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Abstract— Prior load balancing solutions for chaining 
virtualized network functions cause significant control and data 
plane overheads and demand special requirements on network 
hardware. In this study, we present the design, implementation, 
and evaluation of Hash-based Traffic Steering on Softswitches 
(HATS), a load balancing mechanism that aims at mitigating such 
drawbacks. The method exploits flow hashing technique 
implemented on softswitches to perform server and network load 
balancing without triggering the control plane. We have 
implemented this design using OpenDayLight controller and 
Open vSwitch platform. The implementation demonstrates that 
HATS can be readily implemented with commodity network 
hardware. Furthermore, the experiment results confirm that 
HATS can reduce the number of flow entries and service chaining 
time up to 85% and 93%, respectively, when compared with Least 
Load First (LLF), a controller-based service chaining algorithm. 

Keywords— Network function virtualization, service chaining, 
load balancing, flow hashing, software defined networking. 

I. INTRODUCTION  

The introduction of network function virtualization (NFV) 
[1] is promising to enable flexible deployment, management, 
and provision of networking services in service providers’ data 
centers whereby hardware-based middleboxes are replaced with 
virtualized network functions (VNFs). Thanks to NFV 
paradigm, a composite network service can be provided through 
a service chain, which is a service policy defining a sequence of 
VNFs being applied to service requests (i.e., flows) [2]. For 
example, a network security service may require flows to pass 
through a firewall, and then a content filter before ending at an 
intrusion prevention system (IPS). To provision such services in 
a data center environment, network operators have to construct 
service paths, which are instances of service chains created using 
the overlay topology between VNFs. In other words, service 
paths define the interconnections of VNFs in an overlay network 
that flows have to be steered across. 

Service path instantiation (i.e., service chaining) raises two 
significant concerns, namely VNF load balancing and network 
path load balancing [3]. The first concern is from the fact that 
there are multiple parallel instances of each VNF type for scale-
out reasons. As a result, a VNF load balancing scheme has to be 
proposed to spread network traffic across those instances when 
building service paths. Additionally, due to the multi-path 
capacity of data center network topology, there should be a 
network load balancing solution for service path construction. 
Such two concerns have to be carefully addressed to ensure 
operational efficiency and system performance. 

A variety of research efforts [3,4,5,6] has been proposed to 
meet the objectives of service chaining problems. Broadly 
speaking, almost all prior studies on service chaining are SDN-
based solutions whereby proposed algorithms are mostly 
implemented in the control plane. That is, there is an SDN 
controller which is responsible for calculating service paths and 
then inserting forwarding rules to the data plane switches to steer 
flows across the required VNFs. Although these studies can 
satisfy the desired service requirements, they all have two 
important drawbacks. The first is control plane overhead, which 
means the controller must keep track of the status of VNFs and 
network to make service chaining decisions. It is a challenging 
task due to the huge numbers of VNFs and network paths. 
Furthermore, the controller needs to handle a remarkable 
number of simultaneous packet-in events sent from the data 
plane. The second drawback is data plane overhead, which is the 
enormous number of flow entries inserted into switches since 
each service path needs to be converted to a set of flow entries 
on all the relevant switches. Additionally, the flow setup time is 
significantly long, which probably downgrades the system 
performance. According to [3],  the time is approximately 80% 
of the total service chaining time. To lower the control and data 
plane overhead, the authors in [7] introduced a hash-based 
method for achieving load balancing among service nodes in an 
NFV environment. However, network load balancing issue is 
ignored in that work, and that solution requires the support of 
OpenFlow group table on hardware switches. 

In this work, we propose a load balancing system for 
chaining VNFs in a data center, called Hash-based Traffic 
Steering on Softswitches (HATS), with the aim of mitigating the 
control and data plane overhead in existing service chaining 
solutions. The main idea of our solution is that a centralized 
controller is employed to collect the network topology and 
proactively disseminate corresponding load balancing 
information to edge softswitches (software-based switches), 
which steer network traffic to VNFs through multiple paths. The 
VNF and path selection to construct service paths are made by 
flow matching and hashing at softswitches instead of triggering 
the controller. This solution not only supports VNF and network 
load balancing but also significantly decreases system overhead. 
Additionally, there are not any special requirements to network 
hardware in our solution. 

We have implemented our design using the OpenDayLight 
(ODL) controller [8] and Open vSwitch [9], whereby VNF and 
path selection are executed by the SELECT type of OpenFlow 
group table. The performance of  HATS  is evaluated using 
Mininet network emulator [10] with VNFs implemented by the 



Click elements [11]. The experiment results show that HATS 
can efficiently perform VNF and path load balancing while 
significantly lower the number of flow entries and service 
chaining time. 

The rest of this paper is organized as follows. The service 
chaining problem is described formally in Section II. In Section 
III, we elaborate HATS and its implementation. Evaluation 
study and experimental results are presented in Section IV. 
Finally, Section V concludes this paper with a brief discussion 
on future work. 

II. PROBLEM DESCRIPTION 

This section first formally describes important terminologies 
in this study. Then the problem statement is introduced. 

A. Terminologies 

1) Virtualized network function (VNF): In service chaining, 
a VNF is a service node offering a network function responsible 
for a particular treatment of received packets. Let ܰ = {݊௜ , 0 ≤
 ݅ ≤ |ܰ|}  be the set of |ܰ| network functions provided by the 
system. The VNFs of the system are denoted by a set ܨ =
{ ௜݂,௝, 0 ≤  ݆ ≤ ௜}, where ௜݂,௝ܯ  and ܯ௜  are the jth instance and 
the number of instances of ݊௜ . We use ܸ( ௜݂,௝) to indicate the 
volume of network traffic arrives at VNF ௜݂,௝. 

2) Network topology: Let ܵ = ௞ݏ} , 0 ≤ ݇ ≤ |ܵ|} be the set 
of |ܵ| softswitches in the network topology to which VNFs are 
connected. The softswitch-to-softswitch paths in the network is 
represented by a set ܲ = ௞,௞ᇲ݌}

௨ , 0 ≤ ݇, ݇′ ≤ |ܵ|}, where ݌௞,௞ᇱ
௨  is 

the ݑ th path from softswitch ݏ௞  to softswitch ݏ௞ᇱ ௞,௞ᇱ݌)ܸ .
௨ ) 

denotes the volume of network traffic transmitted through the 
path ݌௞,௞ᇱ

௨ . Further, let ܮ = {݈௜,௝
௞ } denote the locations of VNFs 

in the network, where the binary variable ݈௜,௝
௞ ∈ {0,1} indicates 

whether a VNF ௜݂,௝ ∈ ܨ  is attached to a softswitch ݏ௞ ∈ ܵ , 
where 

݈௜,௝
௞ = ቊ

1   ௜݂,௝  is attached to  ݏ௞,

0   otherwise.                      
  (1) 

3) Service request: Let ݎ௩(ܿ௩) ∈ ܴ  be a service request 
arriving at the system ,  where ܿ௩  is the service chain for its 
processing. The service chain ܿ௩ ∈ ܥ  is defined as a couple 

( ௩ܰ
ᇱ , ≺௩) , where ௩ܰ

ᇱ ⊆ ܰ  is the set of network functions 
demanded by ܿ௩ and ≺௩ represents the sequential order of the 
functions ݊௜ ∈  ௩ܰ

ᇱ. 

4) VNF and path load balancing: We define the VNF load 
balancing criterion of network function ݊௜ as 

௜ܮܸ = ܣܯ  ௙ܺ೔,ೕ∈௡೔
(

௏(௙೔,ೕ)

ௌ௎ெ೑೔,ೕ∈೙೔
(௏(௙೔,ೕ))

) ∗ 100%, (2) 

which is the maximum percentage of the volume of network 
traffic arriving at VNFs ௜݂,௝ ∈ ݊௜. Similarly, path load balancing 
criteria of the system is defined as 

௣ܺܣܯ = ܮܰ
ೖ,ೖᇲ
ೠ ∈௉(

௏(௣ೖ,ೖᇲ
ೠ )

ௌ௎ெ೛
ೖ,ೖᇲ
ೠ ∈ು(௏(௣ೖ,ೖᇲ

ೠ ))
) ∗ 100%, (3) 

which is the maximum percentage of the volume of network 
traffic transmitted through paths  ݌௞,௞ᇲ

௨ ∈ ܲ. 

5) Control and data plane overhead: Let ܧ  indicate the 
number of flow entries in the system and ܶ  be the average 
service chaining time for service requests. 

B. Problem statement 

Given a set of VNFs ܨ , an overlay network topology 
,ܵ)ܩ ܲ,  and a set of serivce requests ܴ, the objective of this ,(ܮ
work is to design an efficient service chaining mechanism which 
not only provides server and network load balancing but also 
minimizes control and data plane overhead.  In other words, we 
aim to minimize ܸܮ௜ , ,ܧ and lower ܮܰ ܶ at the same time when 
making service chaining decisions. 

III. HASH-BASED LOAD BALANCED TRAFFIC STEERING ON 

SOFTSWITCHES  

In this section, we present the design of HATS for solving 
the service chaining problem defined in Section II. We first give 
the overview of this approach with the fundamental design 
ideas. The details are then elaborated in the subsequent 
subsections. Finally, we introduce the implementation of HATS 
using the ODL controller and Open vSwitch platform. 

A. Approach Overview 

Fig.  1 presents the overview of HATS wherein VNFs are 
deployed in virtual machines running on physical servers. The 
VNFs are connected to a data center network using softswitches. 
To accommodate service requests arriving at a gateway, the 
system has to make service chaining decisions that force the 
flows to travel through the VNFs in the desired order. We aim 
to address the VNF and network path load balancing issues 
while reducing the control and data plane overhead in service 
chaining. This requirement is satisfied by our design which 
consists of following fundamental design decisions: 

1) Hash-based traffic steering on softswitches: Most 
literature does not differentiate service chaining and traffic 
steering.  Here we define service chaining as finding the 
required network functions and the associated order that must 
apply to flows, and traffic steering as forwarding packets 
through VNFs. Chaining is thus to compute the service paths in 

Fig. 1. The architecture of HATS. 



the background periodically and store them in the flow tables 
which are looked up when steering packets. 

Existing studies [3,4,5,6] only implement load balancing 
intelligence in service chaining algorithms, while in HATS, it 
resides in both service chaining and traffic steering procedures. 
The key idea is that the controller does not construct service 
paths with specific VNFs and paths, but just proactively 
disseminates possible candidates to the data plane components 
such as softswitches and gateways, which will select specific 
VNFs and paths by hash functions during traffic steering 
operations instead of triggering the controller. By doing so, 
HATS not only spreads flows to multiple VNFs and paths for 
load balancing but also reduces the number of packet-in events 
sent to the controller. Furthermore, HATS has no need of per-
flow matching at switches; therefore, the number of flow entries 
and the waiting time for flow entry setup are remarkably 
lowered. It should be noted that the gateways in this architecture 
are responsible for steering network traffic to the first VNFs of 
service paths. 

2) Per-softswitch load balancing: The hash-based VNF and 
network load balancing can be done at per-gateway, per-
softswitch, and per-hop levels. In this study, we choose the 
second option in which the information of available VNFs is 
kept in softswitches. After a packet is processed by a VNF, it 
will be redirected to a softswitch responsible for determining 
next destination (i.e., a VNF) of the packet by flow hashing. 
Such steps are repeated until the packet travels through all 
required network functions and returns to a gateway. Similarly, 
pre-configured softswitch-to-softswitch paths are disseminated 
in softswitches, and network traffic is split onto these paths by 

flow hashing as well. The hardware switches in the network are 
only responsible for tunneling network traffic from a softswitch 
to another. 

Even though hash-based load balancing can also be 
accomplished in per-gateway and per-hop fashions, we decide 
to implement it in softswitches for three reasons. The first reason 
is that per-gateway approach is inefficient due to the huge 
number of possible service paths in the network, while per-hop 
approach performs poorly under asymmetric topologies [12] and 
needs special requirements in hardware switches such as flow 
hashing and SDN support, which demand extra hardware cost 
and complicate system management. The second is that 
softswitches reside at a suitable location (i.e., right above VNFs) 
for load balancing tasks. They can easily modify packets without 
requiring any changes to VNFs or hardware switches. It is 
reasonable that next destination of a packet and the path to reach 
the destination are determined at a softswitch. Redirecting the 
packet to a gateway will raise scalability issues. Last but not 
least, softswitch platforms such as Open vSwitch have important 
functionalities like SDN-enable and OpenFlow group table, 
which are necessary to implement our design. 

3) Flowcell-based multipathing 

Hash-based multipathing has a major drawback, which is 
hash collision causing a few elephant (high bandwidth demand 
and long-lived) flows to share the same path, even though the 
other paths may be lightly loaded. This problem may 
significantly decrease system performance. To combat it, we 
follow the idea of flowcells [13], which are equal-size bursts of 
packets by breaking an elephant flow at a gateway. Then the 
flowcells are distributed over the paths like individual flows. 

a) Detailed design of HATS 

 
b) Packet format 

Fig. 2. Controller-based service chaining and hash-based traffic steering on an edge softswitch. 



The flowcell approach is promising to provide better load 
balancing, but since it spreads packets of the same flow among 
multipath, the packets may experience different latency, which 
introduces packet reordering. The problem must be carefully 
addressed to ensure the efficiency of any sub-flow load 
balancing schemes. 

Note that the flowcells of the same flow cannot be processed 
by different VNFs of a stateful network function. In other words, 
the flowcells must travel through the same VNFs but via 
different paths in this design. 

B. Detailed Design of HATS 

Fig. 2 shows the details of the HATS design; wherein a  
centralized controller is employed to collect the information of 
service chains ܥ, VNFs ܨ, and network topology ܩ. Then the 
controller generates traffic steering rules by inserting flow 
entries into the forwarding tables of a softswitch ݏ௞ , which 
involves Next service table, VNF selection table, VNF location 
table and Path selection table. As an upstream packet arrives at 
 ௞, it is processed by the pipelined tables. Based on the packetݏ
information, such as the desired service chain ܿ௩ , the current 
visited network function ݊௜ᇱ, its flow_ID and flowcell_ID, the 
tables select next VNF ௜݂,௝ and a path ݌௞,௞ᇱ

௨  to reach the VNF in 
a load balancing manner without triggering the controller. 

The matching inputs and associated actions of the tables are 
shown in Fig. 2. Note that the tables are responsible for 
processing upstream packets. For downstream ones, the 
softswitch just decapsulates the packets and forwards them to 
the destinations, i.e., VNFs. 

1) Next service table: The matching inputs are the required 
service chain ܿ௩  and the current visited network function ݊௜ᇱ. 
The action is to determine next network function ݊௜  for 
incoming packets. 

2) VNF selection table: Next required network function ݊௜ 
is the macthing input. This table, which contains the 
information about available VNFs belonging to the funciton ݊௜, 
will select a particular VNF ௜݂,௝  by hashing the flow_ID of a 
packet. The identifer of ௜݂,௝ is then encapluted into the packet 
by adding an MPLS label. The flow_ID consists of the packet’s 
fields such as etherType, src/dst MAC, src/dst IP and src/dst 
UDP/TCP ports, which identify the flow that the packet belongs 
to. The controller periodically maintains the VNFs set ܨ, and 
then updates this table. Note that VNFs are dynamically created 
and destroyed over time in the NFV enviroment. 

3) VNF location table: After determining the next VNF ௜݂,௝, 
packets are forwarded to this table, which is responsible for 
finding the connected softswitch ݏ௞ᇱ  of VNF ௜݂,௝ . Obviously, 
the matching input here is ௜݂,௝, and the associated action is to 
determine ݏ௞ᇱ. 

4) Path selection table: Since the VNF location table has 
determined the destination switch ݏ௞ᇱ, it will select a specified 
path ݌௞,௞ᇱ

௨ from the current switch ݏ௞  to the destination switch 
௞ᇱݏ  among the candidates. The task is done by hashing the 
packet’s flowcell_ID, which consists of  flow_ID and the MPLS 
TC field of a paket. In this study, we borrow the MPLS TC field 
to identify the flowcell to which the packet belongs. Similar to 
the VNF selection table, the identifier of the path ݌௞,௞ᇱ

௨  is also 
added to the packet using an MPLS label for routing purposes. 

At a high level, the controller proactively computes all 
softswitch-to-softswitch paths ݌௞,௞ᇱ

௨ ∈ ܲ . Every path ݌௞,௞ᇱ
௨  is 

assigned a unique forwarding identifier. Once the paths are set 
up, the controller inserts the relevant forwarding rules into 
hardware switches to set up routing tunnels and installs the path 
information into the path selection tables in softswitches. 

C. Implementation 

To validate our design, we have implemented HATS using 
the ODL controller and Open vSwitch. A module is 
implemented on the controller to collect network topology and 
VNF information by periodically sending query commands to 
the data plane components via an ODL OpenFlow plugin. 
Subsequently, the corresponding flow entries are generated and 
then inserted into the switches. 

1) VNF and path selection by OpenFlow Group table on 
Open vSwitch: OpenFlow group table [14] consists of multiple 
group entries which contain separate lists of actions referred to 
as OpenFlow buckets. The group types such as ALL, 
INDIRECT, FAST FAILOVER and SELECT determine how to 
apply buckets to incoming packets. For the group type 
SELECT, only one bucket is chosen to process packets using a 
switch-computed selection mechanism. 

Since the selection mechanism of the group type SELECT 
on Open vSwitch is to hash a packet’s fields, we leverage it to 

TABLE I.  VNF AND PATH SELECTION TABLES IMPLEMENTATION 

 A group entry A bucket  Hashed fields Actions 

VNF 
selection 
group table 

- A network 
function ݊௜  

- A VNF  

௜݂,௝  ∈ ݊௜  
- flow_ID  and 

(ܿ௩ , ݊௜′)  
- Push MPLS 

label with 
VNF ID ௜݂,௝  

Path 
selection 
group table 

- A pair of 
softswitches 
     ௞ᇱݏ ௞ andݏ

- A path   
′௞,௞݌

௨  
- flowcell_ID  

and ௜݂,௝   
-  Push MPLS 

label with 
path ID ݌௞,௞′

௨  

 

Fig. 3. Experimental setup. 



implement the hash-based traffic steering algorithm in HATS. 
Table I displays how VNF and Path selection tables are installed 
using Open vSwitch group tables. Note that we need to use two 
Open vSwitches to implement a softswitch ݏ௞ in HATS because 
Open vSwitch demands that the group table must be the last 
table in pipeline processing. 

2) Elephant flow detection and Flowcell segmentation: To 
split an elephant flow into two or more flowcells, HATs 
maintains a per-flow counter at the gateway. We install a 
forwarding rule that exactly specifies all fields of the flow’s 
flow_ID and an associated counter of bytes increased whenever 
a packet of the flow arrives at the gateway. A script periodically 
checks whether the counter exceeds the flowcell size. If yes, it 
increases the value of MPLS TC field, which is the flowcell 
identifier of incoming packets and resets the counter. Note that 
when flowcell identifier exceeds the maximum value of MPLS 
TC field, it is reset to zero. An alternative technique for flowcell 
segmentation is monitoring the TCP sequence numbers of 
packets in the same flow. However, this technique is 
inapplicable to UDP traffic and not supported by Open vSwitch. 

IV. PERFORMANCE EVALUATION 

This section presents the experimental evaluation in which 
the effectiveness of HATS is verified. 

A. Experimental setup 

Fig. 3 shows the experimental setup to evaluate the 
performance of HATS.  Our experiments are conducted in a 4-
pod fat-tree network topology simulated by Mininet network 
emulator. We use Click elements to implement four types of 
VNFs, namely, L2 packet forwarding (LF), bandwidth shaper 
(BS), IP packet filter (IF) and network address translation-NAT 
(NT). The VNFs are deployed in Mininet hosts, and there are 16 
instances per VNF type. We implement HATS in Open vSwitch 
2.5.0, and ODL Beryllium-SR2 is deployed as the SDN 
controller in our experiments. 

Network service requests are TCP flows generated by iPerf3 
[15]. We create a new flow every 100ms by randomly 
establishing a connection between pairs of hosts among 16 
hosts, i.e., Host 1 (H01) ~ Host 16 (H16). In this study, we 
follow heavy-tailed flow size distribution from a data center 
[16]. That is, most of the data are from a small fraction of 
elephant flows. In our experiments, 10% of flows are elephants 
whose durations are exponentially distributed with the mean of 
10s, while mice flows last for 1s. Each flow requires a service 
chain whose number of network functions is uniformly 
generated in the range [1, 4]. 

We compare the performance of HATS to Least Load First 
(LLF) algorithm. In contrast to our design, LLF performs load 
balancing in the control plane. That is, the controller estimates 
the current load of VNFs and paths by querying the number of 
transmitted bytes of switch ports in every 1s. Then, for each 
required network function in the service chains, the algorithm 
selects the least loaded VNF and path among feasible candidates 
to construct service paths. The two algorithms are compared and 
discussed based on four metrics, namely, the VNF load 
balancing criteria ௜ܮܵ  ,  the network path load balancing 
criteria  ܰܮ, the total number of flow entries ܧ, and the average 
service chaining time ܶ. Note that we do not compare HATS to 
existing service chaining solutions [3,4,5,6,7] since they do not 
share the same objectives with our method or demand special 
requirements to implement. 

All the experiment results shown here are obtained by 
averaging the results of 5 simulation runs.  Each run is 
terminated upon successful completion of 10,000 flows. 

B. Result analysis 

1) VNF allocation: Homogeneous vs. Heterogeneous: In 
this experiment, we observe the performance of investigated 
algorithms under two VNF allocation scenarios, namely 
homogeneous and heterogeneous. As can be seen in Fig. 3, a 
physical machine consists of only one type of VNFs in a 
homogeneous scenario, whereas each machine consists of all 
four types of VNFs in a heterogeneous scenario. 

Figs. 4a and 4b clearly show that HATS reduces control and 
data plane overhead significantly. Compared with LLF, HATS 
can decrease the number of flow entries by about 82%, from 
101.6 thousand to 18.4 thousand. Besides, the service chaining 
time is also reduced by over 92%, from 479ms to 38ms. The 
results are almost the same in homogeneous and heterogeneous 
scenarios. In other words, VNF allocation strategies do not 
affect control and data overhead. 

The performance of VNF and path load balancing of HATS 
and LLF are compared in Figs. 4c and 4d. The experiment 
results indicate that HATS can efficiently perform VNF and path 
load balancing, but not as well as LLF due to hash collisions. 
There is a ~4.0% difference between two algorithms in the VNF 
load balancing criterion in both allocation scenarios. In term of 
path load balancing, LFF is about 0.15% and 0.66% better than 
HATS in homogeneous and heterogeneous scenarios. Fig. 4d 
also displays that both algorithms have better path load 
balancing performance in a homogeneous scenario. It can be 
explained by the fact that there are always multiple paths from a 

      

 a) Number of flow entries b) Service chaining time  c) VNF load balancing d) Path load balancing   
Fig. 4. VNF allocation: Homogeneous vs. Heterogeneous. 



type- ݅  VNF to a type- ݅′  VNF in the scenario, but not in a 
heterogeneous scenario. 

2) The impact of service chain length: We conduct another 
experiment in which the number of required network functions 
in service chains varies in the range [2,4], and VNFs are 
homogeneously allocated. By doing so, the performance of both 
algorithms is investigated with various service chain lengths. 
Note that we do not show the results of VNF and path load 
balancing in this experiment since the service chain lengths do 
not clearly impact on such two metrics. 

As expected, the experiment results demonstrate that the 
length of service chains significantly affects the performance of 
LLF algorithm, but not HATS. As can be seen in Fig. 5, the 
number of flow entries and the service chaining time are linearly 
increased with the service chain length in the LLF algorithm. To 
be specific, the number of flow entries is increased from 85.5 
thousand to 126.2 thousand when the length is changed from 2 
to 4. In other words, LLF requires about 2 more entries per flow 
when the service chain length increases by one network 
function. Meanwhile, the service chaining time is increased 
from 446ms to 589ms in the same range of service chain length. 
On the other hand, the control and data plane overheads are 
almost stable in HATS. In the case in which the service chain 
length is set to 4, the performance difference between HATS and 
LLF is roughly 85% and 93% in terms of the number of flow 
entries and the service chaining time. 

3) The impact of elephant flows: To understand the 
influence of elephant flows to the performance of HATS and 
LLF algorithms, we continue conducting this investigation in 
which the percentage of elephant flows varies in the range 
[0%,30%] and the VNF allocation is also homogeneous.  

Fig. 6 displays the performance of HATS and LLF 
algorithms in terms of VNF and path load balancing metrics. 
The results indicate that LLF is unaffected by the percentage of 
elephant flows, i.e., its performance is stable with the value of 
about 6.4% and 0.4% in the two metrics. In the case of HATS, 
unfortunately, the performance is getting worse when the 
percentage of elephant flows is increased from 0% to 30%. Take 
path load balancing metric, for example; it increases from 0.52% 
to 2.44%. To sum up, the elephant flows have high impact in 
HATS algorithm, but not LLF algorithm. 

V. CONCLUSION 

This paper presents HATS which is an efficient load 
balancing mechanism for chaining VNFs in a data center. Our 
method employs a centralized controller to collect network 

topology and then disseminates corresponding load balancing 
information to edge softswitches responsible for splitting 
network traffic to VNFs through multiple paths using flow 
hashing technique. Compared to previous solutions, HATS does 
not require any special requirements to network hardware while 
significantly reduces control and data plane overheads. Our 
future works will focus on reducing the impact of elephant flows 
to load balancing performance, and handling packet reordering. 
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Fig. 5. The impact of service chain length. 
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Fig. 6. The impact of elephant flows. 


