Multiple-resource Request Scheduling Algorithms for Proportional Slowdown Differentiated
Outline

Chap. 1 Introduction

[Background & Motivation]

- Network QoS vs. Server QoS: Server QoS get more important than Network QoS

- Previous server QoS works focus on throughput

- Many server-side web applications (Using throughput as QoS metric is not enough

- Thus, that latency gets more important

- Server-side QoS on latency: Absolute QoS vs. relative QoS, relative QoS is better

[Related Works and their problem]

- Proportional Delay Differentiation model is a possible solution in relative QoS
- PDD only considers queuing time (Not enough, do not consider service time
- Network QoS is single-resource (PDD only consider single-resource situation
- Server QoS is multiple resource (PDD causes resource waste, throughput down
- Another possible solution: Proportional Slowdown Differentiation model

- PSD has considered service time but not multiple resources
- Only a few previous PSD works and need to modify server software

[This Work]

1. Provide PSD without server modification

- PSD: consider queuing time + service time

- We grab the method calculate queuing time from PDD algorithms

2. Maximize server resource usage

- Window control to avoid server overload and calculate the idlest resource

- Always send the request belongs to idlest resource first to maximize throughput

[Experiment]

- Implement on squid and benchmark it

- Observations

[Organization]

- The organization of following chapters

Chap. 2 PDD and PSD
2.1 Proportional delay differentiation
- What is PDD
- Several PDD algorithms will be used later

- What is WTP

- What is MDP

- What is WAD

- The problem in PDD

- PDD comes from Network layer, consider single resource

- PDD cannot be directly applied on web servers

- Only consider queuing time

2.2 Proportional slowdown differentiation
- What is PSD?
- How to achieve PSD?
- The problem in the PSD algorithm
- Avoid modifying server software while considering multiple resources
- Still do not consider multiple resource issue (Not achieve server max throughput

Chap. 3 Multiple Resource PSD Web Gateway

3.1 Architecture

- Explain the components in the architecture

3.2 When to send the next request

- Explain how window control works with resources: avoid server overhead

- Explain how the window size adjust
- Why need upper bound of service time

- Upper bound: Off-line probing: method and algorithm
3.3 Select the next request

- Select the request fits the most idle resource and belongs to the class waits longest

- The time of “waits longest” including queuing time and service time

- The methods of calculating queuing time are various

3.3.1 Selection procedure
1. Which resource is idlest?
2. Which class waits longest?

- Why select the idlest resources first instead of class waiting time

3.3.2 Calculate queuing time

- We grab the method to calculate queuing time from several PDD algorithms

- WTP, MDP, WAD

3.3.3 Measurement of service time

- On-line probing and averaging

Chap. 4 Experiment and Results

4.1 Implementation: The change of squid and flow chart

4.2 Test bed: Describe the experiment environment

4.3 The effectiveness on providing PSD
- Do the algorithms provide PSD well?
- Graphic*1 [x: time, y: response time of 3 algorithms]

- Graphic*1 [x: algorithms y: ratio of response time]

- Graphic*1 [x: type of resource y: resource usage]

4.4 Throughput improvement on multiple-resource

- Does the throughput improve?

- Graphic*1 [x: time, y: throughput(req/s) of single resource & multiple resource]

- Graphic*1 [x: algorithms y: ratio of response time]

Chap. 5 Conclusions and Future Works
· A simple PSD web gateway
· What diff between previous works: what improvement in this work
· What new components in our architecture

· From the result, what are the observations
· Future works

