Traces 

(a) Training data                 (b) Processing data 

Type Malicious Benign Total  Type Malicious Benign Total 

HTTP 46 72 118  HTTP 57 86 143 

FTP 22 74 96  FTP 29 77 106 

NetBIOS 66 47 113  NetBIOS 87 46 133 

TELNET 4 31 35  TELNET 5 42 47 

Total 138 224 362  Total 178 251 429 

 



5.2 Experiment Results of Investigation of Creditabilities 

In the CM evaluation, this work takes seven IDSs, which are called IDS1, IDS2, …, 

and IDS7, respectively, as examples to represent the IDSs’ corresponding 

creditabilities of different types of traffic traces in two levels. 

5.2.1. Protocol level.  As mentioned in Section 4.2, the successful detection rate and 

successful ignorance rate are defined as )|( AMPj  and )|( AMPj ¬¬ , respectively, to 

represent the detection capabilities for PL. As shown in Table X (a), first, the value of 

detection rate is ‘-‘ that means uncalculated, that is, the IDS does not produce any 

alert for the type of traces. Secondly, some values of detection rate are 0.00 since the 

alerts result from common commands used, i.e., the traffic are always benign. For 

example, some alerts produced by the IDS5 for FTP traces result from FTP common 

command used. Third, some values of detection or ignorance rates are 1.00. The 

observed reason is the definition of signature for the type of traces is more precise. 

For instance, the type of alerts produced by the IDS5 for TELNET traces is only one 

and is correct in our investigation. Besides, the IDSs’ detection capabilities for 

different protocols are different. In our investigation, for HTTP, the IDS2, IDS5 and 

IDS7 have higher creditabilities. Then, for FTP, the IDS5, IDS6 and IDS7 have 

higher creditabilities. Next, for NetBIOS, the IDS1, IDS4, IDS5 and IDS6 have 

higher creditabilities. Finally, for TELNET, the IDS3 and IDS5 have higher 

creditabilities. Generally, the IDS5 achieves appreciable successful rates under each 

protocol. 

5.2.2. Alert Message level.  As mentioned in Section 4.2, the correctness of a 

previous alert message is defined as )|( ,mMP j
Pkj  to represent the detection capability 

for AML. Table X (b) shows the top ten accurate alert messages, i.e., the alert 

messages have higher creditabilities, in our investigation. Besides, some of them 

result from the same traffic with same suspicious activity, and therefore, these are 

grouped into one to represent. 

 

(1) The first two “URL.DirectoryTraversal.Suspicious” and “HTTP: Attempt to Read 

Password File” alerts result from the same traffic with the request URI string 

“../../../../../../../etc/passwd”. The former alert results from the string “../../”. The 

latter alert results from the string “/etc/passwd”. These malicious activities could 

obtain the private information or access the files on the file system. 

(2) The “FTP: MKDIR Command Used” alert results from the FTP MKD command 

used. The observed malicious activity is the MKD and CWD commands are used 

alternately, which means the intruder creates a directory, changes the working 

directory to the created directory, and then creates the same directory alternately. 

(3) The “specifiers.BolinTech.DreamFTPServer.Format.String” alert results from the 

malicious FTP request containing embedded format string specifiers, i.e., 

“user %n”, “pass %n”, “retr %n” or “%n”. 

(4) The “SOLARIS.TELNETD.AUTHENTICATION.EXP”, “Telnet: Login Bypass 

(General)”, and “Solaris Telnetd Authentication Bypass Vulnerability” alerts 

result from the argument injection via USER environment variable. The Solaris 

telnet daemon misinterprets "-f" sequences as valid requests to skip the 

authentication. However, the alert may be FP when the target is a non-Solaris 

telnet server. 

(5) The “NetPathCanonicalize.SRVSVC.MicrosoftWindows.MS08-

067.Buffer.Overflow” alert results from the RPC API NetPathCanonicalize() 

function exploited with a crafted path. The successful overflow exploit could allow 

a remote attacker to execute arbitrary code or crash the service. However, the 

alert may be FP when the path does not include the buffer overflow code. 



(6) The “IBM Lotus Domino Accept-Language Buffer Overflow” alert results from the 

long length of Accept-Language field, e.g., 100. The observed malicious activity is 

the duplicated language code appears frequently, while the alert may be FP when 

the abnormal language code does not exist. 

(7) The “WEB-MISC robots.txt access” alert results from the file robots.txt accessed 

directly. The malicious activity could gather the information about the target site. 

However, the alert may be FP when some search engine’s robot checks robots.txt 

for information about the site. 

 
Table X. Experiment Results of Investigation of Creditabilities 

(a) Protocol level - successful detection and ignorance rates for each IDS 

Types 

 

IDSs 

HTTP FTP NetBIOS TELNET 

Pj(M|A) Pj(¬M|¬A) Pj(M|A) Pj(¬M|¬A) Pj(M|A) Pj(¬M|¬A) Pj(M|A) Pj(¬M|¬A) 

IDS1 - 0.71 - 0.92 0.95 0.69 0.28 0.99 

IDS2 0.46 0.78 - 0.92 - 0.33 - 0.98 

IDS3 0.03 0.52 0.00 0.78 0.66 0.33 1.00 0.99 

IDS4 - 0.71 - 0.92 0.68 1.00 - 0.98 

IDS5 1.00 0.75 0.74 0.98 0.88 0.83 1.00 0.99 

IDS6 - 0.71 0.69 1.00 0.67 0.68 0.00 0.98 

IDS7 0.51 0.80 0.70 0.95 0.41 0.31 0.01 0.72 

 
(b) Alert Message level – top ten accurate alert messages 

Rank Alert messages )|( ,mMP j
Pkj  

1 URL.DirectoryTraversal.Suspicious 1.00 

1 HTTP: Attempt to Read Password File 1.00 

1 FTP: MKDIR Command Used 1.00 

1 specifiers.BolinTech.DreamFTPServer.Format.String 1.00 

1 SOLARIS.TELNETD.AUTHENTICATION.EXP 1.00 

1 Telnet: Login Bypass (General) 1.00 

7 NetPathCanonicalize.SRVSVC.MicrosoftWindows.MS08-067.Buffer.Overflow 0.89 

8 IBM Lotus Domino Accept-Language Buffer Overflow 0.83 

9 Solaris Telnetd Authentication Bypass Vulnerability 0.80 

10 WEB-MISC robots.txt access 0.75 

5.3 Accuracy, TPR, TNR, and Efficiency of Voting Algorithms 

5.3.1. Evaluation metrics.  Let TPtraces be the number of malicious traces which are 

correctly determined, FNtraces be the number of malicious traces which are not 

determined, TNtraces be the number of benign traces which are correctly classified, 

FPtraces be the number of benign traces which are incorrectly determined as malicious 

ones. 

This work uses the Accuracy, TPR, and TNR metrics [Wu and Banzhaf 2010] for 

the voting algorithm in the evaluation. The Accuracy is evaluated with the 

percentage of whole traces that are determined precisely. This is a commonly used 

metric for overall view of evaluation. 
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In detail, the TPR is evaluated with the percentage of malicious traces that are 

correctly caught as malicious ones, while the TNR is evaluated with the percentage 

of benign traces that are correctly passed as benign ones. 
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There is a tradeoff between TPR and TNR. It is required to evaluate the 

performance of voting algorithm on both TPR and TNR. Like the F1 score 

[Rijsbergen 1979] which is a measure of a test's accuracy, this work defines a similar 

measure for the efficiency of voting algorithm. The Efficiency takes the harmonic 

mean of TPR and TNR, given by: 
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Higher value of Efficiency indicates that the voting algorithm performs better on not 

only TPR, but also TNR. 

5.3.2. Experimental evaluation results.  Figure 6 shows the whole accuracy of CWV 

and MV. It is observed that each accuracy of CWV is higher than that of MV. The 

total accuracy of CWV and MV are 95% and 66%, while the average accuracy of them 

are 96% and 71%. It is observed that the CWV is improved by about 1.4 times of 

percentage as the MV. The result demonstrates that the weights of IDSs should be 

different for leveraging the different domain knowledge among IDSs when multiple 

IDSs involve detection. 

 

 
Fig. 6. Accuracy of the voting algorithms. 

 

Figure 7 and Figure 8 compare the TPR and TNR of CWV with MV. The results 

mainly demonstrate the effect on two-level creditability modeling. First, the average 

TPR of CWV and MV are 93% and 14% that means the FN rate of the former is lower 

than the latter. The observed reason is the FNs of some IDS could be avoided by 

leveraging other IDSs’ correct detection with corresponding creditabilities. Second, 

the average TNR of CWV and MV are 98% and 93% that means the FP rate of the 

former is lower than the latter. The main reason is the FPs of some IDS could be 

filtered with the creditabilities especially in AML. Third, in the CWV, the TNR are 

higher than the TPR since the correctness of alert message itself is investigated in 

AML. Thus, alert message with frequent FP would be filtered. Lastly, the TPR and 

TNR of MV for HTTP, FTP, and TELNET are 0% and 100%, respectively. In this case, 

the reason is only few IDSs produce alerts, which means most IDSs occur FNs or the 

few ones occur FPs. No matter which situation it is, the MV decides the result 

directly from IDSs with the same weight, that is, may ignore some IDSs which have 



noticeable creditabilities, could result in insignificant results, especially most of them 

are FNs. 

 

 
Fig. 7. TPR of the voting algorithms. 

 

 
Fig. 8. TNR of the voting algorithms. 

 

Figure 9 shows the efficiency of voting algorithms. The efficiency of MV is 41%, 

while that of CWV is as high as 94%. The CWV can maintain about 2.3 times of 

percentage as the MV on efficiency. This means the CWV can maintain both TPR and 

TNR well. 

 



 
Fig. 9. Efficiency of the voting algorithms. 

 

5.3.3. Discussion of important parameters in CWV.  In the VE, the detection threshold 

dτ  is set 0.5 that means the halved correct detection, i.e., the probability of intuition 

is one over two. Based on this value, we experiment with various abnormality 

threshold values from 0.6 to 1.0 and the results are shown in Figure 10. The values, 

smaller than 0.5, are not used in this experiment because they result in no involved 

voters. It does not make sense when there are no voters in a voting. From Figure 10, 

we can observe that when the abnormality threshold is 0.9, the CWV has the highest 

efficiency. Therefore, we use this value in all experiments of this thesis. 

 

 
Fig. 10. Efficiency under various abnormality thresholds of CWV. 

 

Similarly, in the WV, we change α and β from 0.1 to 0.9 and find that the accuracy 

can be 100% when the values of α and β are 0.7 and 0.1, respectively. However, the 

range between α and β is large, 0.6 (= 0.7 – 0.1), so the number of unknown cases is 

up to 55% of that of total processed traffic traces. Hence, α and β can be tuned 

according to the tradeoff between the accuracy of decided traces and the number of 

unknown traces that need to be analyzed manually. 



5.4 Differences between CWV and Each IDS in Percentages at FP and FN 

Table XI shows the percentages of FP and FN of CWV and each IDS for different 

types of traces. Some IDSs have FP and FN values with 0% and 100% since these 

IDSs do not produce alert for this type of traces. This also means these IDSs miss the 

signatures. Secondly, the FP of IDS3 is 100% because the alerts result from common 

command used, such as “FTP GET command”. Third, the FP and FN of IDS5 are 0%. 

The observed reason is the type of alerts produced by IDS5 is only one, and the 

message is “SOLARIS.TELNETD.AUTHENTICATION.EXP” that is a precise 

signature in our investigation, i.e., the creditability of the message is 1.0. Actually, 

the corresponding traces are always malicious ones in analysis. Besides, for NetBIOS 

traces, most IDSs produce many alerts that result in more FPs for each IDS, while 

for other types of traces, some IDSs produce alerts that result in more FNs. 

 
Table XI. Percentages of FP and FN of CWV and Each IDS 

 
HTTP FTP NetBIOS TELNET 

FP FN FP FN FP FN FP FN 
IDS1 0 100 0 100 63.04 5.17 0 100 

IDS2 26.74 94.74 0 100 0 100 0 100 

IDS3 63.95 100 100 86.21 80.43 1.15 2.38 40.00 

IDS4 0 100 0 100 25.53 7.58 0 100 

IDS5 0 98.25 0 48.28 52.17 9.20 0 0 

IDS6 0 100 0 13.79 67.39 1.15 0 100 

IDS7 9.30 5.26 0 48.28 39.13 82.76 97.62 80.00 

CWV 2.33 7.02 0 13.79 4.35 9.20 0 0 

 

Furthermore, the differences between CWV and each IDS in percentages at FP 

and FN are shown in Table XII. First, some IDSs detect better than the CWV 

partially because the value of FP or FN in percentage is negative, but no IDS can 

individually detect well in both FP and FN. Second, the CWV performs well in most 

cases for all types of traces by leveraging different detection capabilities among IDSs 

which are shown in different values of FP and FN. It is demonstrated that the 

average percentages of FP and FN reduction between CWV and each IDS are 21% 

and 58%. 

 
Table XII. Differences between CWV and Each IDS in Percentages at FP and FN 

 
HTTP FTP NetBIOS TELNET 

FP FN FP FN FP FN FP FN 
IDS1 -2.33 92.98 0 86.21 58.69 -4.08 0 100 

IDS2 24.41 87.82 0 86.21 -4.35 90.8 0 100 

IDS3 61.62 92.98 100 72.42 76.08 -8.05 2.38 40.00 

IDS4 -2.33 92.98 0 86.21 21.18 -1.62 0 100 

IDS5 -2.33 91.23 0 34.49 47.82 0 0 0 

IDS6 -2.33 92.98 0 0 63.04 -8.05 0 100 

IDS7 6.97 -1.76 0 34.49 34.78 73.56 97.62 80.00 

Average 11.95 78.44 14.29 57.15 42.46 20.37 14.29 74.29 

 

5.5 Case studies 

In this section, two case studies in the experiment are taken as examples to show the 

TP case in CWV and FN in MV, and the TN case in CWV and FP in MV. 

5.5.1. Case study I: TP case in CWV and FN in MV.  In this case, the alert messages 

and the corresponding creditabilities are shown in Table XIII, while the trace content 

is illustrated in Figure 11. It is observed that the attacker uses the command “USER 

–fadm” as the argument injection via USER environment variable in environment 

option to attempt to bypass the authentication. More information about Telnet 

environment option can be found in [Alexander 1994]. Furthermore, the malicious 



content in hexadecimal is “ff fa 27 00 00 55 53 45 52 01 2d 66 61 64 6d” obviously. 

However, this malicious trace can be correctly determined by the CWV because of the 

high creditabilities in AML, while it is missed by the MV because only few voters can 

detect it. 

 
Table XIII. Alert Messages and Corresponding Creditabilities in Case Study I 

msg j
i  )|(, msgMP j

iji  

SOLARIS.TELNETD.AUTHENTICATION.EXP 1.00 

Solaris Telnetd Authentication Bypass Vulnerability 0.80 

 

 
Fig. 11. Trace content in case study I. 

 

5.5.2. Case study II: TN case in CWV and FP in MV.  In this case, the alert messages 

and the corresponding creditabilities are shown in Table XIV, while the trace content 

is illustrated in Figure 12. It is observed that the signature designs are not specific 

enough. Hence, the general signature is easily matched in the payload even though 

the payload is benign. Obviously, logon/login failure is general that often occurs in 

normal activities. It is demonstrated that the corresponding creditabilities are low in 

our investigation. Therefore, this benign trace can be correctly determined as benign 

one by the CWV, while it is incorrectly classified to malicious one by the MV because 

most voters detect it. 

 
Table XIV. Alert Messages and Corresponding Creditabilities in Case Study II 

msg j
i  )|(, msgMP j

iji  

netbios: SMB.Login.Failure 0.26 

SMB: Windows Logon Failure 0.12 

EXPLOIT Server Service Remote Code attack 0.62 

NETBIOS-SS: NULL Credentials Login 0.50 

 



 
Fig. 12. Trace content in case study II. 

 

6. CONCLUSIONS AND FUTURE WORKS 

This work proposes the Creditability-based Weighted Voting (CWV) to reduce both 

FPs and FNs and increase the efficiency of alert post-processing with multiple IDSs. 

The CM leverages the domain knowledge among multiple IDSs by investigating the 

detection capabilities of all IDSs and models the corresponding creditabilities to them. 

From the experiment results of investigation of creditabilities, we demonstrate the 

different IDSs’ detection capabilities by their creditabilities. In detail, we observe 

that the signature design is the main factor on the correctness of detection. Some IDS 

has more specific signature that results in fewer number of alerts and FPs, while 

some IDS has more general signature that results in more number of alerts and FPs. 

On the other hands, some IDS misses the signature, leading to FNs. 

This work uses Accuracy, TPR, TNR, and defines Efficiency to evaluate two voting 

algorithms, the CWV and the MV. The CWV can achieve the accuracy and the 

efficiency up to 95% and 94%, which are much higher than the MV in comparison. 

Besides, between the CWV and each IDS, the CWV performs well in most cases for 

all types of traffic traces. It is demonstrated that the average percentages of FP and 

FN reduction between the CWV and each IDS are 21% and 58%. 

However, the CWV could make an incorrect decision in some situations. For 

example, when processing the trace which triggers the new alert of some IDS, the 

CWV only can use the corresponding creditability in PL of the IDS to determine the 

trace. The incorrect result could then occur. Besides, if some IDS significantly 

updates or modifies its signature database, which means the detection capability 

changes greatly, the corresponding creditability would be almost useless. The WV 

could make an incorrect decision on the trace. Hence, the frequency and the duration 

of updating training data are issues in the future. Furthermore, another goal in the 

future is the automation because it could increase the productivity and practicability 

of this system. In foreground, the CWV keeps processing traffic traces one by one, 

while in background, the creditability table for each IDS is updated with considering 

the above issue to maintain the reliance on creditability. 
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