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學生：江易達                                指導教授：林盈達 
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摘 要       

 

在網際網路中，殭屍網路是一個很嚴重的威脅。為了要偵測殭屍網路，我們需要一

個有效率的方法來分析他的行為。然而殭屍可以用混淆程式，輕易的改變其二進位程式

碼，因此重複分析同種類的程式會浪費許多時間。目前已有人提出分類演算法來解決此

問題，但這些方法大都不能正確分類混淆後的程式。因此我們提出一套方法來正確的分

類。首先收集其呼叫之系統函數序列，之後依據此序列計算最常共同子字串及間隔分布

計算相似度。同時利用片段辨識的方法增加辨識率。實驗顯示在分別不同樣本時，可以

達到 94% 的正確率，而對同一種樣本偽裝後，也有 90%能正確辨識為同一種樣本。 

 

 

 

 

 

 

 

 

關鍵字：殭屍網路、系統函數、最長共同子字串演算法  
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Abstract 

Botnet is a serious threat on the Internet. In order to find a way to defect botnet, we need 

an efficient method to analysis its behavior. However, bots can easily transform its binary 

code by obfuscation, and waste the time to analysis many different bots obfuscated from the 

same origin. Some classifying algorithms are proposed to solve this problem, but many of 

them cannot classify obfuscated bots well. We propose a method to classify them. First we 

collect the system call sequence of malware, then we calculating LCS and Gap shift 

distribution to decide the similarity of two samples. We also use Segment identification for 

improving the correctness. Experiment shows our algorithm can achieve 94% correctness rate 

on distinguish different samples, and 90% correctness rate on identifying class of bot variants.  
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Chapter 1 Introduction 

The Internet faces many security threats ranging from low-level attacks such as 

IP packet spoofing to high-level malicious activities such as Botnet. Botnet is an 

autonomous network that consists of compromised computers running software 

agents, commonly referred as robots or bots, under the control of an attacker. A 

bot-network is typically formed to conduct nefarious activities such as DDoS attack, 

e-mail spamming, stealing of information, and etc. These attacks cause concerns on 

the use of Internet and may lead to financial losses, so the detection and removal of 

Botnet is an urgent issue that we need to solve. 

Botnet Detection 

For the detection of botnet, one approach is to look at the aggregated traffic on a 

subnet and identify traffic patterns that characterize a botnet[1-4]. This is based on the 

assumption that bot agents of a same type usually bear similar traffic patterns in 

communicating with the command and control (C&C) thereof. The attack traffic (e.g. 

sending e-mail spam) from these bot agents shall also be similar if they follow the 

same design. As a result, one can identify the existence of a botnet by observing 

repeated patterns of suspicious traffic, which is indeed an important approach in 

botnet detection. However, network traffic analysis faces challenges from 

countermeasures such as traffic randomization, protocol obfuscation, the use of step 

stones, etc. Besides, it is not always possible to gain access to the traffic for the whole 

network due to privacy concern. In addition, the amount of the collected traffic can 

also place a huge burden on the analysis. 
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Analysis of Bot Agent Binaries 

The other approach for detecting botnet is to identify the bot agent binaries. One 

popular method is static binary analysis[5-8], which is widely employed in most 

anti-virus scanners. Here, static analysis can be as simple as comparing the hash 

values of the binaries or as complex as scanning for suspicious instruction sequences 

in a binary. For bot agents with well-known signatures, static analysis can be an 

efficient and effective way for their detection. However, obfuscation tools can easily 

fool static analysis. For example, ASProtect[9], Themida[10] and UPX[11] can 

replace the instructions of a binary to prevent any static analysis.  

For identifying bot agent binaries, one can also rely on dynamic analysis of 

binary[12-17], namely executing a binary and monitoring for suspicious activities 

such as calling privileged APIs or modifying system registry. Dynamic analysis can 

capture the runtime behavior of a bot agent even in the case when it is obfuscated. 

This is because obfuscation tool cannot rip or disrupt the runtime behavior without 

affecting the original functions of the obfuscated binary (the bot agent). However, 

dynamic analysis cannot guarantee that every possible execution path in a binary will 

be fully explored, and behaviors buried in those untaken paths will be ignored by the 

analysis. 

It is common to see variants of bot agents. In fact, the source code of many 

popular bot agents can be found and downloaded from the Internet. This fuels the 

creation of even more bot variants by people who are not skillful enough to write a 

bot agent from scratch. To deal with bot variants, a common practice is the use of 

classification techniques to group together bot binaries that bear similar characteristics 

/ features. This not only helps identify a new variant quickly, by knowing which 

characteristics one should look for, but also leads to more effective countermeasures 
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in responding to bot variants.  

Classification of Bot Binaries 

To address the problem of obfuscated bot agents and bot variants, we propose a 

new similarity-matching algorithm based on longest common subsequence (LCS). 

This method contains two steps: (1) system call sequence extraction by dynamic 

analysis; (2) system call sequence similarity metric using longest common 

subsequence. Because most bots still rely on system calls to interact with the 

underlying operating system in order to maintain binary portability and achieve 

pervasive infection, we believe the observed system call sequence will serve as a good 

feature for the follow-on classification process that is based on longest common 

subsequence similarity matching. Even though obfuscation tools can easily transform 

a program into different appearances for avoiding static analysis, they cannot hide the 

system calls triggered by the program. Therefore system call trace with dynamic 

analysis is a good method to classify unknown malwares. Experiment shows our 

proposed algorithm can get higher correctness rate on obfuscated bot binaries. 

The rest of this work is organized as follows. Chapter 2 mentions the evolution 

of Botnet and the analysis methods. Chapter 3 details the proposed similarity 

algorithm along with techniques to improve the classification accuracy. In chapter 4, 

we present an implementation based on our proposed algorithms. Chapter 5 describes 

the experiment environment, result, and discussion. Finally, chapter 6 concludes this 

work with some future research directions. 

Chapter 2 Background 

Botnet pulls bots together to initiate large-scale attacks. In this section, we give a 
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brief overview of the life cycle of botnet, including the injection of bot agents into 

victim computers, establishing connection to C&C server, and the attack stage. We 

also discuss related works on analysis and classification of bot binaries. 

2.1 Taxonomy of Botnet 

 

Fig. 1 Botnet Lifecycle 

A botnet typically consists of three operations as shown in Fig. 1: (1) injection, 

(2) establishing connections to C&C server and waiting for commands, and (3) 

launching attacks. During injection, bots are injected to computers on the Internet. 

The injection of a bot into a target computer can be achieved via exploiting a remote 

vulnerability of the computer, disguising the bot as a harmless e-mail attachment, 

including the bot in some software package that is likely to be downloaded to the 

target computer via P2P file sharing, and etc. After a bot is injected into a computer, it 

can soon start seeking for other vulnerable computers and infect those computers as 

well. In this case, the growth rate of a botnet is exponential.  

After a bot injects itself into a computer, it will attempt to establish a channel 

with the C&C server, which is often an IRC server. The attacker (bot herder) can then 

issues commands to or receives messages from the bots via the C&C. Fig. 1 shows 

how a botnet is formed from the C&C servers and the bots. To hide the location of the 
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bot herder, proxies (or step stones) can be used in-between the bot herder and the 

C&C server. Sometimes, a botnet will have more than one C&C servers. This 

prevents the botnet from failing in case the single C&C crashes or powers off. 

Once a botnet is formed, depending on the types of bots in use, different types of 

attacks such as e-mail spam, DDoS attack, click fraud, etc can be carried out by the 

bots on the botnet collaboratively. Unlike a traditional network attack, in which attack 

traffic originates from only a few hosts, botnet-induced attacks can involve attack 

traffic from thousands of sources, and that makes tracking and blocking the attack 

traffic much more difficult. Furthermore, the attack traffic from a botnet can be huge 

when the participating bots all launch attacks around the same time. For instance, the 

botnet formed by MyDoom[18] employs 160,000 computers to generate DDoS traffic 

targeting the web site of SCO. 

2.2 Overview of Bot Analysis 

As botnet is formed by bots, one way to look at the botnet is by analyzing its 

constituent bot. By understanding the internals of a bot, we can have a clear picture of 

not only how the botnet is formed but also the attack vectors associated with the 

botnet. 

For the analysis of bots, there are two different approaches: static analysis and 

dynamic analysis. Static analysis analyzes a bot binary without executing it. It 

typically involves dissembling the binary code, and then depicts its function call 

graph statically. E. Carrera, and G. Erdelyi[5] use graph isomorphism techniques to 

compare the call graphs from collected malwares, then use the comparing result to  

determines the similarity of collected malwares. Z. Liang, T. Wei, Y. Chen et al.[6] 

merge function calls into modules, these modules perform specific types of jobs, such 

as file modifying, registry modifying, and command handling. Q. Zhang, and D. 
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Reeves[7] look at specific patterns of assembly code and use the patterns to measure 

the similarity between malwares. The above works cannot handle obfuscated samples 

correctly, so S. Cesare, and Y. Xiang[8] design an unpacker that dump the original 

program from memory, after obfuscation tools restore it in memory for executing. 

Then they analyze this program for avoiding obfuscation. 

Static analysis is typically very efficient. They may explore all execution paths in 

a malware. However, this means that binary obfuscation[19] can easily fool the static 

analysis by incurring additional execution paths, and shuffling and twisting the 

execution paths in an obfuscated malware. They can also restructure the data variables 

and tables in a binary to confuse the static analysis further. The experiments in 5.2 

shows that some bots use obfuscation to hide themselves, and static analysis cannot 

identify them well.  

Dynamic analysis is the most effective solution in obfuscated malware analysis. 

U. Bayer, C. Kruegel, and E. Kirda[12] proposed a system named "TTAnalyze", 

which executes a malware sample inside a virtual machine and observes behaviors 

like file modification, registry modification and network access from the sample. A 

key challenge in dynamic analysis is that only those control paths that are actually 

executed will be analyzed. A. Moser, C. Kruegel, and E. Kirda[14] use speculative 

branch prediction to overcome this challenge. M. Bailey, J. Oberheide, J. Andersen et 

al.[13] measure the similarity between bot samples based on the result from dynamic 

analysis, but they only look at high-level information like file name, connected host, 

and registry, which is easy to be randomized in bot samples. C. Willems, T. Holz, and 

F. Freiling,[15] also use a virtual machine to conduct dynamic analysis on bot samples. 

They also provide a public web interface to their analysis environment, where people 

can upload suspicious malware samples for analysis. P. Trinius, J. Gobel, T. Holz et 



 

7 

 

al.[16] try to use a block diagram to present the system calls of a program, this 

diagram can help us to distinguish malware more easily. J. Li, M. Xu, N. Zheng et 

al.[17] collect system call sequence by hardware virtualization, then try to identify 

function blocks based on the patterns occur mostly. Their comparison is based on the 

blocks, but ours is based on the system calls and the arguments. 

2.3 Research Goal 

We propose a framework that unifies the analysis and the classification of 

obfuscated malware. We rely on dynamic analysis techniques to extract system call 

details of an obfuscated bot binary. We consider not only the system call IDs, as seen 

in previous work, but also the call arguments used in each system call to improve the 

resolution of our analysis. For the classification, we devise a similarity metric based 

on the longest common subsequences from the extracted system call information. 

Finally, we notice that obfuscation often relocates code segments in a binary. In 

evaluating the similarity metric, we adopt some heuristics to compensate for these 

relocations, which would otherwise decrease the classification accuracy dramatically. 

Chapter 3 Classification of Bot Binaries 

We found that many bot binaries are obfuscated at Sec. 5.2, the classification 

needs to rely on a similarity metric that is not sensitive to binary obfuscation. The 

similarity metric we employ is based on observing the run-time behaviors of bot 

binaries. Specifically, it relies on comparing the sequence of invoked system calls by 

the bot binaries during runtime. 

As system calls are crucial to the operation for bot agents, obfuscation cannot 

alter the invocations of the system calls that are critical to a bot agent's operation. On 

the other hand, according to our observation, the invoked system call sequences from 
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multiple runs of the same bot agent bear very little variation. As a result, comparing 

the invoked system call sequences can be used a reliable similarity metric for the 

classification of bot binaries. 

This chapter details the observations of system call and the similarity algorithm. 

We also proposed some heuristics for improving classification accuracy.  

3.1 Feature for Classification: Bot System Call Sequence During 

Injection Phase 

We capture the IDs of system calls invoked by a bot agent during its injection 

phase. The sequence of the system call IDs are sorted by the capture time. The 

sequence is treated as a feature for the bot agent and is used in determining the 

similarity between two bots. 

System calls invoked by a bot during the injection phase typically follows 

stereotyped pattern and is quite distinguishable. For instance, in the injection stage 

shown in Fig. 1, a bot usually hides its binary under %WINDIR%\system32 or other 

system folders, where users do not check routinely, and therefore a bot can have a 

better chance to avoid detection. Besides, a bot often modifies the auto-start entry 

point (ASEP) in Windows registry so that it can start automatically when the 

computer boots. Most of the steps in the injection stage are carried out by invoking 

the corresponding system calls (e.g. copying files and modifying registry entries). 

These steps are typical for most bot agents. On the other hand, it is very difficult for 

obfuscation to alter the system calls invoked by a bot as this would affect the 

execution of the bot. 

 



 

9 

 

Fig. 2 Segment of System Calls in Bot 

Typically, a bot’s system call sequence during the injection phase can be split 

into the four parts as shown in Fig. 2. In part A, Windows OS loader loads necessary 

DLLs, allocates the memory space and etc. In Part B, unpacking loader prepares an 

environment to execute the original program, like unpacking the compressed binary 

into the text segment. In part C, system calls are made by the underlying program. In 

part D, there are some system calls that are used to release allocated resource and exit 

the program. Different obfuscation tools (packers) can introduce different system calls 

in part B, but in order to maintain the functionality of the original program, part C 

always includes system calls made by the original program.  

It is very rare for a bot to employ multi-threading during the injection phase. In 

fact, none of the bots used in our experiment is seen to employ multi-threading during 

the injection phase. If multi-threading is observed, we choose the thread that has the 

most number of system calls and use the system calls in that thread as the feature for 

the bot. 

3.2 LCS Similarity of System Call Sequences 

For the classification of bot samples, the high level goal is to group known 

variants of a bot into a cluster (class), and when a unknown bot sample arrives, we 

can accurately identify the class it belongs to or, if no such class is found, confirm the 

sample as a whole new bot.   

There are two ways to create a variant of a bot. The first is to use binary 

obfuscation to create a differently looking bot binary. As obfuscation only adds 

system calls but not alters existing system calls in the bot binary, the system call 

sequence can be used reliably as a feature for the classification of bot variants created 

by obfuscation.   
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The other way to create a bot variant is to take the source code of an existing 

(ancestor) bot and modify the code to create the variant. Typically, the modification 

does not dramatically change the code structure of the source. Most of the time, only 

slight changes such as adding a new injection method, adding couple of new control 

commands, and adjusting of C&C communication parameters. As a result, the system 

call sequences between the variant and the ancestor shall be similar. Therefore, we can 

also rely on system call sequence to identify class of bot variants created by source 

code modification.  

The method in calculating the similarity between two system call sequences is 

based on their longest common subsequence. For two system call sequences X:

and Y: , where  and jY
 
are the IDs of system 

calls, the longest common subsequence LCS(X,Y) is a subsequence of both X and Y, 

and the length of LCS(X,Y) is maximized. 

The following formula is used to evaluate the similarity S(X,Y) between two call 

sequences X and Y:  

 
| ( , ) |

( , )
min(| |,| |)

LCS X Y
S X Y

X Y
  (1) 

The similarity S(X,Y) is the ratio of the maximal length of the common system 

call sequence to the length of the shorter sequence between X and Y. Since

, the value of S(X,Y) is between 0 and 1, where 1 means 

either X is a variant of Y, or Y is a variant of X. A threshold 
ST  will be used to decide  

two samples are similar or not.Although a very short sequence is possibly a 

subsequence of a long sequence, we can ignore short sequence as the number of 

system call invoked by a bot is usually over 500. 

1 2 3, , , , mX X X X 1 2 3, , , , nY Y Y Y iX

| ( , ) | min(| |,| |)LCS X Y X Y
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3.3 Improve the Accuracy of Similarity Calculation 

As shown in Fig. 2, obfuscation can introduce extra system calls and shift the 

system calls from the original program. If we simply take the system call sequence 

from an obfuscated bot, it is likely LCS similarity will incorrectly include those 

system calls introduced by the packer. Ideally, one should consider only system calls 

from segment C in Fig. 2 when calculating the LCS similarity, as the objective is to 

determine the similarity between the bots, which are packed within segment C. 

However, obfuscation has made accurate identification of segment C a non-trivial task. 

In the following, we present two heuristics that can be used to estimate the location of 

segment C roughly. We can then extract system calls from the estimated C segment 

and feed it to the LCS similarity calculation. 

Gap Shift Compensation 

When the LCS Similarity of two samples is high, there are another possibility 

that their system call sequence is interleaved. Because System call is a low-level view, 

if we insert many unrelated system calls between two system calls in the LCS 

sequence, the function will be very different, but the similarity is still high. We use the 

following method to solve this problem. 

After obtaining the LCS
1 2 3( , , , )lS S S S , we can find the original position of 

iS  

in X and Y. Let the position in X and Y are
1 2 3( , , , , )lp p p p  and 

1 2 3( , , , , )lq q q q , 

respectively. The gap shift sequence is the difference of the position

1 1 2 2 3 3( , , , , )l lp q p q p q p q    , if the values of this sequence are changed rapidly, 

it means the subsequence in X or Y is interleaved, whereas if the values are almost 

constant, the subsequence is almost continuous. 
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Fig. 3 The shift value chart of agobot original & agobot Themida 

Fig. 3 shows the change of subsequence position for agobot original (unpacked) 

sequence(X) and agobot obfuscated by Themida sequence(Y). The x-axis is the index 

of agobot original sequence. If the system call 
iX  is also present at jY , we mark a 

point at ( , )i j i  on the chart. This figure shows almost all system calls in agobot 

original exist in Themida obfuscated agobot, and the shift center on 20 and 870. This 

means additional system calls added by obfuscation are centralized. 
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Fig. 4 The shift value chart of Bodombot original & Breplibot origional 

Fig. 4 is two different bots, although almost all system calls in Bodombot also 

appear in Breplibot, but the shift value changes rapidly. We can use this property to 

conclude they are different bots. 

Let N be how many unique numbers in
1 1 2 2 3 3( , , , , )l lp q p q p q p q    , L  

is the length of subsequence, then we define the formula: 

 
N

R
L

  (2) 

If R is higher than a threshold 
RT , then the value in shift sequence is changed 

quickly, this two sample are likely different bots. With the formula (1) and (2) and the 

threshold, the follow criteria is used to decide two samples are similar or not: 

 

S

S R

S R

S T Different

S T and R T Different

S T and R T Same




 
  

 (3) 
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Segment Identification 

In Fig. 2, we can see that only the central portion (segment C in Fig. 2.) of the 

system call sequence is of relevance for similarity computation. Fig. 3 shows this 

behavior clearly. At first, the shift is about 20, this is because the OS will load 

different resource for different program, so their segment A has a little difference. 

Then the shift jumps to 870, so after obfuscated by Themida, Themida add about 850 

system calls before the segment of main program. 

 The system calls involved in other segments (A,B, and D) are common to 

almost all executable files. Hence we can cut those irrelevant segments and use only 

segment C in the similarity calculation. However, a small obstacle is that the system 

calls in segment B actually depend on the types of the obfuscation tools in use. So we 

have to build profiles for each different obfuscation tool in order to identify and 

remove segment B effectively from an obfuscated binary executable.  For an 

obfuscated binary, its segment B typically consists of file and registry related system 

calls such as NTCreateFile, NTDeleteFile, NTOpenFile, NTCreateKey, NTOpenKey 

and NTQueryValueKey). The arguments to these system calls follow certain patterns 

depending on the obfuscation tool in use. For example, Themida always contains the 

follow system call (in bold) and argument in Fig. 5: 
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To build the profile, we again use LCS to identify the common subsequence 

across binaries obfuscated by a given packer. After running LCS over a certain 

number of obfuscated binaries, the common subsequence that is left will include only 

segment A,B, and D. Since segment A and D are due to the standard OS loader and 

un-initialization code, we can manually trim them away and build the profile that 

contains only the isolated segment B for the given packer. The profile can later be 

used to remove segment B from an obfuscated binary. 

Chapter 4 System Implementation 

We implemented a system to capture the system call sequence of a running bot 

program and perform classification based on the captured call sequence against a 

database of known bot agents. In this section, we give an overview of the system 

    NTOpenKey 

\Registry\Machine\Software\Microsoft\Windows 

NT\CurrentVersion\Image File Execution 

Options\winmm.dll 

    NTOpenKey 

\Registry\Machine\Software\Microsoft\Windows 

NT\CurrentVersion\DRIVERS32 

    NTQueryValueKey wave 

    NTQueryValueKey wave 

    NTQueryValueKey wave1 

    NTQueryValueKey wave2 

    NTQueryValueKey wave3 

    NTQueryValueKey wave4 

    NTQueryValueKey wave5 

    NTQueryValueKey wave6 

    NTQueryValueKey wave7 

    NTQueryValueKey wave8 

Fig. 1 Part of the system calls of Themida 
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architecture and the execution flows. 

4.1 System Architecture 

The system consists of 4 components: (1) Controller, which coordinates the 

execution and analysis environment; (2) Recorder, which extracts the system call 

sequence from dynamically instruments a running bot program via PIN tools[20] and 

captures the system calls from a running bot binary; (3) Classifier, which classifies a 

bot sample by identifying similar bot samples from the database; and (4) Database for 

storing the system call sequences of bot samples known to the system. 

 

Fig. 6 Architecture Diagram 

Fig. 6 shows the execution flow among the function blocks. First, the controller 

fetchs a bot sample from the storage. It then invokes the recorder, which executes the 

bot sample with PIN. The recorder records all the system calls invoked by the bot 

sample during its execution. The name of the bot sample and the invoked system calls 

are stored in the database for subsequent classification. Finally, the classifier identifies 

known bots from the database that are similar to the one just analyzed. 

4.2 Recorder Implementation 

Dynamic analysis of a binary executable can be achieved in three popular ways. 

One is API hooking, in which system calls are intercepted and recorded by the hook 
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function (the recorder). This method only handles the coarse system calls and does not 

provide fine-grained details such as the processor instructions executed. API hooking 

can be detected by inspecting the Export Address Table(EAT) and Import Address 

Table(IAT)[21]. Bots with anti-analysis mechanism may quit its execution early on 

when hooks from malware analysis tools are detected. 

The other method is running the bot sample inside an emulator such as 

QEMU[22] and monitoring its behaviors via the emulator. Because the whole system 

is emulated, the monitoring can be done in fine-granularity at the instruction-level. 

However, some existing works[14] using this method needs to modify the source of 

an emulator. This limits them can only use open-sourced emulator like QEMU. 

The approach we use is binary code instrumentation. It dynamically instruments 

the monitoring code into a running binary whenever a certain condition is reached. 

(e.g. a system call is about to be invoked.). This approach does not involve 

API-hooking and runs much faster than the emulator-based approach as most of the 

time the binary is executed directly on the processor hardware. After the injection 

stage, some bots will create another child process for waiting commands, and stop 

itself. We do not continue monitor the child process because the system calls in the 

injection stage is enough to classify. 

 

Fig. 7 How PIN records system calls 

As shown in Fig. 7, when a program wants to invoke system call, it puts the 
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system call ID in the register EAX and the address of argument in register EDX. The 

program then uses SYSENTER instruction to invoke the syscall handler in the OS 

kernel. 

The just-in-time compiler of PIN can monitor SYSENTER instruction. We 

register a function to PIN by PIN_AddSyscallEntryFunction() API at callback_before , 

so that the Recorder module can know the program will invoke a system call. 

In the callback function, we use the following PIN APIs to get the information of 

the thread ID, system call ID, and system call arguments: 

Table 1 The PIN APIs used in the recorder module 

API name Purpose 

PIN_GetSyscallNumber Get system call ID 

PIN_GetTid Get ID of the thread that invokes SYSENTER 

PIN_GetSyscallArgument Get the N
th

 variable at the argument  

System call ID and thread ID can be directly stored in the database. However, the 

arguments need to be further processed according to the argument types (e.g. a pointer, 

an integer, a long integer, and etc.) Take NTQueryValueKey for example, its prototype 

declaration looks like: 

NTSTATUS ZwQueryValueKey( 

  __in  HANDLE KeyHandle, 

  __in  PUNICODE_STRING ValueName, 

  __in  KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass, 

  __out_opt  PVOID KeyValueInformation, 

  __in  ULONG Length, 

  __out PULONG ResultLength 

); 

In this system call, some of the variables are pointers (e.g. KeyValueInformation 

ValueName, and ResultLength), and some are integer values (e.g. Length). We only 

process those arguments of interest to our analysis. For instance, in this example, we 
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extracts the string pointed ValueName and ignore all the other arguments. The 

processed arguments will be stored along with the system call ID into the database. 

Chapter 5 Experimental Studies 

We design three experiments to verify our proposed algorithm and system design. 

First we evaluate the correctness rate of grouping same bots by applying our 

algorithm to same bot with different obfuscation tools. Then we measure the 

correctness rate of distinguish different bots by applying our algorithm to different 

bots with the same obfuscation tool. Finally we shows the execution time with and 

without our recorder module. 

To evaluate the correctness and efficiency of the proposed algorithm and overall 

system design, we implement a testbed and conduct the following two experiments: (1) 

10 random bot agents are chosen and obfuscated with ASProtect, Themida and UPX. 

We then feed the obfuscated bot agents to our classification system and measure the 

classification accuracy by counting the number of correctly classified bot agents, (2) 

estimating the execution overhead of PIN by comparing the running time of a bot 

agent with and without PIN. 
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5.1 Experiment Environment 

 

Fig. 8 Experiment environment 

In the experiment environment shown in Fig. 8, a database is used for storing bot 

agent binary executables and their system call sequences, which are later collected by 

the recorder module in Sec. 4.2. The controller module loads a bot agent from the 

database and runs the bot in a virtual machine running Windows XP. The recorder 

module then collects the system call sequence from the bot agent while it is running. 

The virtual machine (VM) makes it easy to fall back to a clean system state before 

processing the next bot agent. For the virtual machine, we use VirtualBox, which is 

free and comes with a command line interface (CLI) for controlling virtual machine. 

The CLI facilitates the experiment process as the instantiation of a clean VM can be 

automated via scripts. Inside the virtual machine, we use the version of Windows XP 

prior to service pack 1 to ensure the maximal compatibility with the bot being 

analyzed (e.g. DEP in Windows XP might prevent some of the bots from being 

successfully executed.). All the machines are connected to the Internet through a NAT 

firewall to prevent malicious traffic from the Internet to interfere with the experiment 

testbed while allowing bot agents to make connections to the C&C server. 

In Table 2, we presents 10 different randomly selected bot agents from 463 bot 
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samples. These 10 bot agents are packed with different obfuscation tools - ASProtect, 

Themida and UPX. This results in 40 test targets in total (10 original plus 10 from 

each obfuscation tool). 

Table 2 List of Bots used in the experiment 

Id md5 hash Kaspersky Sophos 

1 ea46b4606531d28474e06cb4cd060c71 Backdoor.Win32.Anibot.b Mal/IRCBot-B 

2 c1ed6261902ebc178f55159ca1b061b1  Backdoor.Win32.Afbot.a Mal/IRCBot-C 

3 d7b32cc7056f37eb8ccf0d1f472d8e5b Backdoor.Win32.Rbot.gen W32/Rbot-Gen 

4 fa29f9048e3b57705e97583d70f00ba1 Backdoor.Win32.Agobot.gen W32/Agobot-Gen 

5 f1f9f762f899a24a2d71a35c4b825db8 Backdoor.Win32.Rohbot.a Mal/Generic-A 

6 69fd63dade7cd4f8878c6e80084069fb Backdoor.Win32.Rbot.gen W32/Rbot-Fam 

7 4aac3724863070dc422ad0dc0a39a5af Backdoor.IRC.Botva.b  Troj/Bckdr-MPJ 

8 8a87d88714f2017e2cdd74912449e7cf Backdoor.Win32.DevBot.b Troj/DevBot-B 

9 c3207feb5160c71227dbd92cc3fe4e53 Backdoor.Win32.DaSBot.12 Mal/Generic-A 

10 0ce8ccbd76e6126ed10350fd70c37d98 Backdoor.Win32.PoeBot.a  W32/Poebot-Gen 

 

5.2 Static Analysis Experiment 

 

Fig. 9 PEiD analysis result 

In Fig. 9, PEiD is used for analyzing 463 bot samples. PEiD is a static analysis 



 

22 

 

tool for detecting the existence of obfuscation tool. From the PEiD scan, it finds that 

41.2% of the samples are obfuscated. This highlights the rampancy of obfuscated bot 

samples and justifies the need for better analysis and classification techniques in 

dealing with bots.  

Table 3 Static analysis result (AV engines v.s. obfuscation tools) 

ID Anti Virus Non-obfuscate

d 

ASProtect Themida UPX 

1 Antivir TR/Dldr.Small.c

af.3 

TR/Download

er.Gen 

TR/Crypt.TP

M.Gen 

TR/Dldr.Small.caf

.3 

Kaspersky Backdoor.Win3

2.Anibot.b 

N/D
1
 N/D Backdoor.Win32.

Anibot.b 

NOD32 Win32/Genetik Win32/Geneti

k 

N/D Win32/Genetik 

Sophos Mal/IRCBot-B Sus/Behav-32

5 

Mal/Behav-28

5 

Mal/IRCBot-B 

2 Antivir BDS/Backdoor.

Gen 

N/D TR/Crypt.TP

M.Gen 

BDS/Backdoor.Ge

n 

Kaspersky Backdoor.Win3

2.Afbot.a 

N/D Packed.Win3

2.Black.a 

Backdoor.Win32.

Afbot.a 

NOD32 Win32/IRCBot.

OY 

Win32/IRCB

ot.OY 

N/D Win32/IRCBot.O

Y 

Sophos Mal/IRCBot-C Sus/Behav-32

5 

Mal/Behav-28

5 

Mal/IRCBot-C 

3 Antivir EXP/DameWar

e.ggg 

TR/Download

er.Gen 

TR/Crypt.TP

M.Gen 

WORM/Rbot.21

0944 

Kaspersky Backdoor.Win3

2.Rbot.gen 

TR/Crypt.TP

M.Gen 

N/D Backdoor.Win32.

Rbot.gen 

NOD32 Win32/Rbot Win32/Rbot Win32/Rbot Win32/Rbot 

sophos W32/Rbot-Gen Sus/Behav-32

5 

Mal/Behav-28

5 

W32/Rbot-Gen 

4 Antivir BDS/Agobot.3.

200704 

N/D TR/Crypt.TP

M.Gen 

BDS/Sdbot.Q.Plu

s 

Kaspersky Backdoor.Win3

2.Agobot.gen 

N/D N/D Backdoor.Win32.

Agobot.gen 

NOD32 Win32/Agobot Win32/Agobot N/D Win32/Agobot 

sophos W32/Agobot-G

en 

Sus/Behav-32

5 

Mal/Behav-28

5 

W32/Agobot-Gen 

5 Antivir TR/Crypt.FKM.

Gen 

TR/Crypt.FK

M.Gen 

TR/Black.Ge

n2 

TR/Crypt.FKM.G

en 

Kaspersky Backdoor.Win3

2.Rohbot.a 

N/D N/D Backdoor.Win32.

Rohbot.a 

NOD32 unknown 

NewHeur_PE 

N/D N/D unknown 

NewHeur_PE 

sophos Mal/Generic-A Sus/Behav-10

21 

Mal/Behav-28

5 

Mal/Generic-A 

                                                 

1
 N/D means not detected 
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To show how obfuscation can easily fool state-of-the-art static analysis, we use 

Jotti's malware scan to scan the sample #1 to #5 at Table 2. Jotti integrates multiple 

scan engines. All of these files are scanned at May 5, 2010. Both the original 

unpacked bot binaries and the obfuscated versions are scanned by this scanner. From 

Table 3, all four anti-virus scanners correctly identify the five bots in the original 

forms. However, with obfuscation, both false positives and false negatives are 

observed, which are shown in bold text in Table 3. All four anti-virus tools can 

effectively decrypt UPX-packed bots because UPX simply compresses an executable 

without involving any obfuscation. ASProtect change the program structures 

substantially and fool the analysis from these anti-virus scanners quite effectively. For 

sample #6 to #10, they also show the same tendency that AV tools are affected by 

obfuscation. 

5.3 LCS Similarity of Bot Variants Created by Obfuscation 

This experiment shows the LCS similarities between bot variants created by 

obfuscating a bot sample with different packers. The test targets include the 10 bot 

samples without any obfuscation listed in Table 2 (denoted as group A). We obfuscate 

each of those 10 bot samples with ASProtect to create ASProtect-obfuscated test 

targets (denoted as group B). Similarly, we have Themida-obfuscated test targets 

(group C) and UPX-obfuscated test targets (group D).  

Ideally, the similarities between two test targets from the same bot sample should 

be 1, which means that the two targets belong to the same class. Detailed results are 

shown as Table 4. In each cell, the value on the first line corresponds to the LCS 

similarity S(X,Y) (Eq.1). Values on the second line correspond to the Gap Shift values

(Eq.2): 

Table 4 Similarities between test targets derived from the same bot sample 

R
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Sample #1 Sample #2 Sample #3 

 B C D  B C D  B C D 

A 0.95 
0.01 

0.97 
0.01 

0.99 
0.01 

A 1 
0.03 

0.98 
0.04 

1 
0.01 

A 0.99 
0.01 

0.95 
0.01 

1 
0.01 

B - 0.54 
0.01 

0.95 
0.01 

B - 0.78 
0.05 

1 
0.01 

B - 0.99 
0.02 

0.99 
0.01 

C  - 0.97 
0.01 

C  - 1 
0.01 

C  - 0.95 
0.01 

Sample #4 Sample #5 Sample #6 

 B C D  B C D  B C D 

A 0.81 
0.01 

0.99 
0.03 

0.99 
0.01 
 

A 0.96 
0.01 

0.98 
0.01 

0.99 
0.01 

A 0.93 
0.01 

0.99 
0.01 

0.99 
0.01 

B - 0.57 
0.01 

0.81 
0.01 

B - 0.91 
0.02 

0.99 
0.01 

B - 0.77 
0.05 

0.93 
0.01 

C  - 0.99 
0.03 

C  - 0.98 
0.01 

C  - 0.94 
0.01 

Sample #7 Sample #8 Sample #9 

 B C D  B C D  B C D 

A 0.98 
0.01 

0.94 
0.01 

0.98 
0.01 

A 0.98 
0.01 

0.98 
0.01 

0.99 
0.01 

A 0.98 
0.01 

0.91 
0.01 

0.99 
0.01 

B - 0.21 
0.03 

0.98 
0.03 

B - 0.55 
0.01 

0.99 
0.01 

B - 0.59 
0.07 

0.98 
0.01 

C  - 0.94 
0.03 

C  - 0.98 
0.01 

C  - 0.91 
0.01 

Sample #10   

 B C D         

A 0.78 
0.04 

1 
0.01 

1 
0.01 

        

B - 0.35 
0.04 

0.78 
0.04 

        

C  - 1 
0.01 

        

Table 4 shows that on the same bots, the similarity values are consistently high 

and R values are consistently low. Segment Identification can improve the accuracy of 

LCS similarity greatly. For instance, if we turn off segment identification, the LCS 

similarity between B and C in Sample #5 will drop from 0.91 to 0.79. 

5.4 LCS Similarity across Different Bot Samples 

This experiment evaluates the LCS similarities across 10 different bot samples. It 

shows the range of S and N values is different than Sec.5.3. This is conducted on four 

batches of experiments. First, we calculate the pair-wise LCS similarities from the 10 

bot samples. The result is presented in Table 5A. We then calculate the pair-wise LCS 
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similarities on ASProtect-obfuscated bot samples with the result shown in Table 5B. 

The results with Themida-obfuscated bot samples and UPX-obfuscated bot samples 

are presented in Table 5C and Table 5D respectively. 

Table 5 Numeric result on the same obfuscation samples 

A. Non-obfuscated bots 

 2 3 4 5 6 7 8 9 10 

1 0.61 
0.33 

0.58 
0.18 

0.74 
0.17 

0.68 
0.61 

0.40 
0.16 

0.31 
0.30 

0.65 
0.18 

0.36 
0.27 

0.46 
0.5 

2 - 0.75 
0.08 

0.91 
0.32 

0.77 
0.63 

0.69 
0.27 

0.24 
0.31 

0.40 
0.17 

0.56 
0.25 

0.93 
0.17 

3 - - 0.91 
0.16 

0.74 
0.71 

0.62 
0.17 

0.25 
0.16 

0.43 
0.02 

0.45 
0.26 

0.89 
0.06 

4 - - - 0.65 
0.63 

0.94 
0.14 

0.83 
0.10 

0.95 
0.13 

0.72 
0.23 

0.60 
0.20 

5 - - - - 0.69 
0.62 

0.64 
0.54 

0.65 
0.60 

0.72 
0.54 

0.56 
0.34 

6 - - - - - 0.41 
0.13 

0.65 
0.20 

0.83 
0.02 

0.86 
0.21 

7 - - - - - - 0.23 
0.22 

0.27 
0.27 

0.77 
0.12 

8 - - - - - - - 0.50 
0.27 

0.81 
0.26 

9 - - - - - - - - 0.20 
0.28 

B. ASProtect obfuscated bots 

 2 3 4 5 6 7 8 9 10 

1 0.47 
0.29 

0.70 
0.11 

0.77 
0.05 

0.94 
0.06 

0.58 
0.08 

0.50 
0.13 

0.76 
0.11 

0.56 
0.13 

0.80 
0.09 

2 - 0.62 
0.09 

0.51 
0.25 

0.34 
0.38 

0.48 
0.27 

0.23 
0.27 

0.39 
0.18 

0.43 
0.24 

0.32 
0.25 

3 - - 0.92 
0.03 

0.92 
0.1 

0.68 
0.14 

0.42 
0.08 

0.94 
0.01 

0.58 
0.16 

0.79 
0.10 

4 - - - 0.90 
0.10 

0.77 
0.04 

0.92 
0.04 

0.89 
0.08 

0.76 
0.04 

0.22 
0.34 

5 - - - - 0.94 
0.07 

0.90 
0.07 

0.94 
0.11 

0.95 
0.08 

0.28 
0.17 

6 - - - - - 0.50 
0.08 

0.70 
0.14 

0.90 
0.02 

0.17 
0.33 

7 - - - - - - 0.36 
0.12 

0.40 
0.04 

0.14 
0.32 

8 - - - - - - - 0.61 
0.16 

0.47 
0.23 

9 - - - - - - - - 0.20 
0.28 

C. Themida obfuscated bots 

 2 3 4 5 6 7 8 9 10 

1 0.41 
0.16 

0.67 
0.16 

0.76 
0.17 

0.98 
0.01 

0.53 
0.11 

0.43 
0.17 

0.72 
0.17 

0.49 
0.23 

0.88 
0.22 

2 - 0.75 0.68 0.77 0.68 0.24 0.40 0.56 0.27 
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0.08 0.22 0.63 0.27 0.31 0.17 0.25 0.25 

3 - - 0.90 
0.07 

0.74 
0.71 

0.62 
0.17 

0.25 
0.16 

0.93 
0.02 

0.45 
0.26 

0.26 
0.15 

4 - - - 0.72 
0.13 

0.91 
0.1 

0.87 
0.03 

0.88 
0.07 

0.76 
0.24 

0.76 
0.16 

5 - - - - 0.41 
0.13 

0.65 
0.20 

0.75 
0.60 

0.83 
0.02 

0.20 
0.38 

6 - - - - - 0.41 
0.13 

0.65 
0.20 

0.83 
0.02 

0.20 
0.38 

7 - - - - - - 0.23 
0.22 

0.27 
0.27 

0.10 
0.52 

8 - - - - - - - 0.50 
0.27 

0.47 
0.23 

9 - - - - - - - - 0.20 
0.33 

D. UPX obfuscated bots 

 2 3 4 5 6 7 8 9 10 

1 0.61 
0.33 

0.58 
0.18 

0.46 
0.5 

0.68 
0.61 

0.40 
0.16 

0.31 
0.30 

0.65 
0.18 

0.36 
0.27 

0.28 
0.18 

2 - 0.75 
0.08 

0.93 
0.17 

0.77 
0.63 

0.69 
0.27 

0.24 
0.31 

0.40 
0.17 

0.56 
0.25 

0.27 
0.25 

3 - - 0.89 
0.06 

0.74 
0.71 

0.62 
0.17 

0.25 
0.16 

0.43 
0.02 

0.45 
0.26 

0.27 
0.15 

4 - - - 0.57 
0.31 

0.86 
0.2 

0.78 
0.10 

0.51 
0.25 

0.86 
0.21 

0.35 
0.42 

5 - - - - 0.69 
0.62 

0.64 
0.54 

0.65 
0.60 

0.72 
0.54 

0.57 
0.61 

6 - - - - - 0.41 
0.13 

0.65 
0.20 

0.83 
0.02 

0.20 
0.38 

7 - - - - - - 0.23 
0.22 

0.27 
0.27 

0.10 
0.52 

8 - - - - - - - 0.50 
0.27 

0.47 
0.23 

9 - - - - - - - - 0.20 
0.33 

This result shows the LCS similarities between different samples are indeed 

lower than the LCS similarities between variants of the same sample (give reference 

to the previous section). Some of the pairs have high LCS similarity values. However, 

their Gap Shift values ( ) are also high (see Sample 2 v.s. 4 in Table 5A). Therefore 

the formula (3) is a good criteria for deciding whether two sample are similar. 

5.5 Choosing the threshold values for S and R 

In order to determining the threshold values TS and TR, we plot the curve of 

classification correctness vs. TS and also the curve of classification correctness vs. TR.  

For the classification correctness, we consider both the correctness on identifying 

R
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class of bot variants (#_of_pairs_above_TS_in_Table 4 / #_of_pairs_in_Table 4), and 

the correctness on distinguishing different samples (#_of_pairs_below_TS_in Table 5/ 

#_of_pairs_in_Table 5). 

 

Fig. 10 LCS correctness threshold 

We consider 60% as an appropriate threshold value for LCS similarity  

because for identifying class of bot variants created by obfuscating a source bot 

sample with different packer tools, this achieves 90% correctness (i.e. for about 6 out 

of the 60 pairs of the bot variants used in Table 4, the pair-wise LCS similarity is 

incorrectly reported to be below 60%). 

For distinguishing different bot samples, the classification correctness 

(distinguishing them as unrelated bots) rises linearly when increasing the threshold 

value for S. With the threshold value of 60%, the classification correctness on 

distinguishing different bot samples is only about 40%. 

S
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Fig. 11 Gap Shift correctness threshold 

To improve the correctness on distinguishing different bot samples, we need to 

consider the gap shift value as well (Eq. 2). As shown in Fig. 11, if we choose 6% 

as the threshold value TR for , we can correctly distinguish different samples with 

94% probability while maintaining the correctness on identifying class of bot variants 

at 90%. 

5.6 Classification Result Comparison 

Based on the threshold experiments in previous section, the samples in Table 2 

can be classified into groups by our algorithms. Table 6 is the comparison of the 

number of samples that classify correctly based on our algorithms and Anti-Virus 

Engines. It shows our algorithms can classify more correctly. 

Table 6 The rate of classified correctly in total samples 

Our algorithms Antivir Kaspersky NOD32 Sophos 

90% 68% 70% 80% 48% 

5.7 Efficiency Experiment 

As mentioned before, PIN Tool uses JIT compiler to instrument the target 

program with check code dynamically. In this experiment, we want to observe the 

R

R
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overhead introduced by the instrumentation and the recorder module.

 

Fig. 12 Execution time with and without PIN 

Fig. 12 shows the execution times for running bot samples directly (without PIN) 

and with our recorder module (together with PIN). We use two samples (Agobot and 

Rbot) for this experiment. We also examine the execution time for running the 

obfuscated versions of the bots. We employ three obfuscation tools (B: ASProtet, C: 

Themida, D:UPX, and A is without obfuscation). Overall, the overhead from using 

our system is around 55%.  

Chapter 6 Conclusions and Future Works 

Our work aims at the classification of bot binaries, many of which are obfuscated 

and immune to static analysis. We use a dynamic analysis tool called PIN to record 

the system call sequence of a running bot. Because system call sequence defines the 

interactions between a program (the bot binary) and the operating system, obfuscation 

can hardly alter the sequence without breaking the interactions. We rely on this 

invariant property of invoked system call sequence in obfuscated bot binaries as the 
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basis of our classification framework. 

For the classification, we define a similarity metric between two bots based on 

the longest common subsequence of their system call sequences. Although 

obfuscation can hardly change the original system call sequence in a bot binary, it 

does introduce additional system calls into the obfuscated binary. Most of them are 

due to the obfuscation packer's stub code. The additional system calls can result in 

noises in the classification process. To reduce the noise, we inspect the system call 

arguments to identify those system calls introduced by the packer and have them 

filtered. Overall, our system can achieves classification correctness of more than 90%. 

While some obfuscated programs have additional threads for detecting the 

existence of debugger, no bot has been seen to use multi-thread at injection stage. If 

multi-threading at the injection stage is observed, our system will take the system call 

sequence in the main thread (the thread with the most system calls) for the analysis 

and classification. In future work, the similarity metric can be extended to consider all 

the system call sequences in a multi-threaded bot program. 

The current system is based on an off-line process. It records the system call 

sequence and then compares the sequence with sequences of known samples in the 

database. In future work, we will attempt with an on-line analysis process, where the 

system can work as an anti-virus tool that detects active running bots on a computer. 
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