
Hash-based Load Balanced Traffic Steering on
Softswitches for Chaining Virtualized Network Functions

Minh-Tuan Thai1, Ying-Dar Lin1, Po-Ching Lin2, Yuan-Cheng Lai3
1National Chiao Tung University, Hsinchu, Taiwan
2National Chung Cheng University, Chiayi, Taiwan

3National Taiwan University of Science and Technology, Taipei, Taiwan
Email: tmtuan.eed03g@nctu.edu.tw, ydlin@cs.nctu.edu.tw, pclin@cs.ccu.edu.tw, laiyc@cs.ntust.edu.tw

Abstract— Prior load balancing solutions for chaining
virtualized network functions cause significant control and data
plane overheads and demand special requirements on network
hardware. In this study, we present the design, implementation,
and evaluation of Hash-based Traffic Steering on Softswitches
(HATS), a load balancing mechanism that aims at mitigating such
drawbacks. The method exploits flow hashing technique
implemented on softswitches to perform server and network load
balancing without triggering the control plane. We have
implemented this design using OpenDayLight controller and
Open vSwitch platform. The implementation demonstrates that
HATS can be readily implemented with commodity network
hardware. Furthermore, the experiment results confirm that
HATS can reduce the number of flow entries and service chaining
time up to 85% and 93%, respectively, when compared with Least
Load First (LLF), a controller-based service chaining algorithm.

Keywords— Network function virtualization, service chaining,
load balancing, flow hashing, software defined networking.

I. INTRODUCTION

The introduction of network function virtualization (NFV)
[1] is promising to enable flexible deployment, management,
and provision of networking services in service providers’ data
centers whereby hardware-based middleboxes are replaced with
virtualized network functions (VNFs). Thanks to NFV
paradigm, a composite network service can be provided through
a service chain, which is a service policy defining a sequence of
VNFs being applied to service requests (i.e., flows) [2]. For
example, a network security service may require flows to pass
through a firewall, and then a content filter before ending at an
intrusion prevention system (IPS). To provision such services in
a data center environment, network operators have to construct
service paths, which are instances of service chains created using
the overlay topology between VNFs. In other words, service
paths define the interconnections of VNFs in an overlay network
that flows have to be steered across.

Service path instantiation (i.e., service chaining) raises two
significant concerns, namely VNF load balancing and network
path load balancing [3]. The first concern is from the fact that
there are multiple parallel instances of each VNF type for scale-
out reasons. As a result, a VNF load balancing scheme has to be
proposed to spread network traffic across those instances when
building service paths. Additionally, due to the multi-path
capacity of data center network topology, there should be a
network load balancing solution for service path construction.
Such two concerns have to be carefully addressed to ensure
operational efficiency and system performance.

A variety of research efforts [3,4,5,6] has been proposed to
meet the objectives of service chaining problems. Broadly
speaking, almost all prior studies on service chaining are SDN-
based solutions whereby proposed algorithms are mostly
implemented in the control plane. That is, there is an SDN
controller which is responsible for calculating service paths and
then inserting forwarding rules to the data plane switches to steer
flows across the required VNFs. Although these studies can
satisfy the desired service requirements, they all have two
important drawbacks. The first is control plane overhead, which
means the controller must keep track of the status of VNFs and
network to make service chaining decisions. It is a challenging
task due to the huge numbers of VNFs and network paths.
Furthermore, the controller needs to handle a remarkable
number of simultaneous packet-in events sent from the data
plane. The second drawback is data plane overhead, which is the
enormous number of flow entries inserted into switches since
each service path needs to be converted to a set of flow entries
on all the relevant switches. Additionally, the flow setup time is
significantly long, which probably downgrades the system
performance. According to [3], the time is approximately 80%
of the total service chaining time. To lower the control and data
plane overhead, the authors in [7] introduced a hash-based
method for achieving load balancing among service nodes in an
NFV environment. However, network load balancing issue is
ignored in that work, and that solution requires the support of
OpenFlow group table on hardware switches.

In this work, we propose a load balancing system for
chaining VNFs in a data center, called Hash-based Traffic
Steering on Softswitches (HATS), with the aim of mitigating the
control and data plane overhead in existing service chaining
solutions. The main idea of our solution is that a centralized
controller is employed to collect the network topology and
proactively disseminate corresponding load balancing
information to edge softswitches (software-based switches),
which steer network traffic to VNFs through multiple paths. The
VNF and path selection to construct service paths are made by
flow matching and hashing at softswitches instead of triggering
the controller. This solution not only supports VNF and network
load balancing but also significantly decreases system overhead.
Additionally, there are not any special requirements to network
hardware in our solution.

We have implemented our design using the OpenDayLight
(ODL) controller [8] and Open vSwitch [9], whereby VNF and
path selection are executed by the SELECT type of OpenFlow
group table. The performance of HATS is evaluated using
Mininet network emulator [10] with VNFs implemented by the

Click elements [11]. The experiment results show that HATS
can efficiently perform VNF and path load balancing while
significantly lower the number of flow entries and service
chaining time.

The rest of this paper is organized as follows. The service
chaining problem is described formally in Section II. In Section
III, we elaborate HATS and its implementation. Evaluation
study and experimental results are presented in Section IV.
Finally, Section V concludes this paper with a brief discussion
on future work.

II. PROBLEM DESCRIPTION

This section first formally describes important terminologies
in this study. Then the problem statement is introduced.

A. Terminologies

1) Virtualized network function (VNF): In service chaining,
a VNF is a service node offering a network function responsible
for a particular treatment of received packets. Let ܰ = {݊௜ , 0 ≤
 ݅ ≤ |ܰ|} be the set of |ܰ| network functions provided by the
system. The VNFs of the system are denoted by a set ܨ =
{ ௜݂,௝, 0 ≤ ݆ ≤ ௜}, where ௜݂,௝ܯ and ܯ௜ are the jth instance and
the number of instances of ݊௜ . We use ܸ(௜݂,௝) to indicate the
volume of network traffic arrives at VNF ௜݂,௝.

2) Network topology: Let ܵ = ௞ݏ} , 0 ≤ ݇ ≤ |ܵ|} be the set
of |ܵ| softswitches in the network topology to which VNFs are
connected. The softswitch-to-softswitch paths in the network is
represented by a set ܲ = ௞,௞ᇲ݌}

௨ , 0 ≤ ݇, ݇′ ≤ |ܵ|}, where ݌௞,௞ᇱ
௨ is

the ݑ th path from softswitch ݏ௞ to softswitch ݏ௞ᇱ ௞,௞ᇱ݌)ܸ .
௨)

denotes the volume of network traffic transmitted through the
path ݌௞,௞ᇱ

௨ . Further, let ܮ = {݈௜,௝
௞ } denote the locations of VNFs

in the network, where the binary variable ݈௜,௝
௞ ∈ {0,1} indicates

whether a VNF ௜݂,௝ ∈ ܨ is attached to a softswitch ݏ௞ ∈ ܵ ,
where

݈௜,௝
௞ = ቊ

1 ௜݂,௝ is attached to ݏ௞,

0 otherwise.
 (1)

3) Service request: Let ݎ௩(ܿ௩) ∈ ܴ be a service request
arriving at the system , where ܿ௩ is the service chain for its
processing. The service chain ܿ௩ ∈ ܥ is defined as a couple

(௩ܰ
ᇱ , ≺௩) , where ௩ܰ

ᇱ ⊆ ܰ is the set of network functions
demanded by ܿ௩ and ≺௩ represents the sequential order of the
functions ݊௜ ∈ ௩ܰ

ᇱ.

4) VNF and path load balancing: We define the VNF load
balancing criterion of network function ݊௜ as

௜ܮܸ = ܣܯ ௙ܺ೔,ೕ∈௡೔
(

௏(௙೔,ೕ)

ௌ௎ெ೑೔,ೕ∈೙೔
(௏(௙೔,ೕ))

) ∗ 100%, (2)

which is the maximum percentage of the volume of network
traffic arriving at VNFs ௜݂,௝ ∈ ݊௜. Similarly, path load balancing
criteria of the system is defined as

௣ܺܣܯ = ܮܰ
ೖ,ೖᇲ
ೠ ∈௉(

௏(௣ೖ,ೖᇲ
ೠ)

ௌ௎ெ೛
ೖ,ೖᇲ
ೠ ∈ು(௏(௣ೖ,ೖᇲ

ೠ))
) ∗ 100%, (3)

which is the maximum percentage of the volume of network
traffic transmitted through paths ݌௞,௞ᇲ

௨ ∈ ܲ.

5) Control and data plane overhead: Let ܧ indicate the
number of flow entries in the system and ܶ be the average
service chaining time for service requests.

B. Problem statement

Given a set of VNFs ܨ , an overlay network topology
,ܵ)ܩ ܲ, and a set of serivce requests ܴ, the objective of this ,(ܮ
work is to design an efficient service chaining mechanism which
not only provides server and network load balancing but also
minimizes control and data plane overhead. In other words, we
aim to minimize ܸܮ௜ , ,ܧ and lower ܮܰ ܶ at the same time when
making service chaining decisions.

III. HASH-BASED LOAD BALANCED TRAFFIC STEERING ON

SOFTSWITCHES

In this section, we present the design of HATS for solving
the service chaining problem defined in Section II. We first give
the overview of this approach with the fundamental design
ideas. The details are then elaborated in the subsequent
subsections. Finally, we introduce the implementation of HATS
using the ODL controller and Open vSwitch platform.

A. Approach Overview

Fig. 1 presents the overview of HATS wherein VNFs are
deployed in virtual machines running on physical servers. The
VNFs are connected to a data center network using softswitches.
To accommodate service requests arriving at a gateway, the
system has to make service chaining decisions that force the
flows to travel through the VNFs in the desired order. We aim
to address the VNF and network path load balancing issues
while reducing the control and data plane overhead in service
chaining. This requirement is satisfied by our design which
consists of following fundamental design decisions:

1) Hash-based traffic steering on softswitches: Most
literature does not differentiate service chaining and traffic
steering. Here we define service chaining as finding the
required network functions and the associated order that must
apply to flows, and traffic steering as forwarding packets
through VNFs. Chaining is thus to compute the service paths in

Fig. 1. The architecture of HATS.

the background periodically and store them in the flow tables
which are looked up when steering packets.

Existing studies [3,4,5,6] only implement load balancing
intelligence in service chaining algorithms, while in HATS, it
resides in both service chaining and traffic steering procedures.
The key idea is that the controller does not construct service
paths with specific VNFs and paths, but just proactively
disseminates possible candidates to the data plane components
such as softswitches and gateways, which will select specific
VNFs and paths by hash functions during traffic steering
operations instead of triggering the controller. By doing so,
HATS not only spreads flows to multiple VNFs and paths for
load balancing but also reduces the number of packet-in events
sent to the controller. Furthermore, HATS has no need of per-
flow matching at switches; therefore, the number of flow entries
and the waiting time for flow entry setup are remarkably
lowered. It should be noted that the gateways in this architecture
are responsible for steering network traffic to the first VNFs of
service paths.

2) Per-softswitch load balancing: The hash-based VNF and
network load balancing can be done at per-gateway, per-
softswitch, and per-hop levels. In this study, we choose the
second option in which the information of available VNFs is
kept in softswitches. After a packet is processed by a VNF, it
will be redirected to a softswitch responsible for determining
next destination (i.e., a VNF) of the packet by flow hashing.
Such steps are repeated until the packet travels through all
required network functions and returns to a gateway. Similarly,
pre-configured softswitch-to-softswitch paths are disseminated
in softswitches, and network traffic is split onto these paths by

flow hashing as well. The hardware switches in the network are
only responsible for tunneling network traffic from a softswitch
to another.

Even though hash-based load balancing can also be
accomplished in per-gateway and per-hop fashions, we decide
to implement it in softswitches for three reasons. The first reason
is that per-gateway approach is inefficient due to the huge
number of possible service paths in the network, while per-hop
approach performs poorly under asymmetric topologies [12] and
needs special requirements in hardware switches such as flow
hashing and SDN support, which demand extra hardware cost
and complicate system management. The second is that
softswitches reside at a suitable location (i.e., right above VNFs)
for load balancing tasks. They can easily modify packets without
requiring any changes to VNFs or hardware switches. It is
reasonable that next destination of a packet and the path to reach
the destination are determined at a softswitch. Redirecting the
packet to a gateway will raise scalability issues. Last but not
least, softswitch platforms such as Open vSwitch have important
functionalities like SDN-enable and OpenFlow group table,
which are necessary to implement our design.

3) Flowcell-based multipathing

Hash-based multipathing has a major drawback, which is
hash collision causing a few elephant (high bandwidth demand
and long-lived) flows to share the same path, even though the
other paths may be lightly loaded. This problem may
significantly decrease system performance. To combat it, we
follow the idea of flowcells [13], which are equal-size bursts of
packets by breaking an elephant flow at a gateway. Then the
flowcells are distributed over the paths like individual flows.

a) Detailed design of HATS

b) Packet format

Fig. 2. Controller-based service chaining and hash-based traffic steering on an edge softswitch.

The flowcell approach is promising to provide better load
balancing, but since it spreads packets of the same flow among
multipath, the packets may experience different latency, which
introduces packet reordering. The problem must be carefully
addressed to ensure the efficiency of any sub-flow load
balancing schemes.

Note that the flowcells of the same flow cannot be processed
by different VNFs of a stateful network function. In other words,
the flowcells must travel through the same VNFs but via
different paths in this design.

B. Detailed Design of HATS

Fig. 2 shows the details of the HATS design; wherein a
centralized controller is employed to collect the information of
service chains ܥ, VNFs ܨ, and network topology ܩ. Then the
controller generates traffic steering rules by inserting flow
entries into the forwarding tables of a softswitch ݏ௞ , which
involves Next service table, VNF selection table, VNF location
table and Path selection table. As an upstream packet arrives at
 ௞, it is processed by the pipelined tables. Based on the packetݏ
information, such as the desired service chain ܿ௩ , the current
visited network function ݊௜ᇱ, its flow_ID and flowcell_ID, the
tables select next VNF ௜݂,௝ and a path ݌௞,௞ᇱ

௨ to reach the VNF in
a load balancing manner without triggering the controller.

The matching inputs and associated actions of the tables are
shown in Fig. 2. Note that the tables are responsible for
processing upstream packets. For downstream ones, the
softswitch just decapsulates the packets and forwards them to
the destinations, i.e., VNFs.

1) Next service table: The matching inputs are the required
service chain ܿ௩ and the current visited network function ݊௜ᇱ.
The action is to determine next network function ݊௜ for
incoming packets.

2) VNF selection table: Next required network function ݊௜
is the macthing input. This table, which contains the
information about available VNFs belonging to the funciton ݊௜,
will select a particular VNF ௜݂,௝ by hashing the flow_ID of a
packet. The identifer of ௜݂,௝ is then encapluted into the packet
by adding an MPLS label. The flow_ID consists of the packet’s
fields such as etherType, src/dst MAC, src/dst IP and src/dst
UDP/TCP ports, which identify the flow that the packet belongs
to. The controller periodically maintains the VNFs set ܨ, and
then updates this table. Note that VNFs are dynamically created
and destroyed over time in the NFV enviroment.

3) VNF location table: After determining the next VNF ௜݂,௝,
packets are forwarded to this table, which is responsible for
finding the connected softswitch ݏ௞ᇱ of VNF ௜݂,௝ . Obviously,
the matching input here is ௜݂,௝, and the associated action is to
determine ݏ௞ᇱ.

4) Path selection table: Since the VNF location table has
determined the destination switch ݏ௞ᇱ, it will select a specified
path ݌௞,௞ᇱ

௨ from the current switch ݏ௞ to the destination switch
௞ᇱݏ among the candidates. The task is done by hashing the
packet’s flowcell_ID, which consists of flow_ID and the MPLS
TC field of a paket. In this study, we borrow the MPLS TC field
to identify the flowcell to which the packet belongs. Similar to
the VNF selection table, the identifier of the path ݌௞,௞ᇱ

௨ is also
added to the packet using an MPLS label for routing purposes.

At a high level, the controller proactively computes all
softswitch-to-softswitch paths ݌௞,௞ᇱ

௨ ∈ ܲ . Every path ݌௞,௞ᇱ
௨ is

assigned a unique forwarding identifier. Once the paths are set
up, the controller inserts the relevant forwarding rules into
hardware switches to set up routing tunnels and installs the path
information into the path selection tables in softswitches.

C. Implementation

To validate our design, we have implemented HATS using
the ODL controller and Open vSwitch. A module is
implemented on the controller to collect network topology and
VNF information by periodically sending query commands to
the data plane components via an ODL OpenFlow plugin.
Subsequently, the corresponding flow entries are generated and
then inserted into the switches.

1) VNF and path selection by OpenFlow Group table on
Open vSwitch: OpenFlow group table [14] consists of multiple
group entries which contain separate lists of actions referred to
as OpenFlow buckets. The group types such as ALL,
INDIRECT, FAST FAILOVER and SELECT determine how to
apply buckets to incoming packets. For the group type
SELECT, only one bucket is chosen to process packets using a
switch-computed selection mechanism.

Since the selection mechanism of the group type SELECT
on Open vSwitch is to hash a packet’s fields, we leverage it to

TABLE I. VNF AND PATH SELECTION TABLES IMPLEMENTATION

 A group entry A bucket Hashed fields Actions

VNF
selection
group table

- A network
function ݊௜

- A VNF

௜݂,௝ ∈ ݊௜
- flow_ID and

(ܿ௩ , ݊௜′)
- Push MPLS

label with
VNF ID ௜݂,௝

Path
selection
group table

- A pair of
softswitches
 ௞ᇱݏ ௞ andݏ

- A path
′௞,௞݌

௨
- flowcell_ID

and ௜݂,௝
- Push MPLS

label with
path ID ݌௞,௞′

௨

Fig. 3. Experimental setup.

implement the hash-based traffic steering algorithm in HATS.
Table I displays how VNF and Path selection tables are installed
using Open vSwitch group tables. Note that we need to use two
Open vSwitches to implement a softswitch ݏ௞ in HATS because
Open vSwitch demands that the group table must be the last
table in pipeline processing.

2) Elephant flow detection and Flowcell segmentation: To
split an elephant flow into two or more flowcells, HATs
maintains a per-flow counter at the gateway. We install a
forwarding rule that exactly specifies all fields of the flow’s
flow_ID and an associated counter of bytes increased whenever
a packet of the flow arrives at the gateway. A script periodically
checks whether the counter exceeds the flowcell size. If yes, it
increases the value of MPLS TC field, which is the flowcell
identifier of incoming packets and resets the counter. Note that
when flowcell identifier exceeds the maximum value of MPLS
TC field, it is reset to zero. An alternative technique for flowcell
segmentation is monitoring the TCP sequence numbers of
packets in the same flow. However, this technique is
inapplicable to UDP traffic and not supported by Open vSwitch.

IV. PERFORMANCE EVALUATION

This section presents the experimental evaluation in which
the effectiveness of HATS is verified.

A. Experimental setup

Fig. 3 shows the experimental setup to evaluate the
performance of HATS. Our experiments are conducted in a 4-
pod fat-tree network topology simulated by Mininet network
emulator. We use Click elements to implement four types of
VNFs, namely, L2 packet forwarding (LF), bandwidth shaper
(BS), IP packet filter (IF) and network address translation-NAT
(NT). The VNFs are deployed in Mininet hosts, and there are 16
instances per VNF type. We implement HATS in Open vSwitch
2.5.0, and ODL Beryllium-SR2 is deployed as the SDN
controller in our experiments.

Network service requests are TCP flows generated by iPerf3
[15]. We create a new flow every 100ms by randomly
establishing a connection between pairs of hosts among 16
hosts, i.e., Host 1 (H01) ~ Host 16 (H16). In this study, we
follow heavy-tailed flow size distribution from a data center
[16]. That is, most of the data are from a small fraction of
elephant flows. In our experiments, 10% of flows are elephants
whose durations are exponentially distributed with the mean of
10s, while mice flows last for 1s. Each flow requires a service
chain whose number of network functions is uniformly
generated in the range [1, 4].

We compare the performance of HATS to Least Load First
(LLF) algorithm. In contrast to our design, LLF performs load
balancing in the control plane. That is, the controller estimates
the current load of VNFs and paths by querying the number of
transmitted bytes of switch ports in every 1s. Then, for each
required network function in the service chains, the algorithm
selects the least loaded VNF and path among feasible candidates
to construct service paths. The two algorithms are compared and
discussed based on four metrics, namely, the VNF load
balancing criteria ௜ܮܵ , the network path load balancing
criteria ܰܮ, the total number of flow entries ܧ, and the average
service chaining time ܶ. Note that we do not compare HATS to
existing service chaining solutions [3,4,5,6,7] since they do not
share the same objectives with our method or demand special
requirements to implement.

All the experiment results shown here are obtained by
averaging the results of 5 simulation runs. Each run is
terminated upon successful completion of 10,000 flows.

B. Result analysis

1) VNF allocation: Homogeneous vs. Heterogeneous: In
this experiment, we observe the performance of investigated
algorithms under two VNF allocation scenarios, namely
homogeneous and heterogeneous. As can be seen in Fig. 3, a
physical machine consists of only one type of VNFs in a
homogeneous scenario, whereas each machine consists of all
four types of VNFs in a heterogeneous scenario.

Figs. 4a and 4b clearly show that HATS reduces control and
data plane overhead significantly. Compared with LLF, HATS
can decrease the number of flow entries by about 82%, from
101.6 thousand to 18.4 thousand. Besides, the service chaining
time is also reduced by over 92%, from 479ms to 38ms. The
results are almost the same in homogeneous and heterogeneous
scenarios. In other words, VNF allocation strategies do not
affect control and data overhead.

The performance of VNF and path load balancing of HATS
and LLF are compared in Figs. 4c and 4d. The experiment
results indicate that HATS can efficiently perform VNF and path
load balancing, but not as well as LLF due to hash collisions.
There is a ~4.0% difference between two algorithms in the VNF
load balancing criterion in both allocation scenarios. In term of
path load balancing, LFF is about 0.15% and 0.66% better than
HATS in homogeneous and heterogeneous scenarios. Fig. 4d
also displays that both algorithms have better path load
balancing performance in a homogeneous scenario. It can be
explained by the fact that there are always multiple paths from a

 a) Number of flow entries b) Service chaining time c) VNF load balancing d) Path load balancing
Fig. 4. VNF allocation: Homogeneous vs. Heterogeneous.

type- ݅ VNF to a type- ݅′ VNF in the scenario, but not in a
heterogeneous scenario.

2) The impact of service chain length: We conduct another
experiment in which the number of required network functions
in service chains varies in the range [2,4], and VNFs are
homogeneously allocated. By doing so, the performance of both
algorithms is investigated with various service chain lengths.
Note that we do not show the results of VNF and path load
balancing in this experiment since the service chain lengths do
not clearly impact on such two metrics.

As expected, the experiment results demonstrate that the
length of service chains significantly affects the performance of
LLF algorithm, but not HATS. As can be seen in Fig. 5, the
number of flow entries and the service chaining time are linearly
increased with the service chain length in the LLF algorithm. To
be specific, the number of flow entries is increased from 85.5
thousand to 126.2 thousand when the length is changed from 2
to 4. In other words, LLF requires about 2 more entries per flow
when the service chain length increases by one network
function. Meanwhile, the service chaining time is increased
from 446ms to 589ms in the same range of service chain length.
On the other hand, the control and data plane overheads are
almost stable in HATS. In the case in which the service chain
length is set to 4, the performance difference between HATS and
LLF is roughly 85% and 93% in terms of the number of flow
entries and the service chaining time.

3) The impact of elephant flows: To understand the
influence of elephant flows to the performance of HATS and
LLF algorithms, we continue conducting this investigation in
which the percentage of elephant flows varies in the range
[0%,30%] and the VNF allocation is also homogeneous.

Fig. 6 displays the performance of HATS and LLF
algorithms in terms of VNF and path load balancing metrics.
The results indicate that LLF is unaffected by the percentage of
elephant flows, i.e., its performance is stable with the value of
about 6.4% and 0.4% in the two metrics. In the case of HATS,
unfortunately, the performance is getting worse when the
percentage of elephant flows is increased from 0% to 30%. Take
path load balancing metric, for example; it increases from 0.52%
to 2.44%. To sum up, the elephant flows have high impact in
HATS algorithm, but not LLF algorithm.

V. CONCLUSION

This paper presents HATS which is an efficient load
balancing mechanism for chaining VNFs in a data center. Our
method employs a centralized controller to collect network

topology and then disseminates corresponding load balancing
information to edge softswitches responsible for splitting
network traffic to VNFs through multiple paths using flow
hashing technique. Compared to previous solutions, HATS does
not require any special requirements to network hardware while
significantly reduces control and data plane overheads. Our
future works will focus on reducing the impact of elephant flows
to load balancing performance, and handling packet reordering.

REFERENCES
[1] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck and R.

Boutaba, “Network Function Virtualization: State-of-the-Art and
Research Challenges,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 236–262, First Quarter 2016.

[2] P. Quinn and J. Guichard, “Service Function Chaining: Creating a Service
Plane via Network Service Headers,” IEEE Computer, vol. 47, no. 11, pp.
38–44, Nov. 2014.

[3] M.-T. Thai, Y.-D. Lin and Y.-C. Lai, “A joint network and server load
balancing algorithm for chaining virtualized network functions,” IEEE
ICC, May 2016.

[4] G. Cheng, H. Chen, H. Hu, Z. Wang and J. Lan, “Enabling network
function combination via service chain instantiation,” Computer
Networks, vol. 92, Part 2, pp. 396–407, Dec. 2015.

[5] T. Li, H. Zhou and H. Luo, “A new method for providing network
services: Service function chain,” Optical Switching and Networking.

[6] M. Arumaithurai, J. Chen, E. Monticelli, X. Fu and K. K. Ramakrishnan,
“Exploiting ICN for Flexible Management of Software-defined
Networks,” in Proceedings of the 1st International Conference on
Information-centric Networking, New York, NY, USA, 2014, pp. 107–
116.

[7] P. C. Lin, Y. D. Lin, C. Y. Wu, Y. C. Lai, and Y. C. Kao, “Balanced
Service Chaining in Software-Defined Networks with Network Function
Virtualization,” Computer, vol. 49, no. 11, pp. 68–76, Nov. 2016.

[8] “OpenDayLight”. Available at: https://www.opendaylight.org/

[9] “Open vSwitch”. Available at: http://openvswitch.org/

[10] “Mininet”. Available at: http://mininet.org/

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti and M. F. Kaashoek, “The Click
Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–
297, Aug. 2000.

[12] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh and A.
Vahdat, “WCMP: Weighted Cost Multipathing for Improved Fairness in
Data Centers,” in Proceedings of the Ninth European Conference on
Computer Systems, New York, NY, USA, 2014, p. 5:1–5:14.

[13] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter and A. Akella, “Presto:
Edge-based Load Balancing for Fast Datacenter Networks,” in
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication, New York, NY, USA, 2015, pp. 465–478.

[14] “OpenFlow Switch Specification version 1.5.0”. Available at:
https://www.opennetworking.org/

[15] “iPerf3”. Available at: https://iperf.fr/

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel and R. Chaiken, “The
Nature of Data Center Traffic: Measurements & Analysis,” in
Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, New York, NY, 2009, pp. 202–208.

a) Number of flow entries b) Service chaining time

Fig. 5. The impact of service chain length.

a) VNF load balancing b) Path load balancing

Fig. 6. The impact of elephant flows.

