
1

Browser Fuzzing by Scheduled Mutation and
Generation of Document Object Models

Ying-Dar Lin1 Feng-Ze Liao1 Shih-Kun Huang1 Yuan-Cheng Lai2

1 Dept of Computer Science, National Chiao Tung University, Taiwan
2 Dept. of Information Management, National Taiwan University of Science and Technology, Taiwan

Abstract—Internet applications have made our daily life
fruitful. However, they also cause many security problems if these
applications are leveraged by intruders. Thus, it is important to
find and fix vulnerabilities timely to prevent application
vulnerabilities from being exploited. Fuzz testing is a popular
methodology that effectively finds vulnerabilities in application
programs with seed input mutation. However, it is not a satisfied
solution for the web browsers. In this work, we propose a solution,
called scheduled DOM fuzzing (SDF), which integrates several
related browser fuzzing tools and the fuzzing framework called
BFF. To explore more crash possibilities, we revise the browser
fuzzing architecture and schedule seed input selection and
mutation dynamically. We also propose two probability
computing methods in scheduling mechanism which tries to
improve the performance by determining which combinations of
seed and mutation would produce more crashes. Our experiments
show that SDF is 2.27 time more efficient in terms of the number
of crashes and vulnerabilities found at most. SDF also has the
capacity for finding 23 exploitable crashes in Windows 7 within
five days. The experimental results reveals that a good scheduling
method for seed and mutations in browser fuzzing is able to find
more exploitable crashes than fuzzers with the fixed seed input.

Keywords —browser fuzzing, black-box fuzzing, vulnerabilities,
exploits, mutation, scheduling, document object model, DOM

I. INTRODUCTION

Internet applications have made our daily life fruitful.
However, they also cause many security problems if these
applications are leveraged by intruders. Take some historical
events as examples. It could make nuclear centrifuges lose
control[1] and shut down banking systems unexpectedly[2].
The intrusions are often due to the vulnerabilities in application
programs. Intruders try to find vulnerabilities in an application
and exploit it to get the access they need, i.e., using malformed
inputs to take control of the victim system. It is therefore
important to find and fix vulnerabilities as soon as possible to
prevent vulnerabilities from being exploited[3].

Fuzzing is a popular methodology that effectively finds
vulnerabilities in application programs[4, 5]. The mechanism is
to constantly create an input, feed it into an application, and
observe whether the application terminates or crashes. The
reason why we are interested in finding an input that crashes a
target application is that if it could crash the target, then it also
has the chance to exploit the target. Hence, how to create the
inputs more effectively to find crashes becomes a critical issue
not only for intruders but also for application developers.

In general, fuzzing can be classified into white-box
fuzzing and black-box fuzzing, depending on how they create

the inputs[6]. White-box fuzzing would analyze the
applications to ensure that the inputs it creates are effective in
finding crashes in applications. That is, an application always
has many branches and then forms many possible execution
flows. With the enormous input space, it would be possible to
create virtually infinite inputs to exhaust all execution flows.
However, white-box fuzzing tries to create less inputs to cover
more possible execution flows. Recently, some solutions have
been proposed. CRAXfuzz[7] identifies specific sensitive
functions in advance. If an application uses some identified
functions, it would determine whether the application has
security vulnerabilities. If the answer is “yes”, it would also
generate specific inputs that cause the application to crash.
Coverset[8] proposes six algorithms to compute and selects the
proper inputs that could maximize the code coverage.
Nevertheless, white-box fuzzing is not perfect in practice.
Because of too many execution flows and complex constraints
in an application, it could be imprecise. Moreover, it takes much
time to analyze the application. Hence, an alternative way is to
randomly generate inputs without analyzing applications,
which is called black-box fuzzing.

Black-box fuzzing uses a seed from a data pool to generate
the next input. The idea behind the black-box fuzzing is simple.
First, it selects a seed, i.e., a template that feeds to the
application, and then uses a method to mutate it. The general
method to mutate is to change some bytes of the original seed
to generate an input. Second, it feeds the input, the mutated seed,
to the application and checks the result of the application.
Hence, black-box fuzzing would rather generate inputs directly
than take time to analyze the application. It is an effective and
simple method to find vulnerabilities. zzuf[9] is an example that
mutates seeds by changing some bytes and generates inputs to
feed to the application. Moreover, it uses the mutation ratio as
parameters to decide how many bytes should be changed. Basic
Fuzzing Framework (BFF)[10] is a tool that improves the
performance of black-box fuzzing. It is based on zzuf as the
mutation method with a seed recycling strategy. It records the
results in the past runs and determines which seed to select from
the seed pool next time. The objective is to increase the number
of crashes found. BFF is Linux-based, while Failure
Observation Engine (FOE)[11] is Windows-based version of
BFF. fuzzSim[12] tries to find an optimal seed selection
algorithm based on BFF to get more number of crashes found.

Although the above solutions can be used to find
vulnerabilities in applications, it might not be the best solution
to find any types of applications. Take Web browser as an

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on May 12,2020 at 06:21:20 UTC from IEEE Xplore. Restrictions apply.

2

example. The input fed into a browser is text-based, so it would
not be efficient if we do not follow their text well-formed rules
to mutate the seed. Thus, there exists an extra problem if we
want to find vulnerabilities for a browser. Besides, the report
from Symantec 2013[13] says that the number of browser
vulnerabilities found was 351 in 2011 and increased to 891 in
2012. In 2013, there were also 591 vulnerabilities found. It said
that there existed some vulnerabilities even at the time of
reporting. There are some solutions to browser fuzzing, targeted
only at browsers, such as bf3[14], crossfuzz[15] and ndujafuzz
[16]. bf3 tries to generate inputs by adding a random element
with a repeated random string in an empty structure, the input
which only has a header. crossfuzz and ndujafuzz use document
object model (DOM)[17] to implement the mutation process.
That is, they would rather constantly change their structures and
values in the DOM than just change some bytes in the seed. The
method mentioned worked well with fuzzing efficiently
formerly. However, they have been released for a long time
without frequent updates and may not be able to find new
vulnerabilities, because the vulnerabilities they could find have
already been fixed. Thus, we’d like to propose a solution that
uses an improved way to generate inputs and determine whether
the method would find more crashes or vulnerabilities based on
the results of recent runs.

In this work, we propose a solution, named scheduled
DOM fuzzing(SDF), which integrates the concept of browser
fuzzing, black-box fuzzing, and the architecture of BFF. To get
more possibilities, we improve the architecture of the original
browser fuzzing and make seed and mutation changeable. The
primary contributions to our work are described as follows.

We propose an improved architecture that make seed and
mutation changeable, and check recent runs to explore
the execution paths in better possibilities.
We propose a method to increase the performance by
determining which combinations of seed selection and
mutation would find more crashes.

II. BACKGROUND

In this section, we review the techniques of black-box
fuzzing and discuss how to improve it. Then, we introduce the
techniques of browser fuzzing.

A. Black-box fuzzing
Black-box fuzzing is known as dynamic randomized-input

for functional testing that has been used to find application
vulnerabilities since 1990s[18]. There are two important
components: seed and mutation, for fuzzing to generate input
successfully. A seed is a template that feeds to the application
after using mutation to randomly change the seed. We would
generate the input based on the corresponding seed and mutation.
In addition, it would also use some seeds as a seed pool to
increase the variety of results as we want. After the application
is fed with the input, we would inspect whether it crashes or not.
For example, if we want to fuzz a media player using zzuf, the
seed inputs must be kinds of media files. We would select a seed
and use mutations in zzuf to change some bytes of the media data.

After that, we feed the media player the mutated media and
inspect whether media player crashes or not. Hence, we would
find some crashes including possible vulnerabilities. Ideally,
there are many possible seeds that can be mutated and we can
generate more crashes as you want. In fact, it would be restricted
by the limited set of seeds and it would use designated seeds for
specific vulnerabilities to find crashes easily. At the same time,
it might ignore some seeds that may potentially lead to a crash
in the fuzzing process.

B. Improvement of Black-box Fuzzing
Although the technique of black-box fuzzing is simple and

also effective, there is a problem that it doesn’t care about how
to select a seed from the seed pool. Hence, it would select the
seed input randomly. In order to improve the performance of
black-box fuzzing, the concept of scheduling seed selection is
proposed. The use of scheduling is to give seeds with selected
probability or score. Hence, black-box fuzzing can select proper
seeds based on the selected probabilities or score. We have
discussed some of the work. BFF designs an architecture which
provides the mechanism, i.e., scheduling, to select a proper seed
according to the past experience. It computes the rate, as the
number of crashes found divided by the total time, to select the
seed. Because of the rate as a belief metric, it produces the
situation that if more crashes are found with a seed, there is a
higher possibility to select the seed again.

Likewise, fuzzSim is to improve the performance of BFF, so
it uses five different scores of computation and five selected
probabilities to compute and determine which seed to select. The
objective is to take less time to find the crash you have found
before.

C. Browser fuzzing
Browser fuzzing is a specific way to test a browser based

on the input format of the browser. The input of the browser is
document-based and the structure needs to follow certain rules.
According to the rules, browser fuzzing could randomly
generate executed instructions in a controllable way. Recently,
there are two types of browser fuzzing, i.e. static and dynamic,
which are used to test browsers[19]. In static browser fuzzing,
the input is randomly generated before fuzzing and then
browsers execute the input to test whether they will crash or not.
For the example of the browser fuzzer 3(called bf3), it is a static
browser fuzzing which adds one element and assigns a random
sequence as the value in a seed. Therefore, it could generate lots
of input that can feed to the browser. However, it is not an
effective way to find crashes because the input may have similar
or simple structures.

In dynamic browser fuzzing, they usually use JavaScript
to constantly mutate the structure of the seed which is an html
file. Hence, the result obtained from a mutated seed is
unpredictable.

There is a random number to decide the executed
procedures every time, so we would not know the result in
advance. It would not stop until the browser terminates or
crashes. Besides, it would employ document object model
(DOM) to change the structure of the seed dynamically. There
is a number of tools based on dynamic browser fuzzing.
crossfuzz generates extremely long-winding sequences of DOM

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on May 12,2020 at 06:21:20 UTC from IEEE Xplore. Restrictions apply.

3

operations, inspecting returned objects, doing recursion, and
creating circular node references that stress to test garbage
collection mechanisms. ndujafuzz shows an evolutional
approach of browser fuzzing that relies on some DOM
interfaces introduced by W3C DOM Level 2 and Level 3
specifications.

TABLE I shows a comparison of two types of browser
fuzzing. On the issue of resource consumed, static browser
fuzzing generates a lot of inputs and the input needs to execute
one by one. Dynamic browser fuzzing could use one input to
generate different conditions of executed instructions when
browser consume a certain type of inputs. So, static browser
fuzzing needs extra resource spent on opening and closing
browser when fuzzing the browser. Moreover, the key issue in
static browser fuzzing is how to generate more effective input
to crash the target program. Because how to change is
determined after generating the initial input, it is critical to have
a good method for input generations. However, dynamic
browser fuzzing has only one seed and tries to generate different
input, so the key issue is how to reconstruct the input more
effectively.

TABLE I. COMPARISONS BETWEEN STATIC AND DYNAMIC BROWSER
FUZZING
Static Dynamic

Frequency to load
into browsers More Less

Resource
consumed More Less

Important point Input generation Input reconstruction
Record
condition of crash Easier Much difficult

III. PROBLEM STATEMENT

We propose a browser fuzzing framework that is able to
find the crashes efficiently by mixing with the solutions of the
black-box browser fuzzing. We highlight the terminology and
assumption, and then discuss the problem statement.

A. Terminology and Assumptions
We describe the notation in Table II. In fuzzing category, S

and Mut stand for the component of browser fuzzing and Input
is the pair of S and Mut. In the experiment, we would feed inp to
browser b, and let b run for tout second before terminate b or
terminate b by crashing. Then, we would update the CRS after
that and compute PS and PM by different scheduling
mechanisms again. In final, after scheduling the seed and
mutation, fuzzing the b and update CRS for t, it would finish the
mission.

In the problem, though input in browser won’t include just
the html file only, we will focus on html files in this paper to
reduce the complexity of the problem. Besides, though the more
time you fuzz the browser, the more crashes you would find, we
will fuzz in fixed time to obtain each performance result.

B. Problem Statement
This work is intended to find an efficient browser fuzzing

architecture. The problem statement is as follows. We assume
that given browser b as the target, we would use the mentioned
probability computing method to compute PS and PM. And
then, using PS and PM to schedule sn and mutm from S and Mut

to generate the inp for b. We would update CRS after executing
inp and compute PS and PM again. We would schedule other
seed and mutation and generate another inp again. It would
continue until executing t. In final, we would get the
performance by comparison the |CRS|.

IV. SCHEDULED DOM FUZZING:

A. Overview
Unlike the structure of traditional browser fuzzing just

with single seed and mutation to find the crashes, our SDF
method use dynamic structure of seed and change the mutation
scheme. We select a random seed and mutation parameter for
the fuzzing process. Because of this, we select a pair of the seeds
and mutation used by existing browser fuzzing tools. In this case,
we may just fuzz as same as the original browser fuzzing. We
would further create a pair that is new and may not be used to
test before, so we may be able to find more different results due
to the dynamic pair of seeds and mutations. We might create
more different results and find some unknown crashes even with
existing solutions.

Although it might create more and unknown possibilities,
it could also create many useless or redundant results from some
pairs. It will take much time and sacrifice the performance.

We therefore use the concept of scheduling in black-box
fuzzing to increase the performance by selecting proper seed and

TABLE II. NOTATIONS DESCRIPTION

Categories Notations Descriptions
Fuzzing S = { sn | n ≥ 1} The set of the seed sn that

would become the input after
the seed combines with a
mutation.

Mut = { mutm |
m ≥ 1}

The set of mutation mutm that
would become the input after
the mutation combines with a
seed.

Input = {inp | inp
 (S, Mut), p ≥

1 }

The set of the input inp, the
input means the pair of seed
and the mutation.

PS = { psn | n ≥
1 }

The set of the seed’s
probabilities psn, the
possibility is used by
schedule mechanism to select
a seed as a time.

PM = { pmm | m
}

The set of the seed’s
probabilities pmm, the
possibility is used by
schedule mechanism to select
a mutation as a time.

t A given time for fuzzing.
tout A given timeout for

executing a browser b.
b The browser the fuzzing

executed
Result CRS = { crsn,m |

n , m }
The set of result crsn,m , crsn,m

represents the number of the
crash that found after
executing inp = (sn, mutm).

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on May 12,2020 at 06:21:20 UTC from IEEE Xplore. Restrictions apply.

4

mutation. From the past simulation experience, we would
determine the better selection method.

Our algorithm showing in Fig. 1 presents the whole design.
We have to generate some seeds S and mutations Mut by
ourselves or from the existing systems. We would use the
probabilities PS and PM to schedule the seed and mutation. How
to compute PS and PM is the critical part for scheduling
mechanism, because probability PS and PM would determine
which seed and mutation will get more possibility to be selected.
The probability computing method will be described later.

After generating inp, we will let browser b executes with
inp and observe whether b would crash in tout. We would record
the result by updating CRS, PS and PM after executing b.

To sum up, we have two probability computing methods
for scheduling mechanism to select the seed and mutation from
pools, and then use the pair as the input for feeding to the
browser. In the final phase, we would record the result regardless
of crashing or not to affect the decision in the future.

B. Seed and Mutation Modules
In the architecture, the seed input will be in a set that includes

more than one seed, and the mutation. We will introduce a
scheduling mechanism for selection by combining the seed and
mutation to form the input for browser. In this case, seed will be
mutated with the preset rules when browser executing. However,
because the result of dynamic browser fuzzing will not be known,
and our mutation is a type of dynamic browser fuzzing, the pair
combined of the same seed and mutation will not create the same
result. Hence, we will create lots of input that is based on the
dynamic browser fuzzing. The more seeds and mutations we
provide, much more crash input and possibilities we will obtain.
We can find more crashes due to this changing scheme.

C. Scheduling Mechanism for Selection
In the mechanism of how to schedule, we compute

selected probability for seed and mutation, i.e. PS and PM. We

think how to select mutation is more important than seed. So,
we only determine a method to compute PS. The method to
compute PS is called weighted random. It is a method with more
crashes found to have the higher priority. We think the seed
with more crashes will find other crashes again. We compute
the selected probability of kth seed as

psk = .

In the scheduling of mutation, we use four mechanisms,
including two history non-cared methods and two history-cared
methods. In history non-cared methods, we use normal random
selection and round robin selection. It doesn’t matter the result
of the mutation in history. In history-cared methods, we record
the result after fuzzing the browser with the pair of mutation
each time.

Weight random is a method with more crashes found to
have the higher probability for scheduling mechanism of seed.
We compute the selected probability of kth mutation as

pmk = .

ε - weight random can be a trade of uniform random and
weight random. It means that every mutation has a basic
probability and gives the extra probability to the mutation to
find more crashes. “ε” is a decimal faction that between 0 to 1
and means the portion of preservation for each mutation. If we
want to compute the selected probability of kth mutation as

pmk = .

V. IMPLEMENTATION

Our framework is based on the FOE fuzzing framework
with a browser fuzzing mode to support the method of dynamic
browser fuzzing. We preserve the original seed pool and create
an additional mutation pool. We use the components of FOE
including the seed selection method, debugger tool and crash
triage method.

In practical situations, the seed of browser fuzzing is an
html file with a clear structure. We can divide the seed pool into
two groups. One group is a simple structure with less elements
or with some specific elements. Another group includes some
public web pages. The reason of collecting from well-known
web pages is that the structure is more complicated than other
small sites. The mutation of browser fuzzing is a script written
in JavaScript. We use the mutation from crossfuzz and
ndujafuzz. Especially, we also write a simple mutation. We try
to combine different mutations of existing fuzzing tools with
our own mutation method.

VI. EXPERIMENT AND RESULT ANALYSIS

We first present the performance of browser fuzzing in
three metrics: throughput, crash input generation rate and the
influence of optimal scheduling. Throughput and crash
generation rate are used for measuring performance of the
browser fuzzing in the same environment and time interval. On
the optimal scheduling, we will find the proper scheduling
mechanism for choosing suitable mutations.

Generate S and Mut

Schedule S and select sn

by PS

Schedule Mut and select
mutm by PM

B executes
inp = (sn, mutm)

Crash?

Run b
for tout ?

No

Yes

No

Update PS, PM, CRS
Yes

Start

Run SDF
for t ?

No

End

Yes

Fig. 1. Our algorithm

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on May 12,2020 at 06:21:20 UTC from IEEE Xplore. Restrictions apply.

5

A. Experimental Environment
Although the fuzzing method can be applied in different

browsers, we use IE as our main target. We conduct the
experiment on VMware 10.0.4 configured with a CPU and 1G
RAM. We use the Windows XP SP3 distribution and Window
7 for our experiment. We also use the debugging function and
crash triage from FOE.

 In FOE, the configuration will set target application to IE
and timer defined in configuration of FOE to 25 seconds. FOE
will feed the input to the target application within 25 seconds
and then terminate the application. We select IE 8 as our main
version for fuzzing. Before fuzzing, we have to set the
configuration by turning off the function of automatic recovery
and turn on automatic execution of JavaScript.

B. Throughput
We compare four browser fuzzing types with IE8 in the

same environment for five days. FOE uses a simple mutation
method provided by zzuf. Mutation in zzuf will change a certain
bytes in the seed as used in black-box fuzzing. The seed mutated
by zzuf is the same as the one used by SDF. crossfuzz and
ndujafuzz will use the original seed. We haven’t changed the
rules of crossfuzz and ndujafuzz, and the default configurations
are remained. However, since there are some compatibility
issues in different versions, we must fix them before the fuzzing
process begins. All experiments are performed in FOE with our
scheduling and mutation schemes, and all crashes are handled
and analyzed by FOE. FOE will classify the crashes into several
types, including probably, not exploitable, probably exploitable,
exploitable and unknown situations by !exploitable[20].

 We also want to observe the differences with or without
using the architecture. The architecture includes seed pool,
scheduling mechanism and the timer for execution. We fix the
used mutation and compare the results of using architecture or
not. The used mutation in SDF* is the mutation of crossfuzz
only. It includes the same mutation as crossfuzz, but the
architectures are different.

 The results of throughput in terms of total number of
unique crashes found are shown in Table III. zzuf can only find
unexploitable crashes and not as much effective as other
browser fuzzing tools. As for crossfuzz, it finds more crashes
classified as “unknown” and “probably exploitable”. SDF finds
about the same crashes as crossfuzz since SDF includes
crossfuzz as a fuzzer and it should generates different inputs
that others don’t have but it doesn’t behave as our expectation.
However, SDF* finds more crashes than crossfuzz and SDF.
The reason is that SDF doesn’t include mutation of crossfuzz

only, so it would use other mutation to fuzz IE. If other mutation
can find crashes effectively, it just waste time and find fewer
crashes in the end.

However, SDF* could find 2.27 (41/18) times more
number of crashes than crossfuzz. The reason is that the crashes
found by crossfuzz may have been fixed and SDF* should
explore different paths for other potential inputs.

C. Rate of Useful Crash Finding
Other than the number of the crashes generated in a fixed

time interval, we also care about the speed of crash finding. By
observing the speed of crash finding, we could know how
effective the fuzzing method is in a fixed time interval.
However, because some crashes are not exploitable, they are
not useful actually. So, we focus on the crashes that are
exploitable and ignore the crashes that are probably not
exploitable.

 In Fig. 2, we show that zzuf does not find any exploitable
crashes, so it is not an effective tool for fuzzing browser. SDF
can find more useful crashes than crossfuzz in the beginning,
and find more crashes within five days. We show that SDF may
find another crashes from previously generated crashes. SDF
selects the specific seed and mutation for speedup. Though
crossfuzz won’t recycle the former crashes found, it is good
enough and find crashes constantly. It is efficient due to the
improved architecture with scheduling and mutation schemes.
The scheduling mechanism would learn and constantly find
useful crashes.

D. Optimal scheduling
 In this experiment, we evaluate the influence of

scheduling for getting better fuzzing results. In Table IV, we
find that if the scheduling algorithms ignore the mutation for
the crash in the history record, we cannot get more crashes. We
thus need a better algorithm to select the mutations. It is more
efficient than using random or round robin scheduling methods.

TABLE III. THE THROUGHPUT OF FUZZING

Total found
Crashes

Useful crashes

Unknown Probably
exploitable Exploitable

zzuf 2988 0 0 0
crossfuzz 26 2 3 13
SDF 50 2 6 12
SDF* 74 3 15 23

0

10

20

30

40

50

0 1 2 3 4 5

U
se

fu
l c

ra
sh

 n
um

be
r

Days

zzuf crossfuzz

SDF SDF*

Fig. 2. Rate of crash finding

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on May 12,2020 at 06:21:20 UTC from IEEE Xplore. Restrictions apply.

6

E. Types of the useful crashes found
From the previous results, we have shown that we found

useful crashes whatever is found by crossfuzz or SDF. In this,
we would show the message from !exploitable. From Fig. 3, it
is the result from SDF with the mutation of crossfuzz. We could
see that most of the crashes are raised from access violations.

In the exploitable crashes, 17 crashes with the status
“access violation” try to access DEP (data execution
prevention), two crashes write in user mode and one crash tries
to access on invalid control flows. In the probably exploitable
cases, nine crashes with “access violation” find a faulty address
which would be used for a branch and six crashes try to access
DEP. In the unknown cases, one is to find the fault address
would be later used to determine whether a branch is taken, one
is read access violation and the other is write access violation
in user mode.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we focused on browser fuzzing. By designing
a new architecture for fuzzing, our solution is able to find 2.27
times of number of useful crashes more than the original
fuzzing method. By changing the mutation scheme with
different seed selection method, we successfully find crashes
from different seed inputs. If you want to find crashes of
browsers, the most important part is the mutation. How to
determine whether mutation is good or not would depend on
analyzing the structures from fuzzing. If you have a proper
mutation, then using our architecture would efficiently find
crashes. If you find more than one mutation that is able to find

useful crashes, adding scheduling mechanism would reduce the
time to find crashes and you would have more time to explore
unknown crashes. Unfortunately, SDF has only one mutation
that finds useful crash, so it is unobvious to see the effect of
scheduling mechanism.

In the future, we will develop a reproducing mechanism
for the crash input, because it is difficult to record persistent
information for dynamic browser fuzzing. We would try to
record them for analysis by keeping the parameters of mutation
to reproduce the crash input. Besides, we could use this solution
to fuzz different browsers and try to find previously unknown
crashes. We can add other seeds and mutation methods to find
more crashes and a better scheduling algorithm to better
improve the SDF.

REFERENCES

[1] R. Langner, "Stuxnet: Dissecting a cyberwarfare weapon," Security
& Privacy, IEEE, vol. 9, pp. 49-51, 2011.

[2] R. Sherstobitoff and M. Itai Liba, "Dissecting Operation Troy:
Cyberespionage in South Korea," ed: McAfee White Paper, 2013.

[3] W. L. F. W. A. Arbaugh, and J. McHugh, "Windows of vulnerability:
A case study analysis," pp. 52-59, 2000.

[4] L. F. B. P. Miller, and B. So, "An empirical study of the reliability
of UNIX utilities," Communications of the ACM, vol. 33, pp. 32-44,
1990.

[5] A. G. M. Sutton, and P. Amini, "Fuzzing: brute force vulnerability
discovery," 2007.

[6] B. Liu, L. Shi, Z. Cai, and M. Li, "Software vulnerability discovery
techniques: A survey," in Multimedia Information Networking and
Security (MINES), 2012 Fourth International Conference on, 2012,
pp. 152-156.

[7] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai, H.-L. Lu, and
W.-M. Leong, "CRAX: Software Crash Analysis for Automatic
Exploit Generation by Modeling Attacks as Symbolic
Continuations," in Software Security and Reliability (SERE), 2012
IEEE Sixth International Conference on, 2012, pp. 78-87.

[8] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco,
et al., "Optimizing seed selection for fuzzing," in Proceedings of the
USENIX Security Symposium, 2014, pp. 861-875.

[9] The ZZUF fuzzer. Available: http://caca.zoy.org/wiki/zzuf
[10] W. Dorman, "CERT Basic Fuzzing Framework," 2010.
[11] Failure Observation Engine (FOE). Available:

http://www.cert.org/vulnerability-analysis/tools/foe.cfm?
[12] S. K. C. M. Woo, S. Gottlieb, and D. Brumley, "Scheduling black-

box mutational fuzzing," in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pp. 511-522,
2013.

[13] Symantec, "Internet Security Threat Report 2014," 2014.
[14] Bf3. Available: http://www.aldeid.com/wiki/Bf3
[15] M. Zalewski. (2011). crossfuzz. Available:

http://lcamtuf.blogspot.tw/2011/01/announcing-crossfuzz-
potential-0-day-in.html

[16] R. Valotta, "Taking Browsers Fuzzing To The Next (DOM) Level,"
2011.

[17] W3C. Document Object Model (DOM) Technical Reports.
Available: http://www.w3.org/DOM/DOMTR

[18] S. D. Cook and J. S. Brown, "Bridging epistemologies: The
generative dance between organizational knowledge and
organizational knowing," Organization science, vol. 10, pp. 381-
400, 1999.

[19] A. Aphale. Introduction to browser fuzzing. Available:
http://www.slideshare.net/null0x00/introduction-to-browser-
fuzzing

[20] Microsoft. !exploitable Crash Analyzer - MSEC Debugger
Extensions. Available: https://msecdbg.codeplex.com/

TABLE IV. COMPARISON BETWEEN SCHEDULING ALGORITHMS

Total
found

Crashes

Useful crashes

Unknown Probably
exploitable Exploitable

Uniform
random 34 2 7 4

Round robin 31 1 4 4
Weighted-
Random 26 0 7 5

ε- Weighted-
Random 27 0 4 4

20

15 32

0 01 0 0

E x p l o i t a b l e P r o b a b l y
E x p l o i t a b l e

U n k n o w n

Status access violation Status heap corruption

Status illegal instruction

Fig. 3. The type of found crashes result

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on May 12,2020 at 06:21:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

