

 1

STANDARD OPERATING PROCEDURE

FOR ADDING A PACKAGE INTO LINUXWALL

CONTENTS
I. INTRODUCTION ·· 2

II. FIND THE PACKAGE YOU NEED AND TRY IT ··· 2

III. COMPILE THE PACKAGE WITH UCLIBC ··· 2

IV. TRIM THE IMAGE SIZE ·· 7

V. CONFIGURE THE PACKAGE ··· 8

VI. COMMIT AND BUILD THE FINAL IMAGE ·· 9

VII. TEST ITS OPERATION ··· 11

VIII. FURTHER READING ·· 12

DATE: 2004/06/14 VER: 0.8

DATE: 2004/10/06 VER: 0.9

DATE:2006/1/24 VER: 1.0

DATE:2006/10/4 VER: 1.1

DATE:2009/6/12 VER: 1.2

High Speed Network Lab.

Department of Computer Science

National ChiaoTung University, Hsinchu, Taiwan

http://speed.cis.nctu.edu.tw

 2

I. INTRODUCTION

LinuxWall is a Linux distribution derived from the early version of BuildRoot. The

derivative integrates many networking and security features/packages, so it is good to

take the LinuxWall as the first step of building a security gateway1. This document

gives the step-by-step procedures on how to compile and install the LinuxWall. It also

teaches you the procedures of integrating a new package into LinuxWall. After

reading the document and practicing all steps, you will learn how to construct an

embedded system from scratch.

II. FIND THE PACKAGE YOU NEED AND TRY IT
a. Procedures

Step Description Notes

1 Write down the functionality that

will be added into LinuxWall.

maybe one of "vpn", "anti spam", or

"antivirus"

2 Search by Google with the

keyword: name + "open source"

and browse the official website.

- enter "vpn open source" in Google

- URL of official websites may end

with ".sourceforge.net" or ".org".

3 Select a suitable package and

download it to the directory

/usr/local/bin of your personal

Linux system.

Full-installed RedHat 9 is the

recommended dev. system when you

carry out all the procedures in this

SOP.

4. Unpack the package tar xvfz xxxx.tar.gz

5 Configure and Install the package ./configure

make

make install

6. Try its functions

III. COMPILE THE PACKAGE WITH UCLIBC

a. Procedures

Step Description Notes

0 Install ReaHat 9

Install gcc-3.3 or gcc-3.4

Many porting efforts have to be done

if you want to try LinuxWall in a

newer OS or toolchain. ref.III.b.12

1 Ying-Dar Lin, Huan-Yun Wei, Shao-Tang Yu, Building an Integrated Security Gateway: Mechanisms,
Performance Evaluation, Implementation, and Research Issues, IEEE Communication Surveys and
Tutorials, Vol.4, No.1, third quarter, 2002.

 3

1 Understand what uClibc and

toolchain are

http://www.uclibc.org/about.html

http://www.uclibc.org/toolchains.html

2 Set the environment variable of svn. ref. III.b.2

3 - Checkout the module LinuxWall

from the SVN server.

- (not recommended) You can also

directly download the uClibc

development environment from the

uclibc website if you plan to get the

pure uClibc development

environment.

- svn co $SITE/linuxwall

-Check the “Download” section in

http://www.uclibc.org/

ref. III.b.11

4 Checkout the packages from svn

and then build a soft link

1. svn co $SITE/linuxwall_dl

2. cd linuxwall/sources

3. ln -s ../../linuxwall_dl dl

5

make and then chroot to the

LinuxWall image.

- Be root, because some packages,

such as tripwire, need the root

privilege.

- Type “make” under the directory,

linuxwall”

- ref.III.b.12

6. (Step 6~10 are required only when

you try to integrate a new package

into LinuxWall)

Write make/xxx.mk to let buildroot

know how to build your package.

you can ref make/gzip.mk or

mke2fs.mk or openssh.mk

7. Put necessary patchs in sources/ may need to patch the makefile or

configuration originally offered by

the package

8 Add one line into Makefile

TARGETS += XXX

9 Just run ‘make’ to build the image

with the new package.

ref. III.b.7, III.b.8, III.b.9

10. Chroot to the new image and test if

the libs linked by the new package

are correct.

You can use ‘ldd’ to check the lib

linking states.

 4

b. Guidelines

1. Current SVN server IP is 140.113.88.160

2. If your shell is TCSH
setenv SITE http://140.113.88.160/repos

if your shell is BASH
export SITE=http://140.113.88.160/repos

3. You can learn how to use subversion(SVN) from

 a. http://www.clear.rice.edu/comp314/svn.html

 b. http://aymanh.com/subversion-a-quick-tutorial

4. http://buildroot.uclibc.org/buildroot.html: a document introduce the tool for

packaging the image and the structure in the xxxx.mk

5. The only way to learn how to write your xxx.mk is to study other xxxx.mk files.

You can easily browse all xxx.mk files from

http://www.uclibc.org/cgi-bin/cvsweb/buildroot/make/

The following information just offers you a limited assistance.

Table 1. Important variables referred

in ‘make/xxxxx.mk’ but defined in ‘Makefile’

BUILD_DIR All downloaded packages are unzipped in this

working dir.

TARGET_DIR After compiling, the results should be copied to

this directory.

SOURCE_DIR All patch files are put in this dir.

DL_DIR All downloaded package are put in this dir

STAGING_DIR Libraries and header files in this dir can be used as

building

TARGET_CROSS The cross compiler

TARGET_CC $(TARGET_CROSS)gcc

STRIP The command to downsize the executing code

Table II. Important variables referred and defined in ‘xxx.mk’

XXXXX_SITE Tell buildroot where to download the package

XXXXX _DIR Tell buildroot where to be the working dir

XXXXX _SOURCE the tar file name of the package

XXXXX _PATCH the path and filename of patch file (optional)

 5

6. Five main parts are usually included in xxx.mk. make/openssh.mk is a good

sample.

 - unpacked

 - configured

 - strip: downsize the code

 - make and install

 - how to clean the built results or intermediate files.

7. Remember to add

 $(TARGET_CONFIGURE_OPTS) \

 LD=$(TARGET_CROSS)gcc \

 CFLAGS="$(TARGET_CFLAGS)”

in the ‘configured’ part and set

 CC=$(TARGET_CC),

as you mean to make the package.

8. If you CANNOT compile the package for missing some necessary libs, build the

missing libs as you build a package, and then copy them into the dir specified by

$(STAGING_DIR).

9. If you CANNOT make the linuxwall and see the following msg
error: cannot check ……… when cross compiling

, then you should vi config.log to know which line in the file configure leading

to the failure. The following are possible codes leading to the failure.

if test "$cross_compiling" = yes; then

 { { echo "$as_me:14201: error: cannot run test pr ogram while cross compiling" >&5

The solution is to remove these checks. For example,
if test 0 = 1; then

 { { echo "$as_me:14201: error: cannot run test pr ogram while cross compiling" >&5

10. If you CANNOT cross-compile the package finally, a possible solution is offered

as follows. First, you can chroot to the prebuilt buildroot development image and

build the package in this environment. Then, pack the results to a tar file. Finally, in

xxx.mk you just ask buildroot to unpack the tar file into the target dirs. Such a

solution is adopted as we build Perl. You can refer perl.mk for further information.

11. If you want to use the latest uClibc development environment, the following steps

are recommended: 1) Download and buildroot package and uncompress it, says, to

directory DIR_B; 2) compile the buildroot package; 3) Modify the values of

KERNEL_CROSS and TARGET_CROSS in the Makefile under linuxwall/. The

new values should be like “DIR_B/

build_i686/staging_dir/usr/bin/i686-linux-uclibc-“ if your target architecture is

 6

i686.

12. Some problems you might meet:

a) Error about current_menu raises when compiling

build_i386/linux-2.6.6/scripts/kconfig/mconf.c. The solution is to comment out the

declaration of current_menu in that file.

b) Error about md_relax_table raises when compiling

toolchain_build_i386/binutils-2.14.90.0.7/gas/config/tc-i386.h. The solution is to

comment out its declaration in that file, and add its declaration in

toolchain_build_i386/binutils-2.14.90.0.7/gas/tc.h.

c) Errors about no directory “ld” raises when making

toolchain_build_i386/binutils-build. The solution is to comment out the “cd ld” line

in the “install-ld” subsection in toolchain_build_i386/binutils-build/Makefile. Note

that you also have to trim the backslash of its previous line, i.e.,

“$(SET_LIB_PATH).”

d) Errors about lvalue raises when making

toolchain_build_i386/gcc-3.3.3/gcc/read-rtl.c. The solution is to modify the macro,

obstack_ptr_grow, in toolchain_build_i386/gcc-3.3.3/include/obstack.h.

 Before modification:

*((void **)__o->next_free)++ = ((void *)datum); \

 After modification:

*((void **)__o->next_free) = ((void *)datum); \

 (__o->next_free)+=sizeof(void *); \

e) Errors about no file, limits.h, raises when compiling __assert.c. The solution is to

copy limits.h from the directory, include-fixed, in your uClibc, e.g.,

DIR_B/build_i686/staging_dir/usr/lib/gcc/i686-linux-uclibc/4.3.3/include-fixed.

f) Error happens while making “file.” The version of /usr/bin/file utility in your

system might be too newer to compile the magic utility. To solve it, you can modify

magic.mgc subsection in the Makefile under build_i386/file-4.08/magic, and

replace /usr/bin/file with $dir_linuxwall/build_i386/file-4.08/src/file.

g) Error of undefined reference to ‘fatal’ when compiling tripwire: Replace

bs_htonl and bs_ntohl with htonl and ntohl in build_i386/tripwire-1.2/src/utils.c

and build_i386/tripwire-1.2/sigs/snefru/snefru.c respectively.

h) Error happens when compiling squid. There is an unnecessary character “i" just

one line before the reported error line, so remove the “i.”

IV. TRIM THE IMAGE SIZE

a. Procedures

 7

Step Description Notes

1 Just copy the compiled results to the specific

directory, but not run ‘make install’ provided by

the package.

Such a method can avoid

the copying of help

documents

2 Use STRIP to downsize executing file

3 linking with shared libraries is suggested if the

linking approach is provided by OS.

b. Guideline

1. Reduce the spare space in a built image of file system。

To reduce the spare space existing in a built image of file system, you can

modify the parameter GENEXT2_ADDTOROOTSIZE in the file “ext2root.mk”.

For example, you can change the parameter from its default 16384 bytes to 4096

bytes. Then, the built image will be reduced by 12KB.

Notably, we have changed the block size used in the file system in order to

reduce the image. However, according to our testing result, adjusting the block

size brings a minor effect on the image size.

2. Remove the documents

When you install a package, some documents like readme and user manual are

usually copied into the image. However, these documents are unnecessary for

system operation. Thus, you can remove these documents to reduce the image. To

remove them, you should modify the makefile of the package by adding some

commands. For example, in the makefile of the package squid

linuxwall/make/squid.mk, a segment of commands are given after the

configuration procedure, shown as

$(TARGET_DIR)/usr/local/squid/sbin/squid: $(SQUID_DIR)/src/squid

 -$(STRIP) --strip-unneeded $(SQUID_DIR)/src/squidclient

 -$(STRIP) --strip-unneeded $(SQUID_DIR)/src/squid

 -$(STRIP) --strip-unneeded $(SQUID_DIR)/scripts/RunAccel

 -$(STRIP) --strip-unneeded $(SQUID_DIR)/scripts/RunCache

 $(MAKE) -i -C $(SQUID_DIR) -l$(LIB_PATH)/crypt install;

 rm –rf $(TARGET_DIR)/man

 cp $(SQUID_DIR)/src/squid.conf.default $(TARGET_DIR)/etc/squid.conf

 cp $(SQUID_DIR)/src/mime.conf.default $(TARGET_DIR)/etc/mime.conf

The command -$(STRIP) --strip-unneeded is used to remove the files

generated during the building procedure, such as .note or .comment. Besides, a

 8

directory man and some help files are created during the procedure. Because we

don’t need these files to operate the system, we should delete the directory by the

command rm to avoid the directory and files from being copied into the image.

Similarly, when you install other packages, you should check whether the

unused files such as doc, man, example and info, are copied into the image. If

these file are copied actually, you can remove them by the command mentioned

above.

3. Remove the header file and the static-link library.

When you install a package, you need to avoid the header files and the

static-link libraries from being copied into the image, because these files are

unused in system operation. Generally, the header files are given in the directory

“include”. To remove them, you can use the command “rm -rf

$(TARGET_DIR)/include/*.h”. Similarly, you can use the command “rm -rf

$(TARGET_DIR)/lib/*.a” to remove all the static-link libraries.

V. CONFIGURE THE PACKAGE

a. Procedures

Step Description Notes

1 (Step 1~2 are required only when you try

to integrate a new package into LinuxWall)

The configuration files of the package

should be put in /sources/customize/etc

2 Configure the package to let it run at

booting if necessary.

/etc/rc.d/init.d

3 Provide a web GUI to start the package.

you can put the php in

/sources/customize/www.

4. You can put all files you want to copy into

the final image in /sources/customize

Buildroot will automatically

mirror all files and dirs in

source/customer/ to the dir:

root before packing all files to

an image.

VI. COMMIT AND BUILD FINAL IMAGE

 9

a. Procedures

Step Description Notes

1 Build a kernel that can be booted

without initrd

ref. VI.b.1

2. fdisk a clean disk to 2 partitions If you are using VMWare, please

reference VI.b.2

Command: fdisk

ref. VI.b.3

One for kernel and one for rootfs.i386,

e.g., /dev/sdb1 and /dev/sdb2

3. format and mount the 2 partitions mke2fs /dev/sdb1

mke2fs /dev/sdb2

mkdir /mnt/wall_kernel

mkdir /mnt/wall_image

mount /dev/sdb1 /mnt/wall_kernel

mount /dev/sdb2 /mnt/wall_image

4 mount imgfile rootfs.i386 mkdir /mnt/tmp

mount –o loop root_fs_i386 /mnt/tmp

5 Copy kernel to the boot disk mkdir /mnt/wall_kernel/boot

cp bzImage /mnt/wall_kernel/boot

ref. VI.b.4

6 Copy root file system cp –af /mnt/tmp/* /mnt/wall_image

7 install boot loader mkdir /mnt/wall_kernel/boot/grub

cp /boot/grub/*

/mnt/wall_kernel/boot/grub

cd /mnt/wall_kernel/boot/grub

vi menu.lst

ref. VI.b.5

rm ./grub.conf

 10

ln –s menu.lst grub.conf

grub-install

--root-directory=/mnt/wall_kernel

/dev/sdb1

ref. VI.b.6

8 Umount all modified partitions cd /

umount /mnt/wall_kernel

umount /mnt/wall_image

b. Guidelines

1. The kernel source code is under $your_linuxwall/buid_i386/linux-2.6.6/, when the

target platform is i386.

 cd $your_linuxwall/buid_i386/linux-2.6.6

make clean

make config # you can also try “make menuconfig”

 # all answers except the following ones should NOT be changed

 Enable loadable module support -> n

 SCSI device support -> y # if the LinuxWall will be run in a SCSI hard

disk, e.g., under VMWare environment

 SCSI disk support -> y

 BusLogic SCSI support -> y

 make

2.(If you are using VMWare)

a. Suppose the virtual machine of your RedHat 9 is named as “RedHat 9.”

b. Edit the settings of “RedHat 9”

c. Add a new SCSI Hard Disk

d. Power on “RedHat 9,” and continue the remaining steps in V.a

e. After finishing the last steps in V.a, suspend “RedHat 9.”

f. Create a new virtual machine named as “Linuxwall”

g. Edit the settings of “Linuxwall”

h. Remove the default SCSI Hard Disk

i. Add an existing SCSI Hard Dist by browsing the directory and choosing the one

you created in step c.

j. Power on “Linuxwall”

 11

3. Google “fdisk linux” for more help.

 If you are too lazy to google it, then just type:

 fdisk /dev/sdb

n, ENTER, p, ENTER, 1, ENTER,

n, ENTER, p, ENTER, 2, ENTER,

a, ENTER, 1, ENTER

w, ENTER

4. bzImage is under $your_linuxwall/buid_i386/linux-2.6.6/arch/i386/boot/bzImage,

when the target platform is i386.

5. You can modify menu.lst based on the existing menu.lst

 After modifying, it may look like,

(~skip~)

 title Linuxwall

 root (hd,0)

 kernel /boot/bzImage ro root=/dev/sda2

6. You may need to execute,

 grub-install --recheck --root-directory=/mnt/wall_kernel /dev/sdb

VII. TEST ITS OPERATION

a. Procedures

Step Description Notes

1 (Step 1~2 are required only when you try to

integrate a new package into LinuxWall)

Show the package can be executed at booting

or by run a single script.

2 Give a significant demo case for this package.

3 (Step 3~4 are not recommended, if your demo

case is a practice of LnuxWall SOP)

Write down the demo case in the file

/buildroot/democases/xxxx.demo

4 Commit your change to svn server

 12

VIII. FURTHER READING

BUZYBOX: http://busybox.net

BUILDROOT: http://buildroot.uclibc.org/

UCLINUX : http://www.uclinux.org/index.html

SVN: http://durak.org/sean/pubs/software/version-control-with-subversion-1.6/

