IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 1, JANUARY 2011 1

Time-and-Energy Aware Computation
Offloading in Handheld Devices to
Coprocessors and Clouds

xxx xxx, Member, IEEE, ooo o000, Fellow, OSA, and xxx xxx, Life Fellow, IEEE

Abstract—The hardware components in handheld devices are usually adapted to specific application and are hard to do general
computations. However, with the popular of smart handheld devices, e.g. smart phone and pads, more kinds of software can
run on these devices and raising the time and energy consumption. Therefore, some research discussed with computation
offloading, but offloading does not promise the time and energy saving can always be achieved. Thus, we implement an offloading
decision framework based on environment factors. The framework collects factors for estimating time and energy usage in every
computing environment, and then makes decision according to user’s preference. We pick two program, matrix multiplication and
virus scanning, to evaluate the decision framework. In matrix multiplication computation, the false decision rate is below 30%,
and can save 20~300% computing time and 50~130% energy consumption. In virus scanning, we choose the scanner from
clamAyV, the false decision rate is nearly zero. Surprisingly, we find a large file, e.g. larger than 2MB, is not suitable for offloading
to cloud for scanning, which will suffered 160~250% performance decrease.

Index Terms—Android, cloud computing, computation offloading, coprocessors

1 INTRODUCTION

EAR 300 million smart phones were sold in

2010, and its number is expected to increase
80% in 2011 [1]. In order to satisfy the needs of
billions of users, smart phones feature versatile mo-
bile applications. Examples of the latest functions
include multimedia, real-time games, GPS navigation
and communication. Most of these mobile applica-
tions are user-interactive and data-processing inten-
sive, both of which require quick response and long
battery life. However, most commercial off-the-shelf
smart phones, compared to desktops, are generally
equipped with low speed processors and limited ca-
pacity batteries. Running sophisticated software on
smart phones can result in poor performance and
shorten battery lifetime. Therefore, it becomes a cru-
cial issue in designing smart phones to deliver ade-
quate performance and prolong battery life.

A lot of advanced hardware technology, such as
instruction level parallelism, leakage power control
and dynamic voltage scaling, have been proposed
to improve processor speed and reduce energy con-
sumption. Although the advanced technology can
deliver better performance, adopting high-end pro-
cessors is not always appropriate for budget-limited
projects. Recently, cloud computing becomes another
possible solution to enhance computing capability of
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smart phones. The cloud computing vendors pro-
vide computing cycles for the registered users to
reduce computation and energy consumption of smart
phones. Examples include Amazon Elastic Compute
Cloud (EC2), Amazon Virtual Private Cloud (VPC)
and PacHosting. However, it takes both time and
energy to upload programs to the cloud and retrieve
the results from the cloud. The computation capacity
of the cloud can also affect the response time of the
offloaded programs. In order to save both time and
energy consumption, there is a clear need for the
development of a decision making mechanism before
offloading.

There have been many research efforts dedicated
to offload computation intensive programs from a
resource-poor mobile device [2-5]. X. Gu et al. [2],
Z. Li [3] and G. Chen et al. [5] partitioned source
codes into client/server parts, and then saved energy
consumption by running the server parts at remote
servers. All these methods perform well for small
size applications, but may induce significant overhead
when partitioning large size applications. K. Kumar
[6] proposed a simplified energy model to quickly
estimate the energy saved from cloud services. How-
ever, several key power-related parameters were not
considered, which may lead to an incorrect offloading
decision. In addition, all above works ignored the
impact of offloading on execution time, which may
result in performance degradation. On the other hand,
S. Ou et al. [4] developed an offloading middleware,
which provides runtime offloading services to im-
prove the response time of mobile devices. Wolski
[7] used bandwidth data to estimate the performance
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improvement through offloading. Both works did not
investigate the energy consumption of uploading and
retrieving data, and may shorten battery life time.
Also, important timing-related factors were not con-
sidered, which can result in an incorrect offloading
decision. Because it is response time and energy con-
sumption that determine user satisfaction, we address
a multi-objective opmization problem that simultane-
ously optimizes these two key performance indexes
of smart phones.

In this work, we develop an offloading framework
which aims to shorten response time and reduce
energy consumption at the same time. Unlike pre-
vious works, our targets of execution include on-
board CPU, on-board GPU and cloud, all of which
provide a more flexible execution environment for
mobile applications. Since response time and energy
consumption may be two conflicting objectives, we
first design a customizable cost function, which allows
users to adjust the weight of response time and energy
consumption. We then develop a lightweight profiling
method to estimate the performance improvement
and energy consumption from offloading. In order to
make correct decisions, several key system factors are
considered when constructing cost functions. Finally,
an offloading decision is made based on the user-
defined cost function, estimated response time and
energy consumption.

The rest of this paper is organized as follows.
Chapter 2 introduces related works with computation
offloading, and some concepts for Android develop-
ment and GPU programming. Chapter 3 gives the
problem statements and terminologies for the later
chapters. Chapter 4 proposes the methodologies of
offloading decisions, and then Chapter 5 details the
implementation. Chapter 6 shows the experiment re-
sult and evaluation. Chapter 7 concludes this work
and offers directions for future work.

2 BACKGROUND

In this chapter, we first give a comprehensive compar-
ison between our work and related works. We then
introduce Android platform and OpenGL|ES, which
are used in our experiments.

2.1 Related Works

There have been many research efforts dedicated
to offload computation intensive programs from a
resource-poor mobile device [2, 3, 5-18]. Some of them
focused on energy saving [3, 5, 6, 8-13] while others
targeted at performance improvement. Only few of
them considered both energy saving and performance
improvement [19, 20]. For ease of reference, all these
works are summarized in Table 1, which are classified
into three categories: on energy saving, on time saving
and on energy and time saving. For each work, we

TABLE 1
Comparison of current offloading works

Offload
Paper Works [Reference #] Adaptability Portability Accuracy
Target
Partition Scheme [3] No Framework Low Cloud
Study Energy Tradeoffs [5] No Framework n/a Cloud
Component Migration &
No Framework | Medium Cloud
Replication [9]
E‘ Cooperative Dynamic Power
é No Framework n/a Cloud
% Management [11]
g Offload H.264 Encoder [13] No Framework n/a Cloud
=]
S Content-Based Image Retrieval
Yes Language Medium Cloud
[10]
MAUI Code Offload [8] No Framework n/a Cloud
Can Offload Save Energy[6] Yes Language Medium Cloud
Face-Recognize with GPU [12] No Language n/a GPU
Adaptive Offloading [2] No Framework Low Cloud
Effective Offload Service [17] No Framework n/a Cloud
Calling the Cloud [14] No Framework n/a Cloud
2 eyeDentify Cyber Foraging [15] No Framework n/a Cloud
]
& Heterogencous Auto-Offload
H No Framework n/a Cloud
=) Framework [18]
=
(=] Using Bandwidth to Make
Yes Language Medium Cloud
Offloading Decision [7]
VPN Gateway over Network Network
No Kernel n/a
Processors [16] Processor
E o | Computation Offload Scheme [20] No Framework | Medium Cloud
&
&z
g © | Energy Efficiency of Mobile [19] Yes Language n/a Cloud
2 g
5 F
c Our Work Yes Language High GPU, Cloud

further characterize it by four attributes: adaptability,
portability, accuracy and offload target.

The adaptability indicates the capability of the pro-
posed method to adapt itself efficiently to dynamic
workload, resulting from the variance of data input
at run-time. If the proposed method can only handle
deterministic workload, this shows its adaptability
is poor. The portability represents the ability of the
proposed method to be ported from one execution
environment to another, such as Linux to Windows.
The term Language/Framework/Kernel represents
the way we port the method to another platform. For
example, this work is Language level of portability
and need to do modifications in programming lan-
guage when moving to another platform. Methods
with Language portability are desirable because most
of the existing codes can be reused. The accuracy is
the approximation error of energy model or execu-
tion time model of offloading. The higher accuracy
indicates the fewer incorrect offloading decisions. For
this attribute, the works that did not develop any
execution model or energy model are labeled as n/a.
The offload target is the targets, which can execute
offloaded programs. The more targets we have, the
more flexible the execution environment will become.
According to Table 1, our work is the only one that
aims at saving both time and energy while maintain-

ing high adaptability, high portability, high accuracy
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and multiple offload targets. In the following, we
compare our work with each of related works in
detail.

Works On Energy Saving

Maximizing battery life time is one of the most crucial
design objectives of smart phones because they are
usually equipped with limited battery capacity. Z. Li
[3], S. Han [9], B. Seshasayee [11], and E. Cuervo
et al. [8] adopted profiling-partitioning technology
to identify offloaded parts of an application for en-
ergy saving. They first profiled the energy consump-
tion of each function of the application. According
to the profiling result, they then generated a cost
graph, in which each node represents a function to
be performed and each edge indicates the data to be
transmitted. The maximum-flow /minimum-cut algo-
rithm was then used to partition the cost graph to
obtain client parts and server parts. Finally, the server
parts were executed at remote servers for reducing
energy consumption of mobile device. G. Chen et al.
[5] designed a similar method to determine whether
Java methods and bytecode-to-native code compila-
tion should be executed at remote servers for energy
saving. In addition, they assumed that the workload
was deterministic,c, which means that the workload
will not vary at run-time. As a result, their methods
cannot be applied to dynamic workload, resulting
from the variance of data input at run-time. On the
contrary, in order to reduce profiling overhead, we
only profile the energy consumption and execution
time of frequently-used modules, such as FFT, IFFT,
convolution, matrix multiplication and so on. In ad-
dition, we take into account the impact of data size
on execution time and energy consumption in order
to handle dynamic workload at run-time.

X. Zhao [13], Y. ]. Hong [10], and K. Kumar [6] built
energy models to approximate the energy consump-
tion of offloading. The energy models can be used to
construct the above-mentioned cost graph or make of-
floading decisions. However, several key parameters,
such as workload dynamics, bandwidth variability,
and idle mode energy consumption, are not included
in their models, which may lead to inappropriate
partitions or incorrect offloading decisions. According
to our experiment results, our energy model ensures a
higher accuracy than previous works by considering
these key parameters. Y. C. Wang [12] demonstrated
the possibility of utilizing GPU for offloading. They
first identified bottlenecks of programs, and then used
OpenGLJES to rewrite and remove the bottlenecks.
However, CPU and GPU are usually integrated on the
same chip and cannot be switched off individually.
Without considering the idle energy consumption of
the chip, offloading programs to GPU may increase
the total energy consumption. Our work, on the other
hand, achieves a higher accuracy by modeling the idle
energy consumption. We also provide the ability of
offloading programs to GPU or Cloud.

Works On Time Saving

Responsiveness of mobile applications is important
because the mobile applications are usually real-time
and user-interactive. Many research efforts have been
devoted to offload part of a program to remote servers
in order to reduce execution time [2, 7, 14, 17]. Most
of them adopted above-mentioned similar profiling-
partitioning technology to identify the offloaded parts
of an application. Gu et al. [2] designed an offload-
ing engine that dynamically partitions an applica-
tion when the required resources, such as memory
and CPU, approach the maximum capacity of the
mobile devices. Yang [17] developed an offloading
service that dynamically partitions Java applications
and transforms offloaded Java classes into a form
that can be executed at remote servers. Giurgiu et al.
[14] developed an exhaustive search algorithm, called
ALL, to examine all possible partitions in order to find
an optimal partition. They also proposed a heuristic
algorithm to partition a program in reasonable time.
All these methods perform well on small-size appli-
cations, but may induce significant overhead when
partitioning large-size applications. On the contrary,
we only profile the energy consumption and execution
time of frequently-used modules in order to reduce
the overhead of profiling and partition. Unlike [2, 14,
17], R. Wolski dynamically predicted offloading cost
at run-time according to the feedback of a resource
monitor [7]. However, some important parameters,
such as workload dynamics and bandwidth variabil-
ity, are not included, which may lead to inappropriate
predictions and incorrect offloading decisions. Our
work, on the other hand, achieves a higher accuracy
by modeling these important parameters. According
to our experiment results, fewer incorrect offloading
decisions are made.

Several works developed offloading mechanisms
by integrating exiting software packages rather than
started from scratch [15, 16, 18]. R. Kemp et al. [15]
used Ibis middleware to offload computational inten-
sive Java programs to remote servers. Y. Zhang [18]
adopted Firefox plug-in framework to transparently
offload computations to remote servers. Since these
works are closely coupled with specific software pack-
ages, it becomes difficult to extend their methods to
other execution environments. Y. N. Lin [16] explored
the possibility of offloading programs to network pro-
cessors in order to reduce execution time. They first
profiled the IPSec module to identify bottlenecks, and
then rewrote IPSec-related kernel and driver code.
Although the performance improvement of network
throughput can reach as much as 350%, the energy
consumption of network processors may significantly
increase. In addition, a modification of OS kernel and
drivers is required, which reduces the portability of
the proposed method. In this work, we realize our
idea of offloading by developing a Linux program
at user space in order to increase the portability. We
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do not rely on any specific software packages. In
addition, we do not require any modifications of OS
or drivers. Our method can be easily ported to other
execution environments, such as Windows Embedded
Compact 7.

Works on Energy and Time Saving

Both energy and time saving are crucial design objec-
tives of smart phones. However, few research efforts
have been devoted to optimize the two objectives
simultaneously [19, 20]. C. Wang [20] used similar
profiling-partitioning technology to identify offloaded
parts and consider energy and time saving at the same
time. A similar method was developed by A. P. Miet-
tinen [19] to offload the most power hungry parts in
order to reduce energy consumption. However, both
of them use execution time of a program to approx-
imate its energy consumption. The estimated energy
consumption, without considering the parameters of
CPUs, may be incorrect. In this work, we provide
a higher accuracy energy and execution model by
considering important parameters of CPU and of-
floading targets. Our experiment results indicate that
the proposed method can achieve better performance
in saving energy and time.

2.2 Overview of Android Architecture

Android is a software stack for a mobile device that
includes an operating system, middleware and mobile
applications. After being acquired by Google, Android
has attracted thousands of developers attention for
its open license and flexible architecture. Android
OS is released under Apache 2.0 software license, so
that anyone can download, modify, and even redis-
tribute the source code. Because of its characteris-
tic of freedom, Android becomes a superb platform
adopted by both academe and industry. In addition,
Android also has already been ported to numerous
hardware platforms. Figure 1 shows the overview
of Android multi-layer structure, which includes five
layers: Applications, Framework, Libraries, Runtime
Environment, and Linux Kernel.

Android, using a modified Linux kernel, differs in
drivers and memory management, but it still keeps
the original advantages of robustness and efficiency.
Besides kernel, Android adopts Dalvik VM and Bionic
C library in order to adapt to resource-limited devices.

As Figure 1 shows, Dalvik VM is a light-weight Java
virtual machine, which runs applications at the top
level and application framework at the second level.
There are three differences between Dalvik VM and
traditional J2ME VM. First of all, unlike ]2ME VM,
each application running on Dalvik VM is associated
with one VM. Second, Dalvik VM is register-based
rather stack-based. Third, Dalvik VM only accepts
Dalvik executable format. Similarly, Bionic Libc is a
modified version of GNU Libc with some perfor-
mance optimization, but it still remains the original
characteristics of variety and multifunction.

Applications

. iz ™ /HD Movie Image >\ /
A /) N Player) N\ Transfer / |

Application Framework

: Activity ) | Window ) (View System)
\Manager / \_ Manager / \_ J X
Libraries Android Runtime
[ Bionic Libe Core Libraries
AT ("~ Dalvik Virtual
[ OpenGL[ES //\ Machine ,/
] | o ¢ Ja ;
o Linux User Space &

Linux Kernel (oo )

GU N Power ) (= D £
( Drivers ) | | | File System |
A _/ \Management/ \__ y |

Fig. 1. Android Architecture

However, although Dalvik VM is a light-weight
VM, running programs on a virtual machine can
induce performance degradation. As a result, our
computation modules are implemented at Linux user
space (the dotted block) in order to avoid the inter-
ference caused by the virtual machine.

2.3 OpenGLI|ES

OpenGL|ES, a Khronos-developed graphics standard
of embedded system, is derived from OpenGL. Nowa-
days, almost every smart phone supports OpenGL|ES
as a rendering engine. However, some of them only
support OpenGL|ES 1.x, which can only perform
fixed pipeline function. Fortunately, many new GPU
chipsets now can support OpenGL|ES 2.0, shown in
Figure 2. Since the functionalities of OpenGL|ES 2.0
are more powerful than the OpenGL|ES 1.x, we focus
on OpenGLIES 2.0 in this work.

Vertex Buffer
Objects

— [Primitive Vertex Shader —p- MV g Rosterizer
Processing Assembly '|
APl \ . y )\ )

[ . Colour Buffer (
H Depth Stecil —D{ Blend -

Fragment

Shader Dlther

=P Frame Buffer

Fig. 2. OpenGL|ES 2.0 programmable pipeline

Figure 2 gives an overview of graphics processing
flow in GPU. The vertex shader provides a pro-
grammable method to operate vertex, usually for
projection or lighting. To operate vertex, developers
need to write shading program [21], similar to C,
and compile the program as vertex shader. Then,
each time we feed vertex shader with vertices, the
shader will calculate the result and then transmit it
to primitive assembly blocks. The fragment shader is
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to operate fragments, which is produced by previous
vertices, usually used for painting. Because of the flex-
ibility of shader program, some works [12] offloaded
general-purpose computation onto GPU. In this work,
we implement a matrix multiplication module by
OpenGLIES 2.0 shading language.

3 PROBLEM STATEMENT

We design an offloading framework for smart phones
to determine an execution unit, such as CPU, co-
processor, or cloud, for frequently-used modules. In
the following, Section 3.1 first describes each model
of mobile application, CPU, coprocessor and cloud.
Then, Section 3.2 gives the problem statement.

Application
PP call module))
Software
Module
‘ CPU ’ Coprocessor Imi\lr;:cv:g(ar d - —Netwlork
[ P (e P | |
f ‘ |
Hardware |
‘\ / Cloud &
Mobile System

Fig. 3. Factors in System

3.1 System Model

Mobile applications usually adopt frequently-used
modules, such as FFT, convolution, and matrix mul-
tiplication, to process data. As Figure 3 shows, the
application first involves a module to process data
with input size of input Nj,pu:, Which is stored in
the memory. The data is then processed by CPU, co-
processor or cloud. After data processing, the output
data, with size of output N,yipy: , is stored in the
memory. The bandwidth of memory access is fimem,
at which the data is read from or written into the
memory by CPU, coprocessor or network interface.
If the data processing is offloaded to the cloud, the
transmission speed is B. We use .y, to denote the
speed of CPU, i, to denote that of coprocessor and
tteid to denote that of cloud. In addition, the power
consumption of CPU is P.,,, of coprocessor is P,y
and of network interface is P,;. . When the system is
idle, its power consumption is Pyggic.

From these decision factors, the cost functions can
be calculated. Both time and energy functions have
estimation value (Tmmet, Etwget) and measurement
value (Tiargets Etarget) for evaluating the accuracy.

TABLE 2
Notation table
Cost Function Definition
target Major unit for computation, e.g. CPU/Coprocessor/Cloud
T,a,gw Measured execution time when offload to target
Alarggl Estimated execution time when offload to target
Emgu Measured energy consumption when offload to target
Atww Estimated energy consumption when offload to target
F/nrgm ={ f;wgl ,E,arw } Set of time and energy equations on target
fe Decision function with weight «
Decision Factor | Unit Variable | Definition
B Kbps [¢] Transmission bandwidth
l‘wm/, Second [} Module execution time on mobile CPU
N”,W KB [} Amount of processing data into processing unit
Nm”pm KB (0] Amount of resulting data from processing unit
Hepu MHz X Mobile CPU speed
Heop MHz X Mobile Coprocessor speed
Mo MHz [¢] Cloud speed
Hoem Mbps (0] Memory access bandwidth
basic Watt X Basic power when idle
opu Watt X Mobile CPU running power
Pmp Watt X Mobile Coprocessor running power
P, Watt X Network Interface power consumption

Finally, the decision function f* decide where to
offload with user’s preference «. Table 2 lists all cost
functions, decision factors, and their definitions.

3.2 Problem Description

Problem statement:

Given decision factors B, tcomp, Ninputs Noutputs
Hepur Heopr Heldr Hmems Pbasicr Pcpu/ Pcopr and Pnicr
design a decision function f®, where « is user’s pref-
erence, to choose the best one from three offloading
cases: Fepy, Feop, O Fgq, to execute module, aims
to improve performance of module while conserving
energy. Assume no queues, i.e., single tasking.

4 TIME-AND-ENERGY AWARE TERNARY
DECISIONS

In this chapter, we first give an overview of our of-
floading framework, which is called time-and-energy
aware ternary decision (abbreviated as TETD), and
then present factor measurement and ternary decision
making respectively.

4.1 Overview of the TETD Flow

Our offloading framework includes two parts: factor
measurement and ternary decision making. As Figure
4 shows, when a module is invoked, TETD first check
the associated factor table of the module, which stores
necessary parameters to estimate energy consumption
and execution time. If the factor table does not exist,
TETD execute the module on CPU directly and create
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Fig. 4. Design flowchart of TETD

a corresponding factor table for future need. On the
other hand, if the associated factor table is found,
TETD extract necessary factors from the table and
pass the information to the cost functions. Based on
the result of cost functions, the decision maker then
determines whether the module should be offloaded
or not. After the module is finished, TETD write
run-time collected information back to the associated
factor table for future use.

4.2 Create and Update Factor Table

In order to correctly estimate the energy consump-
tion and execution time of a module on different
execution units, we dynamically create and update
a factor table for the module at runtime. A factor
table is created when the module is involved at
the first time, and is updated when the module is
finished. If the same module is invoked again, we
refer to its associated factor table to estimate the cost
of offloading. The factor table stores both static and
dynamic decision factors. The static decision factors
include pcpu, tieop, and power parameters, which are
deterministic and module independent. The dynamic
decision factors include B, Ninput, Noutputs fhelds tmems
and tcomp, which are uncertain or module dependent.
For dynamic decision factors, we develop a monitor
to collect the information at run-time and update the
associated factor table when the module is completed.

4.3 Ternary Decision

In this subsection, we first discuss the execution time
and energy consumption of a module when it is
executed on three difference execution environments:
local CPU, local GPU and cloud. We then introduce
the algorithm used for making decision.

Cost Functions: Execution Time and Energy Con-
sumption

First of all, we consider the execution time of a
module, which is executed on a local CPU. We divide

the execution time into two parts. The first part is
transmission time t;.qns, Which is used for fetching
data from and writing them back to memory. Since
tirans depends on the amount of processed data, we
have

Ninput + Noutput

Hmem

ttrans -

The second part is pure computation time tcomp,
which is used by the CPU to execute tcomp codes.
Therefore, the execution time is

Tcpu = tirans + tcomp~ (1)

In our experiments, fmem is set by run-time measur-
ing. In addition, t.om, is obtained by Tcpu — tirans-
Based on Eq.(1), the energy consumption of the local
CPU is calculated by

Ecpu = (Pbasic + Pcpu) X Tcpu- (2)
Similarly, when the module is executed on a local
GPU, the execution time T¢,), is

N t X
Tcop = tyrans + w~ (3)

Hecop

Also, the energy consumption E.,, is
Ecop = (Pbasic + Pcop) X Tcop- (4)

After considering the above two cases, we now dis-
cuss the execution time and energy consumption in
the case of offloading to the cloud. We defined 7.4 as
the execution time of the module when it is offloaded
to the cloud. In order to calculate 74, we first deter-
mine the amount of data to be transmitted by

o= |—Ninput + Noutput
MTU

in which MTU stands for the maximum transmission
unit. Also, the ACK packets used during the trans-
mission is determined by

1 x (DATA Packet Size), (5)

N; + N,
ack __ input output .
o =7 UTT 1 x (ACK Packet Size). (6)

Then, 1,4 is calculated by

Tdd _ o+ oack N o+ ogack n tcmnp + Uepu ) (7)
Hmem B Meld

In Eq.(7), the first term on the right hand side is the

time spent for fetching data from and writing them

back to memory. The second term is network trans-

mission time. The third term is the time spent on the

cloud. The energy consumption is then determined by

R o+ O.ack o+ O_ack
Ecld - (Pnic + Pbasic) X ( Limem B )
t +
+Pbasic X (w)a (8)

Held

in which, P,;. is the power consumption of network
interface.
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Procedure Decision_Maker (f”)

@ E,, E,, T

cpu cop cld

(1) T , T T 3) 0" a”1
apur L

Input: opr Ll

Output: execution unit

Procedure:

(1) Initialize MIN_VALUE to zero
Initialize TARGET to CPU

(2

While there is offloading target P do

EP - Ez,m

P
and &p = =

P TP _T:[ru
Calculate &p = ~
epu epu

1f MIN VALUE < a-& +(1—a)-&)

P P
Set MIN VALUE to a-& +(l-a)-&;

Set TARGET to P
End If
End While
(3

Return TARGET

Fig. 5. Pseudo Code of Decision Maker

Decision Making

At run-time, we dynamically measure the value of
teomp, Ninputs Noutput, and B. According to the col-
lected information, we then use the above-mentioned
equations to predict the execution time and energy
consumption of the module when it is executed in
different execution environments. A compound ob-
jective function is developed for user to adjust the
importance of time and energy. As Figure 5 shows,
we calculate the value of the objective function in
different cases (line 3, 4 and 5) and take the minimum
as the offloading decision.

5 IMPLEMENTATIONS

In this chapter, we first introduce the device under test
(DUT). We then describe the methods used to measure
bandwidth, component speed, computation time and
power consumption respectively.

5.1

We adopt HTC Nexus One, a popular and powerful
smart phone, as our DUT. The Nexus One quips with
a Qualcomm QSD8250 1GHz processor, a 512 MB
Flash ROM, a 512 MB RAM and a Wi-Fi IEEE 802.11
b/g interface. The operating system used in the Nexus
One is Android 2.2. We implement our offloading
framework in C language on user space so that it
can operate without any privilege-restrictions and be-
comes more efficient. Our user-level implementation
can be easily ported to other operating systems, such
as Windows Embedded Compact 7.

Device Under Test

5.2 Factor Measurement

Wireless Bandwidth: B
As mentioned in the previous chapter, the wireless
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Fig. 6. ICMP Request & Reply with Payload Size 6000
bytes

bandwidth B is a crucial decision factor in our of-
floading framework. In order to adapt to environment
changes, we dynamically measure the transmission
bandwidth at run-time. Many tools have been devel-
oped to measure the transmission bandwidth. Some of
them are platform dependent, such as Iperf and ttcp,
while others are platform independent. To make our
method easily applicable to all Android smart phones,
we use the popular utility ping, located at the folder
/system/bin, to measure the network bandwidth. For
each measurement, the ping utility first sends the
packets of ICMP-Request from the Nexus One to the
cloud and then receives the packets sent back by the
cloud. In our experiment, we use the command
"ping -c¢ 10 -s 6000 -i 0.1 cloud” to issue 10 ICMP
requests, in which the amount of data to be sent is
6000 bytes and the wait interval between sending each
packet is 0.1 sec. As Figure 6 shows, the measurement
starts at time ¢; and stops at t;. For each ICMP
request, it needs four IP packets and one ICMP packet
because the maximal size of the data in the Ethernet-
frame is 1500 bytes. Similarly, four IP packets and
one ICMP packet are required to send an ICMP reply
back to the Nexus One. If t>-t1 is 100ms, the network
bandwidth is approximated by

(4x15144+1x122) x 2x 10 x 8
to — 11

B =

= 9894 Kbps.

Component Speed: [icpy, [icop [eld, mem

In our experiments, we obtain the local CPU speed
ttepu and the local GPU speed picop by referring to
datasheet. On the other hand, we measure the cloud
speed cld and memory bandwidth p,em at run-time.
In order to estimate 1.4, we ask the cloud to measure
the time t.;4 spent in executing the offloaded program.
Then, we calculate ficiq by teia = (tcomp/teid) X fepu-
The memory bandwidth is estimated by measuring
the time of accessing a large amount of data stored
in the memory. For example, if it takes 20ms to
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Fig. 7. (a) Energy Measurement in Android (b) Exam-
ple of Measured Value

read 1,000,000 16-bit integers from the memory, the
memory bandwidth pmenm is estimated by
1,000,000 x 16(bits)
20(ms)

= 800 Mbps.

Computation time: tcomp

As mentioned in Chapter 4, t.om, represents the pure
computation time used by the CPU to execute codes.
We calculate tcomp by

tcomp = Tcpu — Lerans)

in which T¢, is the total execution time and trqns
is the memory transmission time. In order to ob-
tain T¢p,, we insert the Android-supported function
clock_gettime() at the beginning and the end of the
program, and then calculate the difference. The value
of tirans is obtained by

Ninput + Noutput

Hmem

ttrans -

The definition of tcom,p is similar to “worst case exe-
cution time” and only those regular computations are
worthy to be offloaded.

Power: Pbasim Pcpua Pcop7 Pnic

Due to the hardware limitation, we are not able to
measure the energy consumption of each compo-
nent directly. Instead, we design four different sce-
narios: 1) idle system, 2) execute CPU-bound work-
load, 3) execute GPU-bound workload, 4) send a
large amount of data to the cloud, and use an
Android daemon-maintained battery log, located at
/sys/kernel/debug/battery_log, to obtain power in-
formation. As Figure 7(a)(b) shows, the Andriod dae-
mon updates voltage, current and power information
every 50 sec. Compared to other profiling methods,
our method has two advantages. First, it is available
on all Android smart phones. Second, no extra hard-
ware equipment is required, such as data acquisition
(DAQ) card.

In scenario 1, we close all unnecessary user pro-
grams and keep the system idle for a while. Figure
7(b) illustrates a battery log of system idle. Based
on the log, the energy consumption of the system in

[400s, 450s] is
3796 x 766400 — 3795 x 763300

=12. h.
1000 x 1000 p3miv
Therefore, we have Py,qic
12.53mWh
P asic — T~ 1. — 2 .
b 50 seconds 02 mW

A similar approach is used in other scenarios. In
scenario 2, we execute a CPU-bound program to
make the CPU busy. In scenario 3, we execute an
OpenGL|ES 2.0 program on the GPU and keep the
CPU idle. In scenario 4, we send data to the cloud for
a long period. The measurement results are listed in
Table 3.

TABLE 3
Power Values in Nexus One
Phasic P Peop Puic
power (W) 0.886 1.539 1.056 2262

6 EXPERIMENT AND EVALUATION

In this chapter, we first introduce the experiment envi-
ronment. Next, Section 6.2 measures the overhead of
the proposed decision framework. Finally, Section 6.3
and 6.4 adopt two case studies, matrix multiplication
and virus scanning, to evaluate the proposed method.

offload_to_cloud(vs, file)

lood
(load___
I

load!

‘ matrix_mult(data) | | clamscan(file)

signature Database Virus Scanning

o, data s, il

Select Service

| user space ‘

|
! i kernel space [
|

sttt
s

y Y
‘ SEELioe | MOMAWEIY UoIsPag

Cloud |
> offload._to_
T Matrix |
user space ! ‘ )
| } I — Function call
kernel space M I ‘
‘ GPU driver ‘Wi—FiDr\ver &J:::: ::::74 — -~ Data path

Nexus One

Fig. 8. Experiment Environment

6.1 Testbed

Figure 8 illustrates the experiment environment,
which includes a Nexus One smart phone and a cloud.
In order to eliminate uncertainty and unpredictability,
we set backlight always on and close unnecessary
processes. We implement our decision framework on
the Nexus One and install virus scanning and ma-
trix multiplication applications for experiment. Each
application has one or more functions, which can
be offloaded to the cloud. A PC with 2.4-GHz Intel
processor and 4-GB RAM is used to simulate the
execution environment of cloud, and the operating
system of the cloud is Linux 2.6.35.
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6.2 Evaluation of Decision Framework

In order to understand the overhead of our decision
framework, we measure the execution time and en-
ergy consumption of each function respectively. As
Table 4 shows, creating factor table and collecting
factors consume significant energy if the factor table
does not exist. For example, the function Create Factor
Table consumes 43.03% of total execution time and
33.79% of total energy consumption. On the other
hand, if the factor table is already created, most of
time (98.54%) and energy (98.99%) are spent in the
Collect Factor. Since the function Create Factor Table is
only executed once, the function Collect Factor dom-
inates the overhead of our decision framework. We
further breakdown the energy consumption of the
function Collect Factor. As figure 9 shows, collecting
the information of bandwidth consumes most of time
and energy. This overhead is induced by the ping
program and Wi-Fi driver, which can be further opti-
mized in the future.

TABLE 4
Proportions of Time and Energy in Decision
Framework
Factor Table Exist? No Yes

Functions Time Energy Time Energy
Create Factor Table 43.03% 33.79%
Collect Factors 56.14% 65.53% 98.54% 98.99%
Build Cost Functions 0.32% 0.25% 0.55% 0.38%
Make Decision 0.20% 0.16% 0.34% 0.24%
Update Factor Table 0.32% 0.27% 0.56% 0.39%

Total 1641 ms 3135 mJ 935 ms 2075 mJ

Collect Factors - Time Proportion Collect Factors - Energy Proportion

Initialize Factor Structure
0.29%

/\ 0.41%

mport Factor Tabld

Initialize Factor Structure
0.74%

: /\ 1.04%

import Factor Tabl

Collect Band
99.29%

Fig. 9. Proportions of Time and Energy in Collect
Factors

6.3 Case Study: Matrix Multiplication

Matrix multiplication is a CPU-intensive module,
which has been widely used in the applications of
encoding, decoding, image compression and rotation.
In order to evaluate the energy consumption, we
implement three versions of the matrix multiplication
for different execution environments. One is for the
execution of local CPU, another two are for local GPU

and Cloud. In the version of local CPU, it includes
three steps: reading data, processing the multiplica-
tion and storing the results. As mentioned in Section
2.3, we implement two programs in the version of
GPU. One is vertex shader and another is fragment
shader. Whenever the function offload_to_gpu() is in-
voked, this function first communicates with the GPU
driver and compiles shader codes in to the executable
format of GPU. The data are then feed to GPU and
written back to the buffer pBuffer after they are pro-
cessed. The function offload_to_gpu() finally terminates
the communication.

In order to offload computation to the cloud, on
the smart phone, we implement a function, named
offload_to_cloud(), to send offloaded data to the cloud.
On the site of cloud, another service is deployed to
receive the offloaded module and forward them to a
proper function. As shown in figure 8, for the matrix
multiplication, the module is first forwarded to the
function matrix_mult(). Then, the results are sent back
to the smart phone.

Estimation Accuracy

This subsection evaluates the accuracy of our method
in approximating the execution time of an offloaded
module in difference execution environments. We first
measure the execution time of the offload module
by varying the matrix size. We then compare our
estimated execution time with measurement data.

Time (s)
20

Matrix Computation Time - 3G network

Hon CPU ®on GPU DOon Cloud

10 ] ~|

g

180 200 220 240 260 280 300 320 340

Size of Matrix

Fig. 10. Matrix Multiplication via 3G network

In this work, the network system for experiment is
Wi-Fi instead of 3G network. This can be explained
from figure 10 that the speed of 3G network is too
slow, and cannot express the power of cloud comput-
ing. Then, we choose Wi-Fi as network media.

Figure 11(a) shows the measurement results of ex-
ecution time, in which the x-axis is the size of matrix
and the y-axis is the execution time. For example,
in the case of 320x320, the speedup can achieve 1.27
and 3.89 when the computation is offloaded to local
GPU and the cloud. Figure 11(b), similarly, shows the
measurement results of execution energy, in which the
x-axis is the size of matrix and the y-axis is the energy
value.

We define the error rate of execution time as

Tar et — Tar e
err(target) =| —L219¢L a9t | yorget € {C PU, GPU, Cloud},

Ttarget
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Fig. 11. Matrix Multiplication (a) Time (b) Energy Cost

in which Tmmet is the estimated execution time, which
is obtained by the equations mentioned in Chapter 4.
As figure 12(a) shows, the error rate becomes larger
when the size of matrix is smaller. This is because
the overhead of OS context switch cannot be ignored
when the execution time of matrix multiplication is
short. The same method can be used in energy evalua-
tion and the result is shown in figure 12(b). According
to our experiment results, when the size of matrix is
larger then 80, the error rate is less than 20%.

60%

—&— err(CPU)
—#@— err(Cloud)
err(GPU)

e

\ Time Estimation Error Rate

40%

-2y
‘ \'\\./'\,,/‘\'-' N

Error Rate

0% +————— ==
40 80 120 160 200 240 280 320 360

Size of Matrix

60%

—&— err(CPU)
—&— err(Cloud)
err(GPU)

/'\-\./-\.\./,L-

20% //-\(
SN

0%

Energy Estimation Error Rate

40%

Error Rate

40 80 120 160 200 240 280 320 360
Size of Matrix

Fig. 12. Matrix Multiplication (a) Time (b) Energy
Estimation Error Rate

Decision Accuracy
Since the error rate can result in an incorrect offload-
ing decision, we define the false decision rate as

# of correct decisions

false decision rate = 1 Zof decisions
In our experiment, we vary the value of alpha in
0.0 to 1.0 and fix the matrix size in 100, 200, and
300. As figure 13 shows, when the matrix size is
100, false decision rate is nearly 40% when alpha is
0.8. This is induced by closed estimation values of
processing units. In other words, when matrix size
becomes larger, the false decision rate is smaller. For
example, when alpha is 0.6, the false decision rate
of size-300 matrix and size-200 matrix are smaller
than that of size-100 matrix. Although our decision
function cannot always deliver the optimal decision,

it ensures the execution time and energy consumption
can be reduced after offloading modules.

40.00%

—8— Size=100
—&— Size=200

\ Size=300

20.00%
10.00% -
y Y
—_—————

0.00% -

30.00%

False Decision Rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 13. Matrix Multiplication False Decision Rate

Compared with other works, our decision method
also delivers the best performance among all works.
For instance, in the case of size-300 matrix, the pre-
vious works focusing on saving execution time will
always offload the computation to the cloud. In addi-
tion, the previous works focusing on reducing energy
consumption will always offload the computation to
the GPU. All these methods cannot satisfy user’s
expectation, and can result in high false decision rate
because of selecting the worst module.

% Lo o oo adt s 0%

04 06 08 10| Alpha

04 06 08 10

Alpha 00 02 Alpha 00 02

Fig. 14. False Decision Penalty of (a) size-100 (b) size-
200 (c) size-300

The penalty bring from false decision are shown in
figure 14, in which the x-axis is the alpha value and
y-axis is the penalty, i.e. the sum of time error rate
and energy error rate, from wrong decision. The term
“hybrid” is TETD and works very well in different
sizes with low penalty. The other two methods, i.e.
time-only and energy-only, are usually suffered from
high penalty since they only considered the partial
of user’s preference.

Evaluate Decision Overhead

We have analyzed the overhead of our decision frame-
work in Section 6.2. Now we are going to evaluate the
impact of the overhead on energy and time reduction.
According to our experiment results, when matrix size
is 100, the execution time is 197 ms if the module is
executed on the local CPU. On the other hand, the
execution time becomes 118 ms if it is uploaded to
the cloud. Since it takes extra 953 ms to complete the
execution of the proposed method, the total execution
time becomes 1053 ms when the module is offloaded
to the cloud. In this case, performing local computa-
tion is much better than offloading the computation
to the cloud. According to our experiment results, in
order to save energy and time by offloading, the size
of matrix size should be larger than 250.
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6.4 Case Study: Virus Scanning

Virus scanning becomes more and more important for
mobile phone. A typical virus scanning process on
the mobile device includes three steps. First, the anti-
virus program loads a signature database from flash
ROM or remote server. Second, it reads the scanned
file. Third, it compares the content of the scanned file
and the signature. Unlike the matrix multiplication,
scanning two files with the same size may consume
different time and energy because of the file contents
are not the same.

In our experiment, we ported the well-known
anti-virus program ClamAV to Android, and install
the same version of ClamAV in the cloud. Similar
to the previous case study, we implement one
native module clamscan() and one offloading module
offload_to_cloud() on the mobile phone. The service
name is vs (virus scanning). Also, cloud provides a
service clamscan() to receive the file and return the
result.

Estimation & Decision Accuracy

To validate the availability of our decision framework
on virus scanning, we use three files for testing. One is
mediaserver, which is an 5KB-size executable file in An-
droid system. Others are two linkable libraries libffm-
pegsumo.so and libpdf.so, which are used by Google
Chrome browser. Table 5 lists the experiment results,
including the execution time and estimation error
rates for each program. According to our experiment
result, our decision framework performs well, even
in the case of two targets only (CPU and cloud).
Therefore, the proposed method is flexible and can
be applied to multiple offloading targets.

TABLE 5
Virus Scanning Execution Time and Error Rate

File Size Tepu (MS) | Tgq (ms) | err(CPU) | err(Cloud)
/system/bin/mediaserver 5KB 400 90 0.17% 10.31%
libffmpegsumo.so 2MB 1,274 3,320 0.07% 9.66%

libpdf.so 15MB 6,029 22,035 0.02% 11.58%

In particular, the estimated execution time in local
CPU is highly accurate since the error rate is less
than 1%. In addition, the error rate in estimating
cloud execution time is low, which is 10% in average.
These lower errors rates deliver lower false decision
rates, which are almost 0% among different alpha
values.

Benefits from Offloading

As table 5 shows, virus scanning can benefit from
offloading only if the file size is small. In the case
of offloading a large file, such as libpdf.so is 15MB,
both the execution time and energy consumption are

increased. This is because file transmission consumes
significant time and energy consumption. The situa-
tion becomes worse in a low speed 3G network. Refer
to Table 4, the TETD overhead of mediaserver is 935
ms, which is not worthy to offload. Hence, for mobile
devices, computation offloading may not be always
suitable for virus scanning applications.

7 CONCLUSIONS AND FUTURE WORK

In this work, we design and implement a decision
framework for computation offloading. The decision
is based on estimated execution time and energy
values. We aim to save both execution time and
energy consumption at the same time. Unlike pre-
vious works, which consider only binary decisions,
our ternary decision is suitable for multiple offloading
targets.

In our experiment, we present two case studies to
validate the applicability of different situations. Based
on our decision framework, the matrix multiplication
module tends to be offloaded to more powerful pro-
cessors, such as local GPU or cloud. By offloading
modules, we can achieve about 20~300% saving in
execution time and 50~130% in battery usage. For
the case of virus scanning, offloading either small or
large files cannot reduce energy and time. As a result,
the virus scanning program should not be offloaded
to cloud. Our results also demonstrate high accuracy
and false decision rates of the proposed decision
framework. Generally speaking, the error rate is less
than 20%, and false decision rate is less than 30% in
most cases.

In the future, we plan to implement a light-weight
ping function in order to reduce the overhead in
collecting bandwidth. Moreover, we will adopt more
wireless technologies, such as LTE or WiMAX, and
more applications to evaluate the proposed offloading
decision. Since our method assumes there is single
tasking in handheld devices, if there are more tasks
running on devices simultaneously, our method might
be invalid.
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