

Embedded TaintTracker: Lightweight Tracking of
Taint Data against Buffer Overflow Attacks

Ying-Dar Lin, Fan-Cheng Wu,
Tze-Yau Huang

Dept. of Computer Science and
Information Engineering

National Chiao Tung University
Hsinchu, Taiwan

ydlin@cs.nctu.edu.tw

Yuan-Cheng Lai
Dept. of Information Management

National Taiwan University of Science
and Technology
Taipei, Taiwan

laiyc@cs.ntust.edu.tw

Frank C. Lin
Dept. of Computer Engineering

San Jose State University
San Jose, California USA

frank.lin@sjsu.edu

Abstract—Taint tracking is a novel technique to prevent buffer
overflow. Previous studies on taint tracking ran a victim's
program on an emulator to dynamically instrument the code for
tracking the propagation of taint data in memory and checking
whether malicious code is executed. However, the critical problem
of this approach is its heavy performance overhead. This paper
proposes a new taint-style system called Embedded TaintTracker
to eliminate the overhead in the emulator and dynamic
instrumentation by compressing a checking mechanism into the
operating system (OS) kernel and moving the instrumentation
from runtime to compilation time. Results show that the proposed
system outperforms the previous work, TaintCheck, by at least 8
times on throughput degradation, and is about 17.5 times faster
than TaintCheck when browsing 1KB web pages.

Keywords-Software security; buffer overflow; taint tracking

I. INTRODUCTION
A buffer overflow attack occurs when a program writes data

outside the allocated memory in an attempt to control a system.
To launch a buffer overflow attack, an attacker must inject
attack code to the address space of a victim program by any
legitimate form of input, and then corrupt a code pointer in the
address space by overflowing a buffer to make the code pointer
point to the injected code. The most common and simplest type
of attack, called stack smashing, hijacks a program by
overflowing the buffer on the stack with the malicious code and
changing the address to the start of the malicious code. This
modifies the return address, causing the program to jump to the
malicious code when it tries to return to its caller.

Researchers have proposed many methods of defending
against buffer overflow attacks using both static and dynamic
approaches. Static approaches analyze potential buffer
overflow vulnerabilities without execution. Dynamic
approaches usually inject some code at compilation time to
protect the code pointer or perform bounds checking to detect
attacks at run-time. Dynamic approaches that apply detection at
run-time can achieve better accuracy than static approaches,
but they also suffer from a heavy performance overhead to
protect against all forms of buffer overflow attacks. This heavy
performance overhead means that dynamic approaches are only
applied at testing time, and are impractical for detecting buffer
overflow attacks. This is because the payload of such attacks is

usually a particular and complicated pattern that is difficult to
be generated in testing time.

This paper proposes a run-time lightweight system called
Embedded TaintTracker to defend against all forms of buffer
overflow attacks. Embedded TaintTracker is based on a
well-known dynamic technique called taint tracking, which
defends against attacks by prohibiting the execution of the
attack code. Based on this technique, TaintCheck [1] and
TaintTrace [2] run the victim’s program on an emulator to
monitor all its operations. These programs also track the
propagation of taint data, which refers to data originating from
untrusted sources, such as the Internet. However, these
methods impose heavy performance overhead. The Embedded
TaintTracker method proposed in this study implements a
novel taint tracking approach that retains the advantages of the
original taint tracking system while boosting its performance to
acceptable levels for practical use.

The rest of this paper is organized as follows. Section II
presents some previous tools to defend against buffer overflow
attacks. Section III describes the design concept and
implementation of Embedded TaintTracker. Next, Section IV
demonstrates this system’s ability to detect known buffer
overflow attacks, showing excellent performance. Finally,
Section V concludes this paper.

II. BACKGROUND
Tools for detecting buffer overflow operate in either a static

or dynamic manner. Static tools used in development time
analyze potential buffer overflow vulnerabilities without
executing the program. These tools do not incur run-time
overhead, but have theoretical and practical limits on accuracy.
All static tools face a tradeoff between precision and scalability.
Dynamic tools used in runtime do not have these limits, but
their performance overhead will be a critical problem. Table I
compares static solutions and a variety of dynamic solutions.

Dynamic approaches can be classified into bounds checking,
pointer protection, and taint tracking, according to what
technologies they use. Bound checking provides perfect
protection against buffer overflows via complex analysis and
patch on source codes. However, tools based on bounds
checking incur a substantial cost in compatibility with existing
codes and performance. Pointer protection tools confine the

pointer manipulation or modify the behavior of reference to and
dereference from a pointer. These tools have excellent
performance, but they do not leave any useful clues for
developers to patch the holes. Developers must spend a lot of
time on finding the bug to fix, and the victim program will
remain vulnerable to the attack during this period, leading to
denial of service.

Table I. Techniques for buffer overflow detection

Dynamic Solutions
Criteria

Static
Solution Pointer

Protection
[3][4]

Bound
Checking

[5][6]

Taint
Tracking

[1][2]
Accuracy
Coverage
Bug Fixing
Signature
Generation

Performance
Overhead 0 ~0 0.9x 4.7x

: Complete : Partial : Not supported

Taint tracking is the third dynamic defense against buffer
overflow. This technique keeps track of the propagation of
untrusted (taint) data during program execution. Taint data
represents any data from an untrusted source such as a network
or some specific devices. When a program executes a piece of
code derived from an untrusted source, a tool based on this
technique will produce an alarm to indicate a possible instance
of malicious code execution. TaintCheck performs taint
tracking for a program by running the program in an emulator
Valgrind, which allows TaintCheck to monitor and control the
program’s execution. Figure 1 illustrates how TaintCheck
keeps track of taint data and examines how an attack code is
executed. When the program is loaded into the Valgrind
emulator, the instrumentation determines the kind of the
instruction, and inserts codes for taint information maintenance
and instruction pointer (IP) examination if needed. However,
this way of implementing taint tracking imposes a heavy
overhead up to thirty times, which is due to runtime
instrumentation, a high frequency of checking malicious
execution, and the emulator itself. Another solution, TaintTrace,
is designed to decrease this overhead by leveraging
DynamoRIO [7], which is a dynamic code modification system
that includes a number of optimization techniques to maintain
low overhead. However, experimental results show that
TaintTrace still causes a 5-fold slowdown.

Fig. 1. TaintCheck system architecture.

Exploit Inspector
Kernel Space
User Space

Taint Recorder

LibTaint

Program

System call routines

Update
(/proc/taint)

copy_from_user(…)

Memory Copy Operations

Socket Read Operations

Syscall Operations

Other Operations
0x00000000

0x00000000

Page Directory

0x08123456

System call entry point

Checking
subroutine

Page Directories

0x08123456

Static InstrumentationProgram Source Codes
Compilation

Time

Runtime

Pages

0 1 0

Fig. 2. Architecture of Embedded TaintTracker and the interaction with
protected program.

III. EMBEDDED TAINTTRACKER

A. System Overview
The proposed Embedded TaintTracker architecture has

three components, Static Instrumentation, Taint Recorder, and
Exploit Inspector, as Fig. 2 indicates. Static Instrumentation
inserts taint-tracking codes into the original program at
compilation time. Taint Recorder maintains the taint
information table and provides a set of functions for the
inserted codes to track taint propagation through the taint
information table. Exploit Inspector is a kernel module that
provides a checking subroutine to examine whether or not the
program is executing code from a piece of tracked taint data.
The first two components move the injection of taint-tracking
code from execution time to compilation time. The last
component reduces the frequency of checking malicious
execution from each jump-instruction to each switch between
user mode and kernel mode. We assume that a piece of
malicious code will invoke a system call when invading a
system. For example, to execute an external program, an
attacker must invoke fork, vfork, or clone system calls.

To enable detection mechanism of the proposed system in a
program, the source code of a program must be injected at
compilation time with a sequence of function calls near the
memory copy operations to maintain taint information, so that
the taint information is dynamically updated in runtime. These
functions are provided by the Taint Recorder library, which
should be linked to the instrumented program. When the
program is executing and invoking a system call, Exploit
Inspector will be triggered to examine the IP. If the IP points to
taint data, then an arbitrary code execution is implicated.
Exploit Inspector will terminate the victim’s process, provide
an alarm of the attack to the administrator, and dump some
useful information for further analysis.

B. Static Instrumentation
Static Instrumentation discovers copy operations and

injects taint propagation tracking codes near these copy
operations at compilation time. Several stages in source code
transformation during compilation offer opportunities for
discovering copy operations. There are four major compilation
phases in GCC: the pre-processor, parser, code generator, and
architecture-dependent optimizer. Since we did not want to

modify the compiler, the preprocessed stage between
pre-processor and parser, was finally chosen because source
code at this stage has been processed by the preprocessor. Thus
cleaner source has been yielded, as macros and comments have
already been expanded and deleted, respectively. Moreover, the
context required for optimization is still present at this stage.
For example, any variable used in a loop as the increment
counter is always untainted, so it is not necessary to set taint
status repeatedly in each loop body.

Taint data propagation at the preprocessed stage operates in
two ways: undefined function invocations and assignment
operations. A function in a program is either a defined function,
which is defined within the project and the source code is
available, or an undefined function, which is defined in another
library and the source code is unavailable. Taint propagation
tracking code can be inserted into a defined function, while it
has no way to be inserted into an undefined function. Thus,
alternatively, a pre-defined taint propagation behavior can be
associated with each undefined function. For example,
memcpy(void *dest, const void *src, size_t n)
is an undefined function that propagates n byte data from src
to dest with no return value. Therefore, this study defines this
propagation behavior by a pseudo code where the three
parameters of memcpy are named $1, $2 and $3:

memcpy($1,$2,$3): taint_copy($1,$3,$2)
The subroutine taint_copy provided by Taint Recorder

copies the taint status from address $2 to address $1 for length
$3. This pre-defined behavior will be concatenated with
memcpy, and $1, $2 and $3 will be mapped to actual
parameters in memcpy upon injection.

Assignment operations appear with a special identifier '=',
and the taint data propagates from the RHS (right-hand side)
operand address to the LHS (left-hand side) operand address.
The LHS operand address is retrieved simply with address-of
operator '&', but determining the taint status of the RHS
operand is complicated because the RHS operand has many
forms. Table II(a) summarizes common forms of the RHS
operand and their corresponding processing of taint
propagation. The first form of taint propagation, where the
RHS is a constant value, sets the taint status of the LHS variable
address to false. The second form, where the RHS operand is a
variable, copies taint status of the address of the RHS variable
to that of the LHS variable. In the third form, the RHS operand
is a series of arithmetic operations, and the taint status of the
LHS address is set true if any constituent operand of the RHS
operations is tainted. The last form features a function call on
the RHS. This form of propagation has different processes
depending on the function type. When the function is a defined
function, the taint status of the LHS variable is transferred from
a global variable that stores the address for return variable in
each function; otherwise, a pre-defined behavior for an
undefined function determines the taint status of the LHS
variable.

Table II covers most processes of taint propagation through
assignments. However, an exception transpires when data are
propagated via deliberate control transfer. For example, codes
like such as if (x==1) y=1; else if (x==2) y=2; …
use tainted data x to influence the value of y. This problem is

also faced by similar approaches proposed by earlier works. In
this case, the system proposed in this study requires users to
modify related code manually.

To fix bugs easily, we adopt a global variable that preserves
the IP and inject code for updating that value before each
function invoked. The value can be translated to indicate the
function in which the attack took place by addr2line, which is a
tool in the GNU toolchain that can convert an address into a file
name and line number in source code.

Table II. (a) RHS variable forms and their corresponding processing of taint
propagation; (b) exported functions in the Taint Recorder library.
Variable forms Example Propagation Description
Constant D = ‘A’ Set taint status of LHS to be untainted.
Variable D = S Transfer taint status from RHS to LHS
Arithmetic
operations

D = S1 + S2 LHS will be set to taint if any operands in
RHS are tainted.

Function call D = func() If the function is defined, copy taint status
from the address of return value; otherwise,
append a pre-defined behavior.
(a)

Function prototype Description
set_taint(void *to,
size_t len)

Set taint status to true from address to to
to+len-1.

clear_taint(void *to,
size_t len)

Set taint status to false from address to to
to+len-1.

taint_copy(void *to,
size_t len, void
*from)

Copy taint status from address from address
to address to for length len.

(b)

C. Taint Recorder
Taint Recorder provides a set of functions and a taint

information table for the victim program to record taint
memory in its address space. The library exports three basic
functions for operating taint information table, summarized in
Table II(b). set_taint(void *to, size_t len) sets
the taint status to be true from address to to to+len-1, which
is used when reading data from socket. clear_taint(…)
performs the opposite function, setting the taint status of a
range of memory to be false. taint_copy(void *to,
size_t len, void *from) copies length of len bytes
taint status from address from to address to when copy
operations are found in source code.

Another component of the Taint Recorder, taint information
table, records the taint status of each memory block. Bitmap
data structure, which maps each byte of memory to one bit in
taint information table, can be used. However, bitmap data
structure requires an enormous amount of memory, so the
proposed approach adopts a page-table-like structure that
dynamically allocates a new page when taint propagation
happens. Fig. 3 illustrates the page-table-like structure and how
it acquires the taint status from an address. The taint
information table consists of a page directory and a number of
bitmap pages. The page directory keeps 1024 32-bit page
addresses, so the size required is the same as the default page
size 4 KB used in Linux memory management, and the size of a
bitmap page is 219 Bytes = 512 KB. After acquiring the taint
status from an address, Taint Recorder splits the address into
three parts. The first part includes a 10 bit prefix of the address,
which is used to look up the corresponding bitmap page
location in the page directory. The next 19 bit segment

Address: 1011 1111 1100 0000 0001 0010 0011 0110

0x00000000

0x08500000

10 bits 19 bits

Page Directory

0x08530000

0x00000000

Pages
(Allocation on demand)

1 1 1 0 0 0 1 1

3 bits

The address
in memory is

untainted

Fig. 3. Obtaining taint status from the page information table.

addresses the byte in the referred page, while the 3 bit suffix is
the bit offset within the referred byte. Figure 3 shows the
procedure of deriving the taint status from an address. The 10
bit prefix of the address is indexed to the bitmap page at
0x08500000. The next 19 bit segment addresses the byte in
0x08500000, where the byte is (11100011)2. The 3 bit suffix
(110) 2 of the address indicates that the 5th bit of (11100011)2 is
untainted for the given address.

D. Exploit Inspector
Exploit Inspector is a kernel component that examines

whether or not a program is executing code from a piece of
tracked taint data. It consists of a checking subroutine and a
cache of page directories for different processes to decrease the
frequency of communication between the user space and the
kernel space. After a system call is invoked, the checking
subroutine will be triggered to examine whether the IP of user
space points to taint data. The checking subroutine acquires the
taint status of IP in the user-space, as Fig. 3 illustrates. To
decrease the communication overhead between the user space
and kernel space, the kernel caches the page directories
accessed by IP for subsequent use. If the checking subroutine
determines the pointed address is innocent, the system call will
be invoked as usual; otherwise, the subroutine will terminate
the process and dump the process status for analysis and
defense as the memory near the IP value may be populated by
the exploit’s execution code. If the execution code can be
isolated, it can be used in IPS as an attack signature.

IV. EVALUATION
This study evaluates Embedded TaintTracker in terms of

effectiveness and performance. In effectiveness evaluation, we
reproduce a return address smashing attack against a vulnerable
echo server. Performance evaluation uses the most widely-used
web server, Apache, as a testing target and evaluates latency,
throughput, and the sustainable number of requests per second.

A. Effectiveness
A buffer overflow attack must first inject malicious code

into a victim’s memory space, and then corrupt different types
of code pointers, including return address, function pointer,
longjmp buffer, and GOT. Programmers have proposed many
solutions for buffer overflow defense to prevent code pointer

Attack
Identification

Bug Fixing

Signature
Generation

Fig. 4. The log from Embedded TaintTracker after detecting an attack.

Fig. 5. Experimental performance evaluation: a) latency in different page sizes
requested, where th Y-axis is the slowdown factor which is the
mechanism-enabled latency divided by native execution time; b) and c) are
degradation on throughput and requests per second for different numbers of
clients. The native results are listed in parentheses below the X-axis.

corruption. The effectiveness of these approaches should be
evaluated for enumerated code pointer types. However, the
proposed system, which is based on the taint tracking technique,
does not prevent code pointer corruption, but avoids malicious
code execution since the final target of any type of corrupt code
pointer is to execute malicious code. Thus, it is only necessary
to verify whether our system can block malicious code
execution to demonstrate its ability to defend against buffer
overflow attacks.

The test program in this study was an echo server with a
synthetic vulnerability that copies the string received from the
client into the local buffer without bound checking, and then
sends it back to client. This vulnerability is exploited when the
copied string exceeds the size of the local buffer, allowing an
attacker to inject malicious code and overflow return address,
and the malicious code adds a new account for the attacker.
Figure 4 shows the system log after the attack was launched. As
the figure indicates, Embedded TaintTracker successfully
identified the attack and logged the system call, and where it
was invoked. Besides, the log also recorded the value of IP
pointing to the last invoked function for bug fixing and dumped
the memory near the address of the system call invocation for
signature generation.

B. Performance
This study measured the performance degradation of

Embedded TaintTracker on an Apache web server, which is the

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 3 4 5

Web page size (Native latency)
(a)

La
te
nc
y
(S
lo
w
do

w
n
fa
ct
or
)

Embedded TaintTracker - Kernel

Embedded TaintTracker

Nullgrind

Memcheck

0

20

40

60

80

100

120

20

(112.08)

40

(125.98)

60

(138.94)

80

(133.70)

#Clients (Native req/sec)
(c)

D
eg

ra
da

ti
on

 o
n
Re

q/
Se

c

0

100

200

300

400

500

600

700

20

(685.74)

40

(755.75)

60

(828.64)

80

(828.54)

#Clients (Native throughput)
(b)

D
eg
ra
da
ti
on

 o
n
Th
ro
ug
hp

ut
 (K

B/
Se
c)

most widely used server on the Web. This performance
evaluation uses three key criteria, including latency, throughput,
and sustainable number of requests per second. Evaluation was
performed on a system with an Intel Core 2 Duo T5600 CPU
and 2 GB of RAM, running Ubuntu 7.10 on Linux kernel
2.6.22.

To compare with previous work, TaintCheck, and profile
the source of overhead, this study also measures Apache
performance with the kernel component of Embedded
TaintTracker, Valgrind Nullgrind, and MemCheck. Figure 5
denotes these as Embedded TaintTracker−Kernel, Nullgrind,
and MemCheck, respectively. Embedded
TaintTracker − Kernel measures the performance overhead
when the mechanism, which only examines the execution on
taint data, is enabled. Nullgrind and MemCheck, like
TaintCheck, are extensions of the Valgrind emulator. These
extensions have diverse degrees of instrumentation that can
represent two primary sources of overhead in TaintCheck.
Nullgrind does not instrument any additional instructions,
which implies that the extra execution time is caused by the
Valgrind emulator itself. MemCheck replaces TaintCheck in
this experiment since the TaintCheck source code is
unavailable. MemCheck looks for memory leaks and illegal
memory access using the same data structure as TaintCheck to
trace the status of memory and instrumentation on all memory
operations. Furthermore, MemCheck performs better than
TaintCheck because TaintCheck requires extra interception of
each jump-instruction. The author of TaintCheck has also
demonstrated that MemCheck offers superior performance [1].

To evaluate latency, the experiment requested differently
sized web pages (from 1 KB to 10 MB) and timed how long it
took to connect, send the request, receive the response, and
disconnect from the server. To prevent resource contention in
the test bed, the server was connected to another machine
running the testing program. The testing program was executed
five rounds, and each round requested the same page 60 times.
The result is the average median in each testing round.

Figure 5(a) shows the latency result with the slowdown
factor, which is defined as the execution time of the target
divided by the Apache execution time. The slowdown factor
decreases as the requested page size grows because the server
becomes less CPU-bound and more I/O bound. Embedded
TaintTracker generates a 1.37 slowdown when a 1 KB page is
requested and almost no overhead when the size of the accessed
page exceeds 100 KB. MemCheck performance is much worse
than the proposed system, especially when the page size is less
than 100 KB. According to the latency ratios between
MemCheck and TaintCheck described in [1], the slowdown
factors of TaintCheck when accessing 1KB, 10KB, 100KB,
1MB, and 10MB pages can be estimated as about 24, 5, 2.3, 1.2
and 1, respectively. Thus, Embedded TaintTracker is about
24/1.37=17.5 times faster than TaintCheck at accessing 1KB
pages.

Figures 5(b) and 5(c) show the results of evaluating the
throughput and sustainable number of requests per second
for different numbers of clients with WebBench. On average,
the proposed system imposes only 9.3% (73.48 KB/sec)
performance degradation which outperforms, by 8-fold, the

75.2% (592.08 KB/sec) performance degradation caused by
MemCheck. Running Apache under Valgrind already brings
a great 60% (358.78 KB/sec) overhead in the degradation of
MemCheck. Dynamic instrumentation of all memory access
operations and memory information maintenance contributes
the remaining 40% (233.3 KB/sec) overhead. This overhead
increases in proportion to the number of instrumented
operations. Also the overhead of TaintCheck is larger than
MemCheck. For example, when there are twenty clients,
memory access and jump represent 31% and 8% of the total
operations, respectively. TaintCheck imposes extra overhead
from instrumentation of the additional 8% jump operations
for checking malicious execution. Therefore, we can
reasonably deduce that Embedded TaintTracker outperforms
TaintCheck by at least 8-fold on throughput degradation.

Figure 5 also shows that Embedded TaintTracker – Kernel
slightly influences performance, meaning that the majority of
overhead in the proposed system is not from examining the
execution on taint data, but from maintaining taint information.
Thus we further measured the time consumed for maintaining
taint information table. When 1 KB pages are requested 1000
times, 61% of the extra time is spent on the bit-copy subroutine,
which is used to copy taint status from one bit to another, and
another 36% is spent on address translation for page tables. The
overhead from these subroutines may be further reduced. For
example, the time required for address translation can be
diminished by changing the structure of taint information table
to bitmap.

V. CONCLUSIONS
This paper proposes Embedded TaintTracker, a lightweight

taint-style system to defend against buffer overflow attacks.
This program is able to protect against various forms of buffer
overflow attacks and achieves acceptable performance.
Experimental results demonstrate that the proposed system
only imposes 9.3% throughput degradation, which outperforms
TaintCheck by at least 8-fold. This approach is also faster than
TaintCheck by about 17.5-fold when browsing 1KB pages.

REFERENCES
[1] J. Newsome and D. Song, “Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on commodity
software,” 12th Network and Distributed System Security Symposium,
2005.

[2] W. Cheng, Q. Zhao, B. Yu and S. Hiroshige, “TaintTrace: Efficient Flow
Tracing with Dynamic Binary Rewriting,” 11th IEEE Symposium on
Computers and Communications (ISCC'06), pp. 749-754, June 2006.

[3] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, Q. Zhang, and H. Hinton, “Stack-Guard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” 7th USENIX
Security Symposium, pp. 63–78, Jan. 1998.

[4] C. Cowan, S. Beattie, J. Johansen, and P.Wagle, “PointGuard:
Protecting pointers from buffer overflow vulnerabilities,” 12th
USENIX Security Symposium, pp. 91–104, Aug. 2003.

[5] R. W. M. Jones and P. H. J. Kelly, “Backwards compatible bounds
checking for arrays and pointers in C programs,” International
Workshop on Automated and Algorithmic Debugging, pp. 13–26, 1997.

[6] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Typesafe
retrofitting of legacy code,” 29th ACM Sigplan-Sigact Symposium on
Principles of Programming Languages (POPL), pp. 128–139, Jan. 2002.

[7] DynamoRIO, http://www.cag.lcs.mit.edu/dynamorio/

